• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mitochondrial Genome of Episesarma lafondii (Brachyura: Sesarmidae) and Comparison with Other Sesarmid Crabs

    2021-12-22 11:43:12ZHANGYingGAOYanGONGLiLUXintingJIANGLihuaLIUBingjianLIULiqinZhenmingandLIPengfei
    Journal of Ocean University of China 2021年6期

    ZHANG Ying, GAO Yan, GONG Li, , *, LU Xinting, JIANG Lihua,LIU Bingjian, LIU Liqin, LüZhenming, and LI Pengfei

    Mitochondrial Genome of(Brachyura: Sesarmidae) and Comparison with Other Sesarmid Crabs

    ZHANG Ying1), 2), GAO Yan1), 2), GONG Li1), 2), 3), *, LU Xinting1), 2), JIANG Lihua1), 2),LIU Bingjian1), 2), LIU Liqin1), 2), LüZhenming1), 2), and LI Pengfei3)

    1),,,316022,2),,316022,3),,530007,

    Complete mitochondrial genomes (mitogenomes) can provide useful information for phylogenetic relationships, gene rearrangement, and molecular evolution. Here, the complete mitogenome of(Brachyura: Grapsoidea: Sesarmidae)was sequenced through next-generation sequencing technique for the first time.The 15640bp mitogenome contains the entire set of 37 genes and an AT-rich region.The rearrangements of two tRNA genes (-and-) are compared with that in the pancrustacean ground pattern, and the tandem duplication/random loss model was selected to explain the observed gene rearrangements. The phylogenetic results showed that all sesarmid crabs belong to the same group, wherein the genusshow- ed the closest relationship with. Furthermore, the monophyly of each family was well supported except for Xanthidae, Gecarcinidae, and Homolidae. The correlation between the phylogeny of Sesarmidae species and the gaps in theregion was analyzed. Evidently, the gaps betweenand(Gap3) and betweenand(Gap4) degenerated with the evolution process. In general, the results will contribute to the in-depth understanding of gene rearrangements in Sesarmidae mitogenomes and provide new insights into the phylogeny of Brachyura.

    mitochondrial DNA; sesarmid crab; gene order; rearrangement mechanism; phylogenetic construction

    1 Introduction

    The mitochondrial genome (mitogenome) of metazoans is generally a closed, circular molecule with a size of 14–20kb.This genome contains 37 encoding genes, including 13 protein-coding genes (PCGs), two ribosomal RNA genes (and), 22 transfer RNA genes (tRNAs), and an AT-rich region (also called control region, CR) (Boore, 1999). The mitogenome is characterized with small genome size, high evolutionary rate, simple structure, and maternal inheritance (Gyllensten., 1991; Sato and Sato, 2013).The complete mitogenome has been widely used in com- parative genomics, adaptive evolution, population genetics, and phylogenetic studies (Plazzi., 2016; Tan., 2018; Tan., 2019; Irisarri., 2020). The mitogenome can also provide direct molecular clues for gene re- arrangement process, which will reveal important informa-tion for phylogenetic analyses (Liu and Cui, 2010; Zhuang and Cheng, 2010; Xin., 2017b; Gong., 2020a). With the rapid advancement of sequencing technologies, next-generation sequencing has become a fast and low-costmethod to provide complete mitogenomes (Gan., 2014; Tan., 2015).

    The gene order was initially considered conserved in vertebrate mitogenomes. However, with more than 11000 complete mitogenomes currently determined, mitogenomic gene rearrangements have been found in several groups, including fishes (Lü., 2019), reptiles (Liu., 2019),birds (Caparroz., 2018), amphibians (Jiang., 2020),insects (Li., 2019a), and crustaceans (Tan., 2019). In general, the frequency of gene rearrangement in vertebrate mitogenomes is relatively lower than that in invertebrate mitogenomes. Thus far, several models have been applied for mitochondrial gene rearrangement.These mo- dels include the tandem duplication/random loss (TDRL) model (Moritz and Brown, 1987), recombination model (Lunt and Hyman, 1997), tRNA mispriming model (Can- tatore., 1987; Jacobs., 1989), tandem duplication/ nonrandom loss model (Lavrov., 2002), and double- replication/random loss model (Shi., 2014). The TDRL model posits that rearrangements occur via tandem dupli- cation followed by the random deletion of redundant genes (Moritz and Brown, 1987).This model has been widely used to explain the translocation of genes encoded on the same strand (Shi., 2015; Tan., 2018; Wang., 2018). Another commonly accepted hypothesis is the recombination model, which is characterized by the breakage and rejoining of the participating DNA strands (Lunt and Hyman, 1997). This model has been applied to explain the gene inversion and other rearrangement events (Kong., 2009; Tan., 2018). Usually the last three mo- dels are seldom used.

    The infraorder Brachyura contains about 7250 described species, and most of them are economically and ecologi- cally prominent (Zhang, 2011; Basso., 2017; Chen.,2018). However, the phylogenetic relationships among members of Brachyura and their evolutionary origin remain debatable due to the extreme morphological and ecologi- cal diversity(Sanchez., 2016; Rocha., 2018; Wang., 2019). Brachyura was initially segmented into three groups: Podotremata, Heterotremata, and Thoracotremata (Spears., 1992). Subsequently, it was clustered intoDromiacea and Eubrachyura,which also include Thoraco- tremata, Raninoida, and Heterotremata) (Martin and Davis,2001). However, the latest classification scheme groups Bra-chyura into Eubrachyura, Dromicea, Raninoida, and Cyclo- dorippoida (Ahyong., 2007; Tsang., 2014). Al- though the phylogenetic relationship within Brachyura is still inconclusive, the current classification system has beensupported by most scholars.

    Among Brachyura, sesarmid crabs are thought to be the key initial processors of leaves of mangrove, which play a crucial role in mangrove ecosystems (Gillikin, 2004; Ra- hayu and Ng, 2010; Tan., 2019). According to WoRMS(http://www.marinespecies.org/), the family Sesarmidae has36 genera and 309 species in total. Recently, studies on the genusde Man, 1895 (Brachyura: Sesarmidae) mainly concentrated on the morphology (Buatip., 2017; Jeyachandran., 2020), whereas studies at the mole- cular level are rare (Fratini., 2005; Schubart., 2009). To date,ten complete mitogenomes of Sesarmidae involving five genera are available from the National Cen- ter for Biotechnology Information (NCBI); however, no stu-dy reported the genus.Hombron & Jacquinot, 1846 (Sesarmidae, Sesarminae), which is a mudflat crab that is often found in the upper in- tertidal zone of mangrove forests in the Ryukyu Archipe- lago (Miyake., 2019). To date, no information is avail-able about its biological and molecular characteristics. Thus, in this study, the complete mitogenome of the genus() was sequenced for the first time. Thecharacteristics of this mitogenome were described and com-pared with those of 10 other sesarmid crabs.Additionally, anoverall phylogenetic analysis of 107 brachyuran species wascarried out based on the nucleotide sequences of 13 PCGs.

    2 Materials and Methods

    2.1 Ethics Statement

    The crab specimens used in the present study were pur- chased from the Lingshui seafood market in Hainan, Chi- na. The species is not included in the endangered list of theInternational Union for Conservation of Nature (https:// www.iucnredlist.org/). Specimen collection and maintenance were performed in strict accordance with the recommen- dations of Animal Care Quality Assurance in China. All ex-perimental protocols were approved by the Institutional Ethics Committee of Zhejiang Ocean University.

    2.2 Sample Collection and DNA Extraction

    An individual specimen ofwas collected from Lingshui seafood market in Hainan Province, China (18?24?39??N, 109?58?20??E). The specimen was immediately preserved in absolute ethanol after collection and then stored at ?20℃. This specimen was identified with a stereo dissecting microscope based on the key morphological features of crabs (Dai and Yang, 1991; Lee., 2015). The SQ Tissue DNA Kit (OMEGA) was used to ex-tract the total genomic DNA following the manufacturer’s instructions.

    2.3 Mitogenome Sequencing and Assembly

    The genomic DNA was sent to Shanghai Origingene Biopharm Technology Co., Ltd. for library preparation and high-throughput sequencing. The library was constructed by using the VAHTS Universal Plus DNA Library Prep Kit with an insert size of 400bp. The genome sequencing was conducted on an Illumina NovaSeq 6000 platform, with a strategy of 150 paired-end sequencing.The raw data sets were stored in the Short Read Archive database (https:// www.ncbi.nlm.nih.gov/sra/) with the accession no. SRX7 809611.The NOVOPlasty software (Dierckxsens., 2017) was used for theassembly of clean data without sequencing adapters.In the seed extension algo- rithm achieved by NOVOPlasty, the complete mitogenome of(GenBank accession number: NC_047209) was used as the seed sequence. To assess the single-base accuracy of the assembled genome, we com- pared it with three confirmed sequences by polymerase chain reaction (PCR) and Sanger sequencing methods.Sanger sequencing was conducted using an ABI genetic analyzer (Applied Biosystems, China). The PCR fragmentsand the corresponding primer sequences are as follows:(MW428280; F: TCNACAAAYCATAAAGAYATY GG/R: TANACYTCWGGRTGHCCRAARAAYCA);(MW430771; F: TRTGTGGRTTYCCHTTTHTAGCNGG/ R: GCTAATGCAG GGATACTAAC);(MW430770; F: TGRTTYGGRGCYTGRVTHGGNYT/R: GGDGGHA RNCCHCCWARNGA).

    2.4 Mitogenome Annotation and Sequence Analyses

    The software Sequin (version 15.10, http://www.ncbi. nlm.nih.gov/Sequin/) was used to manually annotate the complete mitogenome.The PCGs were determined by their open reading frame following the invertebrate mtDNA translation table. The boundaries of rRNA and tRNA geneswere determined using NCBI-BLAST (http://blast.ncbi.nlm.nih.gov) and tRNAscan-SE 1.21 (Lowe and Chan, 2016),respectively, comparing with the related species.Based on the secondary structure predicted by tRNAscan-SE 1.21 (Lowe and Chan, 2016) and MITOS Web Server (Bernt., 2013), we manually plotted the transfer RNA genes.The CGView online server V 1.0(Stothard and Wishart, 2005) was used to draw the mitogenome map. The soft- ware MEGA X (Kumar., 2018) was used to analyze the relative synonymous codon usage (RSCU) and nucleo- tide composition. The following formulas were used to cal- culate the strand asymmetries: AT-skew=(A?T)/(A+T); GC-skew=(G?C)/(G+C) (Perna and Kocher, 1995).

    2.5 Phylogenetic Analysis

    A total of 106 complete mitogenome sequences were downloaded from the GenBank database to reconstruct phy- logenetic relationships within Brachyura, adding two ano- muran species to serve as the outgroup (Table 1).Phylo- Suite (Zhang., 2019) was used to extract the nucleo- tide sequences of 13 PCGs for each of the above species from the GenBank files.The MAFFT program (Katoh., 2002) integrated into PhyloSuite was executed to align mul-tiple sequences in normal-alignment mode, and ambigu- ously aligned regions were identified and moved by Gblocks (Talavera and Castresana, 2007). The alignments of indi- vidual genes were then concatenated and used to generate input files (Phylip and Nexus format) for phylogenetic ana- lyses. GTR+F+I+G4 was selected as the best-fit model in accordance with the BIC criterion using ModelFinder (Kalyaanamoorthy., 2017). Phylogenetic trees were built under maximum likelihood (ML) and Bayesian in- ference (BI) methods. The ML analysis was carried out in IQ-TREE (Nguyen., 2015) using an ML+rapid boot- strap (BS) algorithm with 1000 replicates.The BI analysiswas performed in MrBayes 3.2.6 (Ronquist., 2012) with default parameters and 3×106Markov Chain Monte Carlo generations.The trees were sampled every 1000 ge- nerations with a burn-in of 25%. The average standard de- viation of split frequencies below 0.01 was considered to reach convergence.

    Table 1 List of 107 Brachyuran species and two outgroups used in this paper

    3 Results and Discussion

    3.1 Genome Structure and Composition

    The circular duplex molecule mitogenome ofis 15640bp in size (GenBank accession number: MT193721), which is within the length range (15611–15920bp) of other previously sequenced Sesarmidae mitogenomes (Table 1). The mitogenome also contains 13 PCGs (11187bp), two rRNAs (2160bp), 22 tRNAs (1479bp), and a putative CR (663bp) (Fig.1; Table 2). The lengths of PCGs, tRNAs, rRNAs, and CR for this speciesand other published Sesar-midae species were compared. The sizes of PCGs, tRNAs, and rRNAs were relatively conserved, and the maximum length diversification, which is from 528bp to 833bp, was detected in the rapidly evolving CR.

    The nucleotide composition of the whole mitogenome was 37.0% A, 38.9% T, 9.4% G, and 14.7% C (Table 3), which revealed a strong AT bias (75.9%). The skewness me-trics of the mitogenome showed negative AT-skew (?0.025)and negative GC-skew (?0.219), which followed the trendof published Sesarmidae mitogenomes (Table 4) (Xin.,2017a; Wang., 2018; Chen., 2019; Wang., 2019).Inmitogenome, 17 intergenic spacers ranging from 1bp to 38bp were found. The longest one was located betweenand(Table 2).Mean- while, 20bp overlapping sites were identified at eight junc- tions. Three overlaps (4bp betweenand, 1bp betweenand, and 7bp betweenand) were also generally found in other invertebrate species (Ta- ble 2) (Li., 2019b; Wang., 2020b).

    3.2 PCGs and Codon Usage

    The 13 PCGs consist of one cytochrome b (), two ATPases (and), three cytochrome c oxidases (-), and seven NADH dehydrogenases (-and). Four genes (,,, and) are encoded by the L-strand, whereas the remaining nine genes are encoded by the H-strand. The typical ATN co- dons are used as a start codon. The majority of the 13 PCGs terminate with TAA or TAG, whereas three other PCGs (,, and) use a single T as the stop codon (Ta- ble 2). The presence of different stop codons has been pro-ven to be a common phenomenon in metazoan mitoge- nomes (Wu., 2014; Hamasaki., 2017; Gong.,2018). The AT-skew of the 13 PCGs was negative (?0.161), whereas the GC-skew was positive (0.018), demonstrat- ing that Ts were more plentiful than As and Gs were more plentiful than Cs in the entire PCG sequence. Furthermore, four PCGs (,,, and) had positive values, indicating that they are encoded by the L-strand, whereas the remaining nine PCGs had negative values, in- dicating that they are encoded by the H-strand (Table 3).

    Fig.1 Gene map of the E. lafondiimitogenome. Genes outside the circular are encoded by the heavy strand; genes inside the circular are encoded by the light strand.

    Table 2 Features of the mitochondrial genome of E. lafondii

    Table 3 Composition and skewness of E. lafondii mitogenome

    Table 4 Composition and skewness of mitogenomes in 11 Sesarmidae species

    The RSCU and amino acid composition were highly si- milaramong the 11 Sesarmidae mitogenomes. Similar to other reported brachyuran species (Tang., 2018; Lu., 2020; Wang., 2020b), the usage of two- and four- fold degenerate codons in all sesarmid crabs was biased to-ward the use of codons abundant in A or T. The most com-mon amino acids were,,, andin all 11 Sesar- midae mitogenomes. In addition, the codons(CGC) and(UGC) are absent inandmitogenomes, whereas(CGC) is absent in the other five Sesarmidae species,including,,,,and.

    3.3 Transfer RNAs, Ribosomal RNAs, and CR

    A total of 22 tRNAs, ranging in length from 64bp to 73bp, were identified inmitogenome.Fourteen tRNAs are encoded by the H-strand, and the other eight tRNAs are encoded by the L-strand (Fig.1 and Table 2).Except for-(TCT), all tRNAs displayed canoni- cal cloverleaf structures. The loss of the dihydrouridine arm in(TCT) was thought to be a common pheno-menon in metazoan mitogenomes (Gong., 2019, 2020b).Except for the Watson-Crick base pairs (A-T and G-C) andG-U matches, four mismatched base pairs, including oneC-U base pair in, one A-A base pair in,and two U-U base pairs inand(L), were found. Posttranscriptional RNA editing may be involved in the correction of mismatches (Lavrov., 2000; Masta and Boore, 2004). Theandgenes are encoded by the L-strand, which are 1328 and 832bp, respectively. The location ofwas between(L) and, andwas located betweenand CR (Fig.1 and Table 2). The AT content of total rRNA was 81.0% (Table 3), indicating a highly AT preference.

    The CR was located betweenand, with an extremely high AT content (80.5%). This region is 663bp in length and exhibits a positive AT-skew (0.060) and a negative GC-skew (?0.256) (Table 3). The CR was the most variable region because of its rapid evolution rate compared with the other genes. Thus far, limited research has studied the conserved blocks of the CR despite its func- tional importance, especially in invertebrate mitogenomes (Ray and Densmore, 2002; Guo., 2003; Zhao., 2011). Totally 11 Sesarmidae CRs were aligned to explore the sequence conservation. The results revealed nine con- served blocks (Fig.2), and their consensus sequences are as follows:AATGTA,ATATT, TTA,TAT,TTACTAT,ACCTGA ATT,TT, TTAATATATT(the underlined letters represent the fluctuant nucleo- tide among the 11 Sesarmidae species). To our knowledge, this is the first study to report the conserved blocks of the CR in crab mitogenomes.

    3.4 Gene Rearrangement

    Compared with the gene arrangement in ancestral crus- taceans (the pancrustacean ground pattern), the() was rearranged from the downstream of(Fig.3A) to the position between() and(), forming a new gene block (----) inmitogenome (Fig.3B).This translocation was also ob- served in other brachyuran mitogenomes (Chen., 2019; Tan., 2019; Wang., 2020b). However, an addi- tional translocation of() was identified when selecting the ancestral mitochondrial gene order of Bra- chyura as a reference. This translocation moved out from the() and() junction and formed a new gene cluster (---), in accord with otherpublished Sesarmidae mitogenome orders (Fig.3C) (Tan., 2019).

    In accordance with the rearrangement features and prin- ciple of parsimony, the TDRL model was selected as the most suitable model to explain the two rearrangement events in themitogenome. The hypothesized interme- diate steps were as follows, starting with the typical an- cestral order of the Decapoda mitogenome. First, the gene block (--) was tandemly duplicated and generated two sets of the same gene cluster (--)- (--).Given the parsimony of the mitogenome, one of the duplicated genes lost function followed by a random loss of redundant genes, namely,--H-F′-ND5′-′ (the un- derlined letters represent the deleted genes, similarly he- reinafter). Thus, newgene order was formed (Fig.3B). In the second rearrangement event, the gene or- der of the gene cluster (--) was changed to--through the same mechanism. Thus, a dimeric (--)- (--) was formed due to gene duplication. In the fol- lowing step, the duplicated genes were deleted due to func- tional incapacitation (-----). Thus, a new gene order--was formed (Fig.3C).

    Fig.2 Aligned sequences of the CRs in 11 sesarmid crabs. The shaded blocks represent the conserved sequences. Abbreviations of species names are given as follows. C. eul, Chiromentes eulimene; C. neg, Chiromantes neglectum; C. deh, Chiromantes dehaani; C. hae, Chiromantes haematocheir; M. dep, Metopaulias depressus; C. sin, Clistocoeloma sinense; E. laf, Episesarma lafondii; P. tri, Parasesarma tripectinis; P. pic, Parasesarma pictum; P. aff, Parasesarma affine; N. min, Nanosesarma minutum.

    Fig.3 Inferred intermediate steps for the generation of the mitogenome of E. lafondii. A, Ancestral gene arrangement of Decapoda; B, Ancestral gene arrangement of Brachyura; C, Gene arrangement of E. lafondii and ten other Sesarmidae species. The duplicated gene block is underlined, and the lost genes are marked in gray.

    In the above-speculated process, after the two copied gene clusters (--and--) lost their functions (losses 1, 2, 3, 4, and 5 in Fig.3), they would have de- graded to form five pseudogene fragments or short inter- genic spacers (gray boxes in Fig.3). Here, four intergenic spacers (Gaps 1, 2, 3, and 4) were found in themitogenome (the intergenic spacer between CR andde- faults to zero because the boundary of CR is uncertain): loss 1 () corresponds to Gap1 (5bp); loss 2 () to Gap2 (23bp); loss 4 () to Gap3 (38bp); loss 5 () to Gap4 (13bp). In general, given the high degradation rate of non-functional genes, the intergenic spacers caused by a random loss event should vanish rapidly to guarantee the parsimony of the mitogenome. The one-to-one correspon- dence between the loss-of-function fragments and residualintergenic spacers indicate that the novel gene order can be explained by the TDRL model.

    3.5 Phylogenetic Analysis and QIM Spacers in Sesarmidae

    The concatenated set of the nucleotide sequences of 13 PCGs from 107 known brachyuran species and two anomu- ran outgroups (and) were used for the phylogenetic analysis. The phylogenetic trees ob- tained using BI and ML methods resulted in identical topo- logical structures except for supporting values. Here, only one topology (BI) with both support values was presented (Fig.4). The phylogenetic tree showed that all Sesarmidaespecies clustered together as a group, wherein the genusshowed the closest relationship with. Sesarmidae and Gecarcinidae were the most closely related species, forming part of the superfamily Grapsoi- dea.Previous findings and our recent research on Sesarmi- dae species showed that the evolution process of mitoge- nomes could be revealed by the length of gap spacer in therearranged area (McKnight and Shaffer, 1997; Gong., 2020a; Zhang., 2020). Consequently, we analyzed thecorrelation between the phylogeny of Sesarmidae species and the gaps in theregion. The results reconfirmed that the phylogenetic position of each sesarmid crab was significantly correlated with the gaps in the rearrangedregion(Fig.5).In this study, the gap spacer betweenand(Gap3) decreased from 218bp () (Zhang., 2020) to 14bp (). Thespacer betweenand(Gap4) followed the same trend, decreasing from 64bp () to 9bp ().This trend suggests that with the evo- lution of sesarmid crabs, the gap spacers (Gap3 and Gap4) decreased progressively.

    Of the 29 families in our phylogenetic tree, except for Xanthidae, Gecarcinidae, and Homolidae, each family form- ed a monophyletic clade with high nodal support values (Fig.4).Thus it needs further attention with the morpho- logical identification and taxonomic status of their closely related species,.,,,, and. With the exception of Eriphioidea, Ocypodoidea, and Grapsoidea, the monophyly of most superfamilies were well supported, as consistently revealed in previous molecular phyloge- netic analyses (Tan., 2018; Tan., 2019; Lu., 2020; Wang., 2020a). For a long time, the classifica- tion of Grapsoidea and Ocypodoidea has been controver- sial.Previous studies based on morphological features con- sidered them to be monophyletic clades(Martin and Da- vis, 2001; Ng, 2008; Davie., 2015). However, an in- creasing number of molecular studies, including ours, havechallenged the monophyly of these taxa (Chen., 2018; Tan., 2018; Chen., 2019; Lu., 2020).Wang.’s recent molecular study revealed that Ocypodoidea and Grapsoidea are divided into three clades (Wang., 2020a), and similar findings are presented in Tan.’s work (2018, 2019). Although the polyphyly of Grapsoi- dea and Ocypodoidea is well supported,the phylogenetic relationships of these superfamilies need further analysis by integration of additional molecular data.

    Although the main phylogenetic structures of our tree followed those of previous results, several controversial findings were observed.Here,Varunidae and Macrophthal- midae possessing the same gene order were clustered to- gether as sister groups and were distantly related to Mic- tyridae, which is consistent with most molecular viewpo- ints (Gong., 2018; Chen., 2019; Tan., 2019; Wang., 2020a). Meanwhile, in a recent study, the phy- logenetic relationship among the above three families was ((Macrophthalmidae+Mictyridae)+Varunidae) (Tan., 2018). Additionally, no agreement was obtained on the phy- logenetic relationships among Sesarmidae, Gecarcinidae, Dotillidae, and Grapsidae.Here, Sesarmidae and Gecarci- nidae were closely related, and Dotillidae was the sister clade to Grapsidae, supporting Chen.’s viewpoint (Chen., 2019). In the previous findings (Basso., 2017; Tan., 2018), Sesarmidae was clustered with Dotilli- dae as sister groups. Regarding the phylogenetic position ofGecarcinidae and Grapsidae, no consensus has been reach- ed in current studies (Sanchez., 2016; Jia., 2018; Tan., 2019). In general, the placement of multiple sin- gle brachyuran lineages in the tree may produce conflict- ing phylogenetic relationships, possibly affecting the position of other brachyuran clades at a high taxonomic le- vel.In our phylogenetic tree, most of the unstable and con- flicting clades might have resulted from the limited taxon samples.Thereby, more comprehensive taxon samplings andreliable classification markers are necessary for fur- ther understanding the phylogenetic and evolutionary rela- tionships among Brachyura.

    Fig.4 Phylogenetic tree of brachyuran species inferred from the nucleotide sequences of 13 PCGs based on ML and BI analyses. The node marked with a solid circle indicates 100 ML bootstrap support (BS) and 100% BI posterior probability (PP). The numbers after the species name are the GenBank accession number.

    4 Conclusions

    In this article, the complete mitogenome ofis determined and analyzed for the first time. The molecular features of this newly sequenced mitogenome aremostly consistent with those of 10 other sesarmid crabs. The gene rearrangement events occurring inmitogenome can be explained by the TDRL model. Phylogenetic ana- lyses indicate the close relationship ofandand the non-monophyly of Xanthidae, Gecar- cinidae, and Homolidae.Moreover, the polyphyly of three superfamilies (Ocypodoidea, Eriphioidea, and Grapsoidea)is reconfirmed.In the future studies, more samples fromdifferent taxonomic levels and reliable classification mar- kers will be employed to facilitate the taxonomical and phy- logenetic studies of Brachyura.

    Fig.5 Relationship of Sesarmidae species and gap spacers between tRNA-QIM. Gap3 and Gap4 indicate the intergenic spacer between Q and I, and between I and M, respectively.

    Acknowledgments

    This work was supported by the Natural Science Foun- dation of Zhejiang Province (No. LY21C190007) and the Zhoushan Science and Technology Bureau (No. 2021C21 007). We would like to express our gratitude to Dr. Xu Zhang for helping in species identification and providing critical comments. The valuable remarks of the anonymous reviewers are also acknowledged.

    Ahyong, S. T., Lai, J. C. Y., Sharkey, D., Colgan, D. J., and Ng, P. K. L., 2007. Phylogenetics of the brachyuran crabs (Crustacea: Decapoda): The status of Podotremata based on small subunit nuclear ribosomal RNA., 45 (2): 576-586.

    Basso, A., Babbucci, M., Pauletto, M., Riginella, E., Patarnello, T., and Negrisolo, E., 2017. The highly rearranged mitochon- drial genomes of the crabsand(Majidae) and gene order evolution in Brachyura., 7 (1): 1-17.

    Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G.,., 2013. MITOS: Improvedmetazoanmitochondrial genome annotation., 69 (2): 313-319.

    Boore, J. L., 1999. Animal mitochondrial genomes., 27 (8): 1767-1780.

    Buatip, S., Thongroy, P., and Yeesin, P., 2017. Burrow morpholo- gical characteristics of(H. Milne Edwards, 1853) (Decapoda, Grapsidae, Sesarminae)., 22 (2): 17-30.

    Cantatore, P., Gadaleta, M., Roberti, M. N., Saccone, C., and Wil- son, A. C., 1987. Duplication and remoulding of tRNA genes during the evolutionary rearrangement of mitochondrial genomes., 329 (6142): 853-855.

    Caparroz, R., Rocha, A. V., Cabanne, G. S., Tubaro, P., Aleixo, A.,Lemmon, E. M.,., 2018. Mitogenomes of two neotropical bird species and the multiple independent origin of mitochon- drial gene orders in Passeriformes.,45 (3): 279-285.

    Chen, J., Xing, Y., Yao, W., Xu, X., Zhang, C., Zhang, Z.,., 2019. Phylomitogenomics reconfirm the phylogenetic positionof the genusinferred from the two grapsid crabs (De-capoda: Brachyura: Grapsoidea)., 14 (1): e0210763.

    Chen, J., Xing, Y., Yao, W., Zhang, C., Zhang, Z., Jiang, G.,.,2018. Characterization of four new mitogenomes from Ocypo-doidea & Grapsoidea, and phylomitogenomic insights into tho- racotreme evolution., 675: 27-35.

    Dai, A. Y., and Yang, S. L., 1991.. Chi- na Ocean Press, Beijing, 482-495.

    Davie, P. J., Guinot, D., and Ng, P. K., 2015.Systematics and clas-sification of Brachyura. In:. Brill, 1049-1130.

    Dierckxsens, N., Mardulyn, P., and Smits, G., 2017. NOVOPlasty:assembly of organelle genomes from whole genome data., 45 (4): e18.

    Fratini, S., Vannini, M., Cannicci, S., and Schubart, C. D., 2005. Tree-climbing mangrove crabs: A case of convergent evolution., 7 (2): 219-233.

    Gan, H. M., Schultz, M. B., and Austin, C. M., 2014. Integrated shotgun sequencing and bioinformatics pipeline allows ultra- fast mitogenome recovery and confirms substantial gene re- arrangements in Australian freshwater crayfishes., 14 (1): 19.

    Gillikin, D. P., 2004. Osmoregulatory ability of(Crosnier, 1965) subjected to dilute and hypersaline sea- water., 77 (1): 67-74.

    Gong, L., Liu, B. J., Liu, L. Q., Guo, B. Y., and Lü, Z. M., 2019. The complete mitochondrial genome of(Cen- trarchiformes: Terapontidae) and comparative analysis of the control region among eight Centrarchiformes species., 45 (2): 137-144.

    Gong, L., Lu, X., Luo, H., Zhang, Y., Shi, W., Liu, L.,., 2020a.Novel gene rearrangement pattern inmitochondrial genome: New gene order in genus(Pleuronectiformes: Cynoglossidae)., 149: 1232-1240.

    Gong, L., Lu, X., Wang, Z., Zhu, K., Liu, L., Jiang, L.,.,2020b. Novel gene rearrangement in the mitochondrial genome of(Anomura: Coenobitidae) and phy- logenetic implications for Anomura., 112 (2): 1804- 1812.

    Gong, L., Lü, Z. M., Guo, B. Y., Ye, Y. Y., and Liu, L. Q., 2018. Characterization of the complete mitochondrial genome of thetidewater goby,(Gobiiformes; Gobii-dae; Gobionellinae) and its phylogenetic implications., 10 (1): 93-97.

    Guo, X., Liu, S., and Liu, Y., 2003. Comparative analysis of the mitochondrial DNA control region in cyprinids with different ploidy level., 224 (1-4): 25-38.

    Gyllensten, U., Wharton, D., Josefsson, A., and Wilson, A. C., 1991. Paternal inheritance of mitochondrial DNA in mice., 352 (6332): 255-257.

    Hamasaki, K., Iizuka, C., Sanda, T., Imai, H., and Kitada, S., 2017.Phylogeny and phylogeography of the land hermit crab(Decapoda: Anomura: Coenobitidae) in the Nor- thwestern Pacific Region., 38 (1): e12369.

    Irisarri, I., Uribe, J. E., Eernisse, D. J., and Zardoya, R., 2020. A mitogenomic phylogeny of chitons (Mollusca: Polyplacopho- ra)., 20 (1): 1-15.

    Jacobs, H. T., Herbert, E. R., and Rankine, J., 1989. Sea urchin egg mitochondrial DNA contains a short displacement loop (D- loop) in the replication origin region., 17 (22): 8949-8965.

    Jeyachandran, S., Park, K., Kwak, I. S., and Baskaralingam, V., 2020. Morphological and functional characterization of circu- lating hemocytes using microscopy techniques., 83 (7): 736-743.

    Jia, X. N., Xu, S. X., Bai, J., Wang, Y. F., Nie, Z. H., Zhu, C. C.,., 2018. The complete mitochondrial genome ofand phylogenetic analysis of Genus(Crustacea: Decapoda: Parathelphusidae)., 13 (2): e0192601.

    Jiang, L., Zhang, M., Deng, L., Xu, Z., Shi, H., Jia, X.,., 2020.Characteristics of the mitochondrial genome ofand related species in Ranidae: Gene rearrangements and phylogenetic relationships., 10 (23): 12817-12837.

    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A., and Jermiin, L. S., 2017. ModelFinder: Fast model selection for accurate phylogenetic estimates., 14 (6): 587-589.

    Katoh, K., Misawa, K., Kuma, K. I., and Miyata, T., 2002. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform., 30 (14): 3059-3066.

    Kong, X., Dong, X., Zhang, Y., Shi, W., Wang, Z., and Yu, Z., 2009. A novel rearrangement in the mitochondrial genome of tongue sole,: Control region transloca- tion and a tRNA gene inversion., 52 (12): 975-984.

    Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K., 2018. MEGA X: Molecular evolutionary genetics analysis across com- puting platforms., 35 (6): 1547-1549.

    Lavrov, D. V., Boore, J. L., and Brown, W. M., 2002. Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: Duplication and nonran- dom loss., 19 (2): 163-169.

    Lavrov, D. V., Brown, W. M., and Boore, J. L., 2000. A novel typeof RNA editing occurs in the mitochondrial tRNAs of the cen- tipede.s, 97 (25): 13738-13742.

    Lee, B. Y., Ng, N. K., and Ng, P. K., 2015. The taxonomy of five species ofDe Man, 1895, in Singapore (Crustacea: Decapoda: Brachyura: Sesarmidae)., 31 (Supplement): 199-215.

    Li, N., Hu, G. L., and Hua, B. Z., 2019a. Complete mitochondrial genomes ofandand geno- mic comparisons of Mecoptera., 140: 672-681.

    Li, W., Cheng, J., Hui, M., and Sha, Z., 2019b. Molecular phy- logeny of the genus(Decapoda: Anomura: Dio- genidae) based on mitochondrial and nuclear DNA sequences., 37 (5): 1686-1697.

    Liu, J., Yu, J., Zhou, M., and Yang, J., 2019. Complete mitochon- drial genome of: Deep insights into the phy- logeny and gene rearrangements of Agamidae species., 125: 423-431.

    Liu, Y., and Cui, Z., 2010. Complete mitochondrial genome of the Asian paddle crab(Crustacea: Decapo- da: Portunidae): Gene rearrangement of the marine brachyu- rans and phylogenetic considerations of the decapods., 37 (5): 2559-2569.

    Lowe, T. M., and Chan, P. P., 2016. tRNAscan-SE On-line: Inte- grating search and context for analysis of transfer RNA genes., 44 (W1): W54-W57.

    Lu, X., Gong, L., Zhang, Y., Chen, J., Liu, L., Jiang, L.,., 2020.The complete mitochondrial genome of: The first representative from the family Calappidae and its phylo- genetic position within Brachyura., 112 (3): 2516- 2523.

    Lunt, D. H., and Hyman, B. C., 1997. Animal mitochondrial DNA recombination., 387 (6630): 247-247.

    Lü, Z., Zhu, K., Jiang, H., Lu, X., Liu, B., Ye, Y.,., 2019. Complete mitochondrial genome ofreveals novel gene order and phylogenetic relationships of Anguilliformes., 135: 609-618.

    Martin, J. W., and Davis, G. E., 2001.. Natural History Museum of Los An- geles County, Science Series, 39: 1-124.

    Masta, S. E., and Boore, J. L., 2004. The complete mitochon- drial genome sequence of the spiderreveals rearranged and extremely truncated tRNAs., 21 (5): 893-902.

    McKnight, M. L., and Shaffer, H. B., 1997. Large, rapidly evolv- ing intergenic spacers in the mitochondrial DNA of the sala- mander family Ambystomatidae (Amphibia: Caudata)., 14 (11): 1167-1176.

    Miyake, T., Aihara, N., Maeda, K., Shinzato, C., Koyanagi, R., Kobayashi, H.,., 2019. Bloodmeal host identification with inferences to feeding habits of a fish-fed mosquito,., 9 (1): 1-8.

    Moritz, C., and Brown, W. M., 1987. Tandem duplications in ani- mal mitochondrial DNAs: Variation in incidence and gene con- tent among lizards., 84 (20): 7183-7187.

    Ng, P., 2008. Systema Brachyurorum, Part I. An annotated check- list of extant brachyuran crabs of the world., 17: 1-286.

    Nguyen, L. T., Schmidt, H. A., Von Haeseler, A., and Minh, B. Q., 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies., 32 (1): 268-274.

    Perna, N. T., and Kocher, T. D., 1995. Patterns of nucleotide com- position at fourfold degenerate sites of animal mitochondrial genomes., 41 (3): 353-358.

    Plazzi, F., Puccio, G., and Passamonti, M., 2016. Comparative large-scale mitogenomics evidences clade-specific evolution- ary trends in mitochondrial DNAs of Bivalvia., 8 (8): 2544-2564.

    Rahayu, D. L., and Ng, P. K. L., 2010. Revision of the(Latreille, 1803) species-group (Crustacea: Decapoda: Brachyura: Sesarmidae)., 2327 (1): 1-22.

    Ray, D. A., and Densmore, L., 2002. The crocodilian mitochon- drial control region: General structure, conserved sequences, and evolutionary implications., 294 (4): 334-345.

    Rocha, C. T., Regina, W. M., Mantelatto, F. L., Christopher, T., and José, Z. F., 2018. Ultrastructure of spermatozoa of mem- bers of Calappidae, Aethridae and Menippidae and discussion of their phylogenetic placement., 101 (1): 89- 100.

    Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hohna, S.,., 2012. MrBayes 3.2: Efficient Ba-yesian phylogenetic inference and model choice across a large model space., 61 (3): 539-542.

    Sanchez, G., Tomano, S., Yamashiro, C., Fujita, R., Wakabaya- shi, T., Sakai, M.,., 2016. Population genetics of the jum- bo squid(Cephalopoda: Ommastrephidae) in the northern Humboldt Current system based on mitochondrial and microsatellite DNA markers., 175: 1- 9.

    Sato, M., and Sato, K., 2013. Maternal inheritance of mitochon- drial DNA by diverse mechanisms to eliminate paternal mito- chondrial DNA.–, 1833 (8): 1979-1984.

    Schubart, C. D., Liu, H. C., and Ng, P. K. L., 2009. Revision ofSerène & Soh, 1970 (Crustacea: Brachyura: Sesarmi- dae), with description of a new genus and two new species., 2154 (1): 1-29.

    Shi, W., Gong, L., Wang, S. Y., Miao, X. G., and Kong, X. Y., 2015.Tandem duplication and random loss for mitogenome rear- rangement in(Teleost: Pleuronectiformes)., 16 (1): 355.

    Shi, W., Miao, X. G., and Kong, X. Y., 2014. A novel model of double replications and random loss accounts for rearrangements in the mitogenome of(Teleostei: Pleu- ronectiformes)., 15 (1): 352.

    Spears, T., Abele, L. G., and Kim, W., 1992. The monophyly of Brachyuran crabs: A phylogenetic study based on 18s rRN?., 41 (4): 446-461.

    Stothard, P., and Wishart, D. S., 2005. Circular genome visuali- zation and exploration using CGView., 21 (4): 537-539.

    Talavera, G., and Castresana, J., 2007. Improvement of phyloge- nies after removing divergent and ambiguously aligned blocks from protein sequence alignments., 56 (4): 564-577.

    Tan, M. H., Gan, H. M., Lee, Y. P., Bracken-Grissom, H., Chan, T. Y., Miller, A. D.,., 2019. Comparative mitogenomics of the Decapoda reveals evolutionary heterogeneity in architecture and composition., 9 (1): 1-16.

    Tan, M. H., Gan, H. M., Lee, Y. P., Linton, S., Grandjean, F.,Bartholomei-Santos, M. L.,., 2018. ORDER within thechaos: Insights into phylogenetic relationships within the Ano- mura (Crustacea: Decapoda) from mitochondrial sequences and gene order rearrangements., 127: 320-331.

    Tan, M. H., Gan, H. M., Schultz, M. B., and Austin, C. M., 2015. MitoPhAST, a new automated mitogenomic phylogeny tool in the post-genomic era with a case study of 89 decapod mito- genomes including eight new freshwater crayfish mitogeno- mes., 85: 180-188.

    Tang, B. P., Liu, Y., Xin, Z. Z., Zhang, D. Z., Wang, Z. F., Zhu, X. Y.,., 2017. Characterisation of the complete mitochon- drial genome of(Grapsoidea: Varunidae) and comparison with other Brachyuran crabs., 110 (4): 221-230.

    Tsang, L. M., Schubart, C. D., Ahyong, S. T., Lai, J. C. Y., Au, E. Y. C., Chan, T. Y.,., 2014. Evolutionary history of true crabs (Crustacea: Decapoda: Brachyura) and the origin of fresh-water crabs., 31 (5): 1173- 1187.

    Wang, Q., Tang, D., Guo, H., Wang, J., Xu, X., and Wang, Z., 2020a. Comparative mitochondrial genomic analysis ofand insights into the phylogeny of the Ocypodoidea & Grapsoidea., 112 (1): 82-91.

    Wang, Z., Shi, X., Guo, H., Tang, D., Bai, Y., and Wang, Z., 2020b.Characterization of the complete mitochondrial genome ofand comparison with other Brachyuran crabs., 112 (1): 10-19.

    Wang, Z., Shi, X., Tao, Y., Wu, Q., Bai, Y., Guo, H.,., 2019. The complete mitochondrial genome of(Brachyura: Grapsoidea: Sesarmidae) and comparison with other Brachyuran crabs., 111 (4): 799-807.

    Wang, Z., Wang, Z., Shi, X., Wu, Q., Tao, Y., Guo, H.,., 2018. Complete mitochondrial genome of(Brachyura: Sesarmidae): Gene rearrangements in Sesarmidaeand phylogenetic analysis of the Brachyura., 118: 31-40.

    Wu, X., Xiao, S., Li, X., Li, L., Shi, W., and Yu, Z., 2014. Evo- lution of the tRNA gene family in mitochondrial genomes of fiveclams (Bivalvia, Veneridae)., 533 (1): 439- 446.

    Xin, Z. Z., Liu, Y., Zhang, D. Z., Chai, X. Y., Wang, Z. F., Zhang, H. B.,., 2017a. Complete mitochondrial genome of(Brachyura: Grapsoidea): Gene rearrange- ments and higher-level phylogeny of the Brachyura., 7 (1): 1-10.

    Xin, Z. Z., Yu, L., Zhang, D. Z., Wang, Z. F., Zhang, H. B., Tang, B. P.,., 2017b. Mitochondrial genome of(Brachyura: Grapsoidea: Varunidae): Gene rearrange- ments and higher-level phylogeny of the Brachyura., 627: 307-314.

    Zhang, D., Gao, F., Jakovlic, I., Zou, H., Zhang, J., Li, W. X.,.,2019. PhyloSuite: An integrated and scalable desktop platformfor streamlined molecular sequence data management and evo-lutionary phylogenetics studies., 20 (1): 348-355.

    Zhang, Y., Gong, L., Lu, X., Jiang, L., Liu, B., Liu, L.,., 2020.Gene rearrangements in the mitochondrial genome of(Brachyura: Sesarmidae) and phylogenetic im-plications for Brachyura., 162: 704-714.

    Zhang, Z. Q., 2011..,3148 (Special issue): 1-237.

    Zhao, L., Zheng, Z. M., Huang, Y., Zhou, Z., and Wang, L., 2011.Comparative analysis of the mitochondrial control region in Orthoptera., 50 (3): 385-393.

    Zhuang, X., and Cheng, C. H. C., 2010. ND6 gene ‘lost’ and found:Evolution of mitochondrial gene rearrangement in Antarctic no- tothenioids., 27 (6): 1391- 1403.

    September 25, 2020;

    December 1, 2020;

    April 27, 2021

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2021

    .E-mail: gongli1027@163.com

    (Edited by Qiu Yantao)

    亚洲av熟女| 亚洲成av人片免费观看| 黑人操中国人逼视频| 精品久久久久久成人av| 啪啪无遮挡十八禁网站| 人人妻,人人澡人人爽秒播| 日本一本二区三区精品| 制服诱惑二区| 久久久久久久久久黄片| 一级黄色大片毛片| 久久草成人影院| 亚洲av第一区精品v没综合| 久久精品国产清高在天天线| 欧美极品一区二区三区四区| 99riav亚洲国产免费| 亚洲美女视频黄频| 成人永久免费在线观看视频| 在线观看午夜福利视频| 欧美av亚洲av综合av国产av| 在线十欧美十亚洲十日本专区| 欧美丝袜亚洲另类 | 婷婷丁香在线五月| 亚洲精品中文字幕一二三四区| 色在线成人网| 欧美日韩精品网址| 一卡2卡三卡四卡精品乱码亚洲| 69av精品久久久久久| 村上凉子中文字幕在线| 久久伊人香网站| 久久久久国产精品人妻aⅴ院| 久久精品国产99精品国产亚洲性色| 视频区欧美日本亚洲| 又黄又粗又硬又大视频| 成熟少妇高潮喷水视频| 色噜噜av男人的天堂激情| 国产av麻豆久久久久久久| 中文字幕精品亚洲无线码一区| 国产精品免费一区二区三区在线| 夜夜看夜夜爽夜夜摸| 观看免费一级毛片| 免费看十八禁软件| 精品久久久久久,| 久久精品国产综合久久久| 亚洲免费av在线视频| 丝袜美腿诱惑在线| 国产三级在线视频| 日本黄色视频三级网站网址| 久久国产精品人妻蜜桃| 久久久久国内视频| 国产精品av视频在线免费观看| 白带黄色成豆腐渣| 夜夜夜夜夜久久久久| 欧美一区二区国产精品久久精品 | 国产亚洲精品久久久久5区| 无遮挡黄片免费观看| 精品久久久久久久人妻蜜臀av| 国产精品亚洲av一区麻豆| 一级片免费观看大全| 麻豆国产97在线/欧美 | 午夜精品在线福利| 十八禁网站免费在线| 欧美日韩国产亚洲二区| 亚洲免费av在线视频| 国内毛片毛片毛片毛片毛片| 亚洲一区二区三区色噜噜| 在线观看舔阴道视频| 最新在线观看一区二区三区| 十八禁人妻一区二区| 在线观看免费视频日本深夜| 国产伦一二天堂av在线观看| 精品久久久久久久久久免费视频| 成年女人毛片免费观看观看9| 欧美成狂野欧美在线观看| 亚洲无线在线观看| 成人欧美大片| 久久婷婷人人爽人人干人人爱| 日本在线视频免费播放| 99在线视频只有这里精品首页| 国产精品久久久久久精品电影| 一区福利在线观看| 老司机靠b影院| 久久久久久久久中文| 精品久久久久久久久久免费视频| 欧美中文综合在线视频| 精品午夜福利视频在线观看一区| 后天国语完整版免费观看| 久久久久久久精品吃奶| 女生性感内裤真人,穿戴方法视频| 国产成年人精品一区二区| 丁香欧美五月| 精品人妻1区二区| 国产三级中文精品| 国产爱豆传媒在线观看 | 色在线成人网| 麻豆成人av在线观看| 可以免费在线观看a视频的电影网站| 色综合站精品国产| 国产精品久久久久久亚洲av鲁大| 亚洲欧美精品综合一区二区三区| 欧美乱色亚洲激情| 黄色a级毛片大全视频| 午夜福利成人在线免费观看| www.精华液| 91成年电影在线观看| 国产私拍福利视频在线观看| 午夜福利在线在线| 好男人电影高清在线观看| 999精品在线视频| 亚洲国产高清在线一区二区三| www日本在线高清视频| 国产精品 欧美亚洲| 无人区码免费观看不卡| 在线看三级毛片| 最近在线观看免费完整版| 99riav亚洲国产免费| 男人的好看免费观看在线视频 | 最近最新中文字幕大全电影3| 国产成人啪精品午夜网站| 日韩欧美在线二视频| 俺也久久电影网| 国产精品久久久久久人妻精品电影| 欧美性猛交黑人性爽| 天堂动漫精品| 欧美黑人欧美精品刺激| 日韩三级视频一区二区三区| 亚洲,欧美精品.| 两个人免费观看高清视频| 男女午夜视频在线观看| 午夜视频精品福利| 国产爱豆传媒在线观看 | 亚洲精华国产精华精| 18美女黄网站色大片免费观看| 精品熟女少妇八av免费久了| 一级片免费观看大全| 黄频高清免费视频| а√天堂www在线а√下载| 18禁美女被吸乳视频| 欧美日韩乱码在线| 国产亚洲精品久久久久5区| 69av精品久久久久久| 久久久久九九精品影院| 在线观看免费午夜福利视频| 日韩高清综合在线| 免费在线观看亚洲国产| 午夜福利成人在线免费观看| 久久伊人香网站| 久久国产精品人妻蜜桃| 日本一本二区三区精品| 怎么达到女性高潮| 看免费av毛片| 亚洲av片天天在线观看| 一本综合久久免费| 不卡av一区二区三区| 国产激情偷乱视频一区二区| 国产99久久九九免费精品| 高清在线国产一区| 淫妇啪啪啪对白视频| 人妻丰满熟妇av一区二区三区| 高潮久久久久久久久久久不卡| 可以在线观看毛片的网站| 黑人操中国人逼视频| 亚洲精品一卡2卡三卡4卡5卡| 精品一区二区三区视频在线观看免费| 欧美又色又爽又黄视频| 亚洲成人精品中文字幕电影| 国产一区二区在线观看日韩 | 久久久久久国产a免费观看| 男女床上黄色一级片免费看| 变态另类丝袜制服| 女生性感内裤真人,穿戴方法视频| www.999成人在线观看| 视频区欧美日本亚洲| 久久久久久国产a免费观看| 亚洲狠狠婷婷综合久久图片| 亚洲精品中文字幕一二三四区| 一级片免费观看大全| 日韩高清综合在线| 欧美人与性动交α欧美精品济南到| 日韩大码丰满熟妇| 午夜福利成人在线免费观看| 99国产精品99久久久久| 亚洲人成网站在线播放欧美日韩| 无遮挡黄片免费观看| 国产私拍福利视频在线观看| 99国产综合亚洲精品| 三级毛片av免费| 日韩欧美在线二视频| 亚洲午夜理论影院| 亚洲午夜精品一区,二区,三区| 亚洲一区二区三区色噜噜| 亚洲av成人不卡在线观看播放网| 久久久久久人人人人人| 国产视频一区二区在线看| 少妇熟女aⅴ在线视频| 老熟妇乱子伦视频在线观看| 国内精品一区二区在线观看| 脱女人内裤的视频| 亚洲人成网站高清观看| 精品久久久久久成人av| 两个人看的免费小视频| 在线国产一区二区在线| av欧美777| 在线永久观看黄色视频| 国产黄a三级三级三级人| or卡值多少钱| 岛国在线免费视频观看| 日韩大码丰满熟妇| 可以在线观看的亚洲视频| 亚洲免费av在线视频| 国产久久久一区二区三区| 两个人看的免费小视频| 国产成人精品久久二区二区免费| 国产免费男女视频| 在线观看免费视频日本深夜| 少妇粗大呻吟视频| 欧美av亚洲av综合av国产av| 国产av一区二区精品久久| 天堂动漫精品| 丝袜美腿诱惑在线| 最近最新免费中文字幕在线| 在线观看免费午夜福利视频| 免费看日本二区| 91大片在线观看| 真人做人爱边吃奶动态| 日韩国内少妇激情av| 亚洲 欧美 日韩 在线 免费| 国产精品久久久久久亚洲av鲁大| 一a级毛片在线观看| 深夜精品福利| 久久中文字幕人妻熟女| 一个人观看的视频www高清免费观看 | 日韩有码中文字幕| 狂野欧美白嫩少妇大欣赏| 中出人妻视频一区二区| 久久午夜综合久久蜜桃| 午夜日韩欧美国产| 色综合亚洲欧美另类图片| 一区福利在线观看| 两个人免费观看高清视频| av在线天堂中文字幕| 母亲3免费完整高清在线观看| 成人手机av| 久久久久精品国产欧美久久久| 啦啦啦观看免费观看视频高清| 亚洲欧美精品综合一区二区三区| 身体一侧抽搐| 美女免费视频网站| 亚洲熟妇熟女久久| 国产成人精品久久二区二区91| 黄片大片在线免费观看| 精品久久蜜臀av无| 99热这里只有是精品50| 窝窝影院91人妻| 波多野结衣巨乳人妻| 曰老女人黄片| 全区人妻精品视频| 亚洲片人在线观看| 亚洲精品中文字幕一二三四区| 女警被强在线播放| 一本精品99久久精品77| 欧美日本视频| 大型黄色视频在线免费观看| 国产av一区二区精品久久| 日本免费a在线| 热99re8久久精品国产| 成人18禁高潮啪啪吃奶动态图| 特级一级黄色大片| 国产亚洲av高清不卡| 亚洲美女黄片视频| 一二三四社区在线视频社区8| 1024视频免费在线观看| 性欧美人与动物交配| 50天的宝宝边吃奶边哭怎么回事| 不卡av一区二区三区| 悠悠久久av| 天堂√8在线中文| 国产高清有码在线观看视频 | 中文字幕人妻丝袜一区二区| 少妇裸体淫交视频免费看高清 | 久久久久性生活片| 亚洲男人的天堂狠狠| 亚洲中文日韩欧美视频| 搞女人的毛片| 熟女电影av网| 国产男靠女视频免费网站| 欧美黑人欧美精品刺激| 亚洲欧美一区二区三区黑人| 操出白浆在线播放| 夜夜躁狠狠躁天天躁| 亚洲熟女毛片儿| 美女大奶头视频| 久久久国产精品麻豆| 黄片大片在线免费观看| 国产激情久久老熟女| 国产成人精品久久二区二区免费| 波多野结衣高清无吗| 国产黄a三级三级三级人| 午夜福利视频1000在线观看| 亚洲人成网站高清观看| 色哟哟哟哟哟哟| АⅤ资源中文在线天堂| 两性夫妻黄色片| 国产激情偷乱视频一区二区| 日韩 欧美 亚洲 中文字幕| 国产高清视频在线观看网站| 天天添夜夜摸| 久久香蕉激情| 黑人欧美特级aaaaaa片| av免费在线观看网站| 97人妻精品一区二区三区麻豆| 国产精品自产拍在线观看55亚洲| 麻豆av在线久日| 成熟少妇高潮喷水视频| 黄色毛片三级朝国网站| 精品一区二区三区视频在线观看免费| 亚洲精品久久成人aⅴ小说| 舔av片在线| 亚洲人与动物交配视频| 怎么达到女性高潮| 全区人妻精品视频| 国产免费av片在线观看野外av| 国产高清有码在线观看视频 | 欧美另类亚洲清纯唯美| 看黄色毛片网站| 一边摸一边做爽爽视频免费| 日韩精品免费视频一区二区三区| 日韩欧美免费精品| 免费在线观看成人毛片| 丁香六月欧美| 午夜视频精品福利| 国产欧美日韩精品亚洲av| 在线观看免费日韩欧美大片| 国产精品永久免费网站| 白带黄色成豆腐渣| 国产一区二区在线观看日韩 | 亚洲欧美日韩高清专用| 欧美中文综合在线视频| 欧美日韩瑟瑟在线播放| 久久久国产欧美日韩av| 露出奶头的视频| 无人区码免费观看不卡| 国产激情欧美一区二区| 亚洲电影在线观看av| 久久99热这里只有精品18| 国产成人精品无人区| 级片在线观看| 亚洲一区二区三区色噜噜| 欧美黄色片欧美黄色片| 国产精品久久久久久人妻精品电影| 久久人妻av系列| 老司机靠b影院| 日韩欧美 国产精品| 黄片小视频在线播放| 一级片免费观看大全| 精品久久久久久久久久久久久| 国产精品一区二区精品视频观看| 在线永久观看黄色视频| 久久久久国内视频| 亚洲第一电影网av| 亚洲精品在线美女| 在线永久观看黄色视频| 欧美成狂野欧美在线观看| 欧美另类亚洲清纯唯美| 两性午夜刺激爽爽歪歪视频在线观看 | av天堂在线播放| 欧美性猛交黑人性爽| 欧美丝袜亚洲另类 | 91成年电影在线观看| 久久久久性生活片| 日韩国内少妇激情av| 午夜福利18| 嫩草影院精品99| 亚洲人与动物交配视频| 欧美日韩国产亚洲二区| 亚洲成人久久性| 国产精品久久久久久精品电影| 在线观看午夜福利视频| 亚洲第一电影网av| 身体一侧抽搐| 麻豆国产97在线/欧美 | 日日爽夜夜爽网站| 国产野战对白在线观看| 制服丝袜大香蕉在线| 婷婷丁香在线五月| 亚洲一区中文字幕在线| 国产一区二区激情短视频| 很黄的视频免费| 国产精品国产高清国产av| www.999成人在线观看| 三级毛片av免费| 99国产精品一区二区三区| 免费在线观看完整版高清| 国产v大片淫在线免费观看| 精品少妇一区二区三区视频日本电影| 免费在线观看完整版高清| 亚洲成人久久爱视频| 亚洲国产日韩欧美精品在线观看 | 午夜福利在线观看吧| 91老司机精品| www.自偷自拍.com| 少妇裸体淫交视频免费看高清 | 久久精品国产综合久久久| 搡老岳熟女国产| 久久精品91无色码中文字幕| 黄色a级毛片大全视频| 一区二区三区高清视频在线| 露出奶头的视频| 精品久久蜜臀av无| 国产精品98久久久久久宅男小说| 黄色女人牲交| 好男人在线观看高清免费视频| 日日夜夜操网爽| 国产精品影院久久| 日日干狠狠操夜夜爽| 国产片内射在线| 亚洲精品中文字幕在线视频| 久久久久久大精品| 精品午夜福利视频在线观看一区| 一二三四在线观看免费中文在| 88av欧美| 久久午夜亚洲精品久久| 成人国语在线视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲美女视频黄频| 毛片女人毛片| 欧美另类亚洲清纯唯美| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲成人免费电影在线观看| 欧美性猛交黑人性爽| 久久久久国产一级毛片高清牌| 香蕉国产在线看| 丁香六月欧美| 亚洲自拍偷在线| 最近最新免费中文字幕在线| 久久久精品大字幕| 欧美又色又爽又黄视频| 在线观看午夜福利视频| 天堂av国产一区二区熟女人妻 | 久久99热这里只有精品18| 丁香欧美五月| 91av网站免费观看| 日韩欧美国产在线观看| 99国产极品粉嫩在线观看| 99riav亚洲国产免费| 看片在线看免费视频| 啦啦啦免费观看视频1| 制服诱惑二区| 亚洲欧美精品综合一区二区三区| 国产精品自产拍在线观看55亚洲| 最新美女视频免费是黄的| 亚洲美女黄片视频| 在线观看免费日韩欧美大片| 91在线观看av| 欧美黄色片欧美黄色片| 欧美中文综合在线视频| 午夜福利18| 免费在线观看亚洲国产| 亚洲一区二区三区色噜噜| 亚洲欧美一区二区三区黑人| 亚洲欧美日韩高清在线视频| 国产亚洲精品第一综合不卡| 99riav亚洲国产免费| 看黄色毛片网站| av在线播放免费不卡| 亚洲欧美日韩高清专用| 一本大道久久a久久精品| 国产精品免费一区二区三区在线| 久久这里只有精品19| 亚洲av五月六月丁香网| 亚洲精品美女久久av网站| 欧美一级毛片孕妇| 悠悠久久av| 亚洲黑人精品在线| 久久 成人 亚洲| 国产精品香港三级国产av潘金莲| 欧美色视频一区免费| 成人高潮视频无遮挡免费网站| 五月玫瑰六月丁香| 精品欧美一区二区三区在线| 亚洲中文字幕一区二区三区有码在线看 | 欧美精品亚洲一区二区| 欧美日韩乱码在线| 国产在线精品亚洲第一网站| 国产在线观看jvid| 后天国语完整版免费观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲男人天堂网一区| 少妇的丰满在线观看| 老司机靠b影院| 母亲3免费完整高清在线观看| 国产1区2区3区精品| 99久久精品热视频| 国产视频内射| 精品国产亚洲在线| 亚洲七黄色美女视频| 亚洲精品av麻豆狂野| 国产免费av片在线观看野外av| 在线看三级毛片| 妹子高潮喷水视频| 岛国在线免费视频观看| 一级毛片精品| 国产av一区二区精品久久| 99久久精品国产亚洲精品| 日本黄大片高清| 国产成人精品无人区| 女人爽到高潮嗷嗷叫在线视频| 变态另类丝袜制服| 国产又黄又爽又无遮挡在线| www日本黄色视频网| 亚洲欧美激情综合另类| 悠悠久久av| 禁无遮挡网站| 婷婷精品国产亚洲av| 少妇裸体淫交视频免费看高清 | 国产亚洲精品久久久久久毛片| 国产成人精品无人区| 韩国av一区二区三区四区| 床上黄色一级片| 日韩大尺度精品在线看网址| 亚洲熟妇中文字幕五十中出| 日本一本二区三区精品| avwww免费| 少妇的丰满在线观看| 亚洲真实伦在线观看| 狂野欧美白嫩少妇大欣赏| 色哟哟哟哟哟哟| 丝袜人妻中文字幕| 777久久人妻少妇嫩草av网站| 在线观看美女被高潮喷水网站 | 狂野欧美白嫩少妇大欣赏| 一区二区三区激情视频| av超薄肉色丝袜交足视频| 久久精品亚洲精品国产色婷小说| 久久久久久国产a免费观看| 亚洲av成人精品一区久久| 日韩欧美一区二区三区在线观看| 国产v大片淫在线免费观看| 亚洲精品一区av在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲熟女毛片儿| 国产精品 国内视频| 超碰成人久久| 亚洲九九香蕉| 精品高清国产在线一区| 亚洲av成人av| 精品一区二区三区av网在线观看| 黄色女人牲交| 欧美日韩亚洲国产一区二区在线观看| 婷婷精品国产亚洲av在线| 麻豆成人午夜福利视频| 日本黄大片高清| 禁无遮挡网站| 久久香蕉精品热| 久久精品91无色码中文字幕| 免费无遮挡裸体视频| 欧美在线一区亚洲| 亚洲va日本ⅴa欧美va伊人久久| 黄色视频,在线免费观看| 麻豆一二三区av精品| 麻豆国产97在线/欧美 | 日本成人三级电影网站| 男女视频在线观看网站免费 | 叶爱在线成人免费视频播放| 91在线观看av| 国产精品精品国产色婷婷| 国产亚洲精品综合一区在线观看 | 男女那种视频在线观看| 国产精品一及| 99热这里只有是精品50| 美女黄网站色视频| 欧美久久黑人一区二区| 国产成年人精品一区二区| 淫妇啪啪啪对白视频| 十八禁网站免费在线| 一级毛片女人18水好多| 久久香蕉国产精品| 99国产精品99久久久久| 90打野战视频偷拍视频| 亚洲av成人一区二区三| 国产精品久久电影中文字幕| 五月伊人婷婷丁香| 亚洲精品国产一区二区精华液| 在线观看一区二区三区| 色尼玛亚洲综合影院| 国产成年人精品一区二区| 看免费av毛片| 嫩草影院精品99| 亚洲自偷自拍图片 自拍| 51午夜福利影视在线观看| 国产免费男女视频| 最近最新中文字幕大全免费视频| 欧美激情久久久久久爽电影| 人成视频在线观看免费观看| 国产精品98久久久久久宅男小说| cao死你这个sao货| 国产精品98久久久久久宅男小说| 欧美在线一区亚洲| 麻豆成人av在线观看| 日韩高清综合在线| 一边摸一边做爽爽视频免费| 两性夫妻黄色片| 老汉色∧v一级毛片| 别揉我奶头~嗯~啊~动态视频| 亚洲成人久久性| 无人区码免费观看不卡| 97碰自拍视频| 亚洲成a人片在线一区二区| 亚洲成人精品中文字幕电影| 99久久综合精品五月天人人| av欧美777| 国产又黄又爽又无遮挡在线| 亚洲男人天堂网一区| 日日摸夜夜添夜夜添小说| 丝袜美腿诱惑在线| 日韩精品中文字幕看吧|