• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification and Characterization of Gene SpDMRT99B and Its Sex-Biased Expression Profile in the Mud Crab, Scylla paramamosain

    2021-12-22 11:41:26ZHANGYinFANGShaobinLINFeiLIShengkangZHENGHuaipingZHANGYuelingIKHWANUDDINMhdandMAHongyu
    Journal of Ocean University of China 2021年6期

    ZHANG Yin, FANG Shaobin, LIN Fei, LI Shengkang, ZHENG Huaiping,ZHANG Yueling, IKHWANUDDIN Mhd, and MA Hongyu, 3), *

    Identification and Characterization of Geneand Its Sex-Biased Expression Profile in the Mud Crab,

    ZHANG Yin1), 2), FANG Shaobin1), 2), LIN Fei1), 2), LI Shengkang1), 2), ZHENG Huaiping1), 2),ZHANG Yueling1), 2), IKHWANUDDIN Mhd2), 3), and MA Hongyu1), 2), 3), *

    1),,,515063,2),,515063,3),,

    The() gene family is conserved from invertebrates to humans. The functions of DMRT are mainly involved in sex development and the formation of many tissues and organs. In this study, a DM (Doublesex/Mab-3)-domain gene was identified in the mud crab, and was namedbecause of its many similarities to arthropodand phylogenetically close relationship with arthropod DMRT99B. The cDNA ofgene is 1249bp in length, encoding 224 amino acids.From 254bp to 928bp there isa conserved DM domain.No transmembrane do- main was identified. Through multiple amino acid alignment and phylogenetic tree analysis, the closest gene toisDMRT99B, followed byandDMRT99B. The expressions of the gene were characterized in different tissues of female and male crabs during early development period of crab individuals, as well as in different development periods of gonads. The results showed thatgene is significantly highly expressed in testis than in ovary and other tissues. The expression level ofin testis at different stages is significantly higher than that in ovary,and it is particularly highly expressed in immature testis. In early developmental stages of larvae, the expressions ofre- main at a low level and reach a peak at zoea stage I when thebody segments shape up. It is speculated thatgene might be involved in the gonadal development process and somitogenesis of.

    ; DM domain gene;; sex determination/differentiation; early development stage

    1 Introduction

    Although major differences in the genetic control of sex- ual development occur among animal lineages, the() genesappear to function in all animals as tissue-specific transcrip- tion factors related to sex determination and many other developmental processes (Bellefroid., 2013). Many studies have reported thatgenes are highly conserved in the DM domain with a zinc finger structure bind-ing to specific genomic elements to regulate gene transcrip- tion and play a similar role in animal sex differentiation (Zhang and Zarkower, 2017; Galindo-Torres., 2018). In recent years, the functions ofgenes have been characterized in many animal groups and known to be in- volved in sex determination and/or sex differentiation in nematodes(Raymond., 1998), vertebrates (Kopp, 2012) and insects (Miller., 2003). In vertebrates, orthologs ofgenes, including human,, and, have been identified and they function during se- xual development (Raymond., 1999). Thegenefamily may represent the most conservative genes involved in sex determination and differentiation in the tree of ani- mal life (Rideout., 2010; Murphy., 2015). Other genes of the DM domain gene family are also expressed in other tissues in addition to gonads, such as,,and., 2003; Veith., 2006),ler., 2004),., 2004) and., 2000). In,, which is closely related to, affects mushroom body size in the adult brain (Zwarts., 2015) and is highly expressed in the midline cells of the central nervous system inlarvae (Fontana and Crews, 2012). In addition,gene may be respon- sible for establishing or maintaining the identity of octopaminergic neurons (Henry., 2012).

    The DM-domain genes may play a related role in sex determination in crustaceans (Kato., 2008; Zhang and Qiu, 2010; Yu., 2014). However, the study ofgene in crustaceans is relatively limited (Yu., 2015, 2017; Yang., 2018). The first crustacean DM-domain gene was identified in the Chinese mitten crabwith a testis-specific expression pattern (Zhang and Qiu, 2010). Othergenes were subsequently report- ed in various crustacean species. In, the functionalgene,, presents a sexually dimor- phic expression pattern and is responsible for male-speci- fic traits (Kato., 2011; Toyota., 2013). In the Eas- tern spiny lobster,, the first hetero- gametic sex-linkedgene,, was identified(Chandler., 2017). Twogenes,and, were also identified in the giant freshwater prawn(Yu., 2014; Zhong., 2019), which is closely related to the oriental river prawn(Wang., 2019). Member of thegene family has also been identifiedin the Chinese shrimp(Li., 2018). Until now, there is no information on molecular characteristics and function ofgenes in mud crab.

    is an important economic mariculture species and popular seafood in the South-East Asian coun- tries (Le Vay., 2007). The mud crab aquaculture has been conducted for more than 100 years in China and over the past decades throughout the Asia (Williams and Primavera, 2001) and occupied an increasingly momentous role in Chinese crab species farming industry (Li., 2018). The life cycle development consists of four main periods,including embryonic period; a zoea period with 5 different stages; a megalopa period; and crablet after the fixation and metamorphosis of megalopa, whose gonadic development is yet to be studied.males grow faster and reach larger size than females at harvest season. The mechanisms underlying the sexual phenoty- pic differentiation and dimorphic development are still un- clear.Although there have been some studies on the sex differentiation and determination related genes including,and(Jiang, 2020; Lin, 2020; Wang, 2020), whether thefamily genes contribute to the sex development and other functions of the mud crab have not been studied. This is the first study to reportgene in. The cloning of thisgene may provide a useful tool for the studies of male sex determination/differentiation in the crab.

    2 Materials and Methods

    2.1 Crab and Tissue Sampling

    The crabs were purchased from local fishermen in Shan- tou City, China. They were culturedin our laboratory and Raoping West Coast Biotechnology Co., Ltd., Chaozhou, Guangdong Province, China during the breeding season.Crabs were anesthetized with ice before tissues extraction. Five female (body weight 280g±10g) and male crabs (body weight 250g±10g), respectively, were used for gonadal RNA extraction for rapid amplification of cDNA ends (RACE) PCR. Different tissues including ganglion, stomach, heart, intestine, gill, muscle, hepatopancreas and go- nads were collected from five males and females, respectively, for the detection of spatial expression ofge-ne. Different gonadal samples were collected from five fe- male and five male crabs at each developmental stage, re- spectively. The identification of the gonads at different de- velopmental stages was according to the methods of Wu(2020). The different developmental stage including embryo, zoea I-V, megalopa and crablet I-II.

    2.2 Cloning of DMRT Gene

    Total RNA was isolated from the testis (40–60mg) of matureusing RNA isoPlus (TaKaRa, Ja- pan). The quantity and quality of isolated RNAs were de- termined by electrophoresis and spectrophotometry (Nano- drop 2000, Thermo Scientific, USA). Only samples with OD260/280 ration ranging from 1.8 to 2.0 were used for cDNA synthesis. Reverse transcription was conducted us- ing PrimeScript?RT reagent Kit with gDNA Eraser (TaKaRa, Japan).The 3’ and 5’ ends of cDNAs were cloned using the RACE-PCR with the SMART RACE Kit (Clon- tech, USA). The universal amplified primers of crab DMRTwas designed using Primer Premier 5 software. The primers listed in Table 1 are used to amplify the partial sequences. Programs for PCR were as follows: One denaturation cycle at 94℃ for 5min; 30 cycles of amplification and each cycle includes 30s at 95℃, 30s at 57℃ and 1min at 72℃;and a final extension at 72℃for 8min. The PCR products described above were all purified from 2.0% agarose by SanPrep Column DNA Gel Extraction Kit (Sangon, China) and loaded into the pEASY-T1 cloning vector (Transgen biotech, China). Then the positive transformants were se- lected and sequenced (Sangon, China). Genomic DNAs ex- tracted from male and female crabs were used as template to clone the DNA sequence of thegene.

    Table 1 Nucleotide sequences of the primers for cloning and qPCR of DMRT99B gene

    Note: F and R represent the forward and reverse direction of the primers, respectively.

    2.3 Structure Prediction, Sequence Alignment and Phylogeny

    For deduced amino acid analysis, the calculated mole- cular weight and theoretical isoelectric point were obtain- ed by ProtParam tool (http://web.expasy.org/protparam/). Secondary and tertiary structure predictions were perform- ed using putative amino acid sequences. We submitted all 224 amino acids of the SpDMRT99B as inputs. The secondary structures and tertiary structure were predicted us- ing online resource SOPMA (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html) and SMART (http://smart.embl-heidelberg.de/), respectively. The mul-tiple alignments of amino acid sequences were performed using BioEdit software.

    The evolutionary history was inferred by using the Ma- ximum Likelihood method based on the JTT matrix-basedmodel (Jones., 1992). The bootstrap consensus tree in- ferred from 1000 replicates is taken to represent the evolutionary history of the taxa analyzed (Felsenstein, 1985). Branches corresponding to partitions reproduced in less than 25% bootstrap replicates are collapsed. The percen- tage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches (Felsenstein, 1985). Initial tree (s) for the heuristic search were obtained automatically by applying Neighbor-Joining and BioNJ algorithms to a ma- trix of pairwise distances estimated using a JTT model, and then selecting the topology with superior log likelihood va-lue. The analysis involved 31 amino acid sequences (Table2). All positions with less than 50% site coverage were eli- minated. There are a total of 472 positions in the final da- taset. Evolutionary analyses were conducted in MEGA7.0 (Kumar., 2015).

    Table 2 Amino acid sequences used in the phylogenetic analysis

    2.4 Quantitive Real Time PCR (qPCR)

    Total RNA was extracted using RNAiso Plus (Takara Co.,Ltd., Japan). RNA samples were treated by RQ1 RNase-Free DNase prior to qPCR (Takara Co., Ltd., Japan) to avoid genomic DNA contamination. cDNA was generated from 500ng DNase-treated RNA using Talent qPCR Pre- mix (SYBR Green) kit (TIANGEN Biotech Co., Ltd., Bei- jing) following the manufacturer’s instructions. Primers (Table 2) for qPCR were designed using the Primer 6.0 Software. qPCR was conducted in a Mini Option real-time detector (Roche LightCycle@480). The qPCR re-action solution consisted of 10μL Talent qPCR Premix (2×), 0.6μL PCR forward primer (10μmolL?l), 0.6μL PCR reverse primer (10μmolL?l), 2.0μL RT reaction so- lution (cDNA 20ng), and 6.8μL RNase free water. The reaction conditions were 95℃ for 3min followed by 40 cycles of 95℃ for 5s, 60℃ for 10s and 72℃ for 15s. The florescent flux was then recorded, and the reaction con- tinued at 72℃ for 6s and 95℃ for 5s for melting curve. All amplicons were initially separated by agarose gel elec- trophoresis to ensure their correct sizes. The gene expres- sion levels were normalized towards the reference genes (18S rRNA). Optimized comparative Ct (2?ΔΔCt) value me- thod (Livak and Schmittgen, 2001) was applied to calcu- late gene expression levels.

    3 Results

    3.1 Identification of DMRT

    Based on the EST file of mud crab gonadal transcriptome sequencing (Yang., 2018), a pair of specific pri- mers were designed to verify and amplify the core region ofgene. The 5’ and 3’ ends ofwere amplified using RACE method. As a result, the full length ofcDNA was 1249bp. The analysis of the cDNA sequence showed that it has 5’ untranslate region (UTR) of 253bp; open reading frame (ORF) of 672bp containing an ATG start codon at 254bp and a TAA stop codon at 928bp; and 3’ UTR sequence of 321bp with poly (A) tail but without any polyadenylation signal AATAAA. The ORFofcodes for 224 amino acids (Fig.1) which con-tains a conserved doublesex DNA-binding motif (DM do- main) from 39–92aa. A putative nuclear localization sig- nal (NLS) KGHKR from 74–78aa is also detected, and it locates in the zinc module making of two intertwined Zn2+- binding sites (site I C61/C64/H76/C80 and site II H67/ C85/C87/C90) (Fig.2). The predicted molecular size and theoretical pI of mud crab DMRT are 24254.8 Da and 9.69,respectively. The amino acid contents of Ser, Ala, Leu and Arg are all above 8% of total amino acids. The sequence was deposited in the GenBank database with the acces- sion number MN395823.

    The genomic DNA was used to determine the introns in genomicgene sequence using a pair of spe- cific primers at 5’ and 3’ ends of the cDNA sequence. The sequencing of the PCR products showed no difference be- tween the amplifications from genomic DNA and those from cDNA templates using the same primers. It indicatedthatgene has no intron. Additionally, the ge- nomic sequences of male and femalegene showed no sex dimorphism in the crab genome.

    Fig.1 Full length of SpDMRT99B cDNA sequence. The sequences with gray background show the DM domain region. The amino acids in red box are putative nuclear localization signal.

    3.2 Phylogeny of SpDMRT99B

    According to the amino acid alignment, the DM domain inDMRT99B protein sequence werehighly conserved among DMRT99B and other DMRTsubfamilies with 100% sequence identity toDmrt99B and 99% identity toand(Fig.2). Thus, we named thegene identified in the present study. The DM domain also contains a conserved nuclear localization signal (NLS) and an ordered moiety consisting of invariant cysteine and histidine as shown in Fig.2. In SpDMRT99B, the two intertwined Zn2+-binding sites (site I and site II) were ob- served (Fig.3). Outside the DM domain, little sequence homology can be identified. Moreover, SpDMRT99B lacks the conserved DMA domain which is similar toandbut unlike theandDMRT99B (shown in Fig.4). It indicates that the DMRT99B in mud crab showed a high conservatism dur- ing the evolution.

    To identify the phylogenetic affinities between SpDMRT- 99B and other members of DMRT family, the molecular phylogenetic analysis was performed in an unrooted phylogenetic tree constructed usingORF nucleotide sequences-deduced amino acid sequences (Table 2; Fig.5). SpDMRT99B isthe closest toDMRT99B, sharing a high level of similarity of 74%, followed byDMRT99B in the same branch with insect andDMRT99B. DMRT99B is closely related with mammal and vertebrate DMRT4, DMRT5.

    Fig.2 Amino acid sequence alignment of DM domain from SpDMRT99B and other species. Red and green rectangles indicate residues of the two intertwined zinc binding sites (site I and site II, respectively). Putative nuclear localization signals (NLSs) are underlined.

    Fig.3 3D-structures of SpDMRT99B predicted by SMART. Red and green lines circle out the residues of the two intertwined zinc binding sites (site I and site II, respectively).

    Fig.4 Schematic diagrams of DMRT proteins of different species. Size of each bar is drawn according to the position of amino acids in each protein.

    Fig.5 A comparative phylogenetic tree based on the amino acid sequences of SpDMRT99B and 30 other proteins.

    3.3 Sex-Biased Expression Profile of SpDMRT99B

    The expression levels were analyzed in adult mud crab tissues by qPCR, and results showed thatmRNA was distributed in all tissues. The expression ofgene shows different patterns in different sexes of crab.is expressed more highly in the male tissuesthan in the female, including ganglion, heart, intes- tine, muscle and hepatopancreas. However, the levels of ex- pression in the stomach and gill are the opposite. It is main- ly expressed in testis, significantly higher (over 10 times higher) than in ovary and other tissues (Fig.6). Consider- ing its dominant expression in testis, SpDMRT99B might play critical role in the male gonad development of mud crab. Thus, we detected the expressions ofat different developmental stages of gonads, namely ovary I–V and testis I–III (Fig.7). It showed that the expressions ofin testis were significantly higher than that in ovaryno matter at which stages, which is accordance with the expression detection in different tissues. Among the different developmental stages of testis, the peak oc- curs in the stage II of testis, and the expression is signifi- cantly higher in this stage than those in stagesI and III. Thusmight be related to the development of testis development. During different stages of early de- velopment in mud crab, the expressions ofgenediffer obviously. Thegene is significantly ex- pressed at the stage of zoea I mud crab (Fig.8). The expres- sions at other developmental stages change without sig- nificances.

    Fig.6 Quantitative real-time PCR validation of SpDMRT99Bexpressions in different tissues.

    Fig.7 Quantitative real-time PCR validation of SpDMRT99B expressions at different developmental stages of gonads. O-I, ovary stage I; O-II, ovary stage II; O-III, ovary stage III; O-IV, ovary stage IV; O-V, ovary stage V; T-I, testis stage I; T-II, testis stage II; T-III, testis stage III.

    Fig.8 Quantitative real-time PCR validation of SpDMRT99B expressions at the early developmental stages of Scylla paramamosain. E, embryonic stage; Z-I, zoea stage I; Z-II, zoea stage II; Z-III, zoea stage III; Z-IV, zoea stage IV; Z-V, zoea stage V; M, megalopa; C-I, crablet stage I; C-II, crablet stage II.

    4 Discussion

    Despitegenes have been cloned in several in- vertebrates, limited genomic information made it difficult to annotate and determinegenes in different in- vertebrate groups (Bellefroid., 2013; Wexler., 2014). In the current study, we report the molecular characterization ofgene, which is the first complete sequence of a DM factor identified in the. The full-length cDNA ofgene is 1249bp, coding 224 amino acids with 24kDa predicted mole- cular mass, which is similar with thein the length of the cDNA and protein (Zhang and Qiu, 2010). The deduced serine- and proline-rich amino acid sequence presents a well-conserved DM domain characteristic among all DMRT subfamilies. The DM domain has 100% high identity with that ofandDMRT99B. The DM motif is a cysteine-rich DNA- binding domain that contains two intertwined Zn2+-bind- ing sites (site I, C61/C64/H76/C80 and site II, H67/C85/ C87/C90) which are necessary for DNA binding (Zhu., 2000), and a putative NLS consisting of KGHKR (Fig.3). Unlike the insect andDMRT99Bs, SpDMR99B lacks a conserved DMA domain, which is similar withandDMRT99B (Zhang and Qiu,2010; Yu., 2014). The presence of DMA which is spe- cific to DMRT99B and DMRT3-5 (Fig.4) is patrimonial. The loss of DMA domains here may contribute to the evolution of novel roles, as DMRT1 lacks DMA domain func- tioning in mammalian sexual differentiation (Raymond., 2000; Brunner., 2001; Volff., 2003). Phylogenetic analysis indicates that theDMRT99B protein clustered with the DMRT99B sequences of other species, which implied that SpDMRT99B might have si- milar function with DMRT99B in other species.

    is also predominantly expressed in testis, approximately a hundred times higher than that in ovary. In,is also prominent in the testis,and much lower in the ovary (Yu., 2014). During the different developmental stages of the gonads,was significantly highly expressed in testis stage II which is in an immature status (Fig.6).genes are also expressed in immature testes inand(Zhang and Qiu, 2010; Yu., 2014). It is reported thatmight play an essential role in tes- ticular development and differentiation (Zhang and Qiu, 2010; Yu., 2014). The primary function ofge- nes in the gonad is to promote male-specific and repress female-specific differentiation (Kopp, 2012). In general, mostgenes are expressed in males and function in male sexual differentiation. However, inand,genes are expressed in a fe- male-specific manner (Kato., 2008; Kasahara., 2018), which might be unique to Branchiopoda and Insecta species (Kasahara., 2018). Tissue- and sex-specificgenes expressions in different portal gonads in chor- data, arthropoda, and molluska suggests that they already played a role in testicular development in a common bilateral ancestor. In contrast, the inconsistent functions ofgenes in some species may reflect independent co- option (Kopp, 2012). In non-gonadal tissues,genes appear to have the ability to modulate a wide range of de- velopmental processes (Hong., 2007), to which only limited attention has been paid to date. The time-depen- dent expression patterns ofgenes inthe period of the embryo, larval, post-larval and adult stages might indicate that these proteins may be involved in so- matic genesis rather than in reproductive development (Yu., 2014). Furthermore,might conservatively function for somitogenesis both in zebrafish and mouse (Meng., 1999; Sato., 2010). It suggested thatgenes play regulatory roles in both sexual and so- matic development (Abayed., 2019). Here, the expression ofduring the early developmen reaches peak at zoea I stage which is equipped with segments compared to the embryonic stage, whichsuggests that themight also play roles in somitoge- nesis in mud crab larvae.

    In absence of sufficient elucidations in arthropods, the functions of DMRT99B can be indicated by their vertebrate homologs, namely DMRT4/5s (Fig.5). Dmrt4 and Dmrt5 inand Dmrt5 in zebrafish are involved in neurogenesis (Yoshizawa., 2011; Parlier., 2013), and so as DMRT99B in(Kasahara., 2018). However, the Dmrt4 mutant in mouse has normal olfactory function (Balciuniene, 2006). Except for gonad development and neurogenesis, Dmrt5 has important roles in various processes including embryonic development andsomite formation (Urquhart., 2016; Muralidharan., 2017; De Clercq., 2018). Furthermore, tissue dis- tributions of Dmrt4 and Dmrt5 in adults are divergent in different species (Guan., 2000; Kondo., 2002;Ottolenghi., 2002; Balciuniene., 2006; Veith.,2006). All functions of DMRT4 and DMRT5 in vertebratesmay reflect their intermediate or multi-functional statusduring evolution of the DMRT family, so does SpDMRT- 99B in this study. Thewas reported in the embryonic development and sexual differentiation of(Yu., 2014). In silkworm, it plays an important role in behavior-related neurogenesis (Kasahara., 2018). In addition, due to the technical difficulties in manipulating mud crab embryos, the effects ofgene on early embryonic development or larvae cannot be studied by up-regulating or down-regulating methods. While more researchesare needed on studying the function of these molecules in crustaceans, current expression pattern evidences suggest that thegene has a multifunctional role.

    In the present study, we identified the DM-domain gene in the mud crab and detected its expression characteriza- tions. The expression ofpresents sexually di- morphism and male-bias pattern. The peak expression in zoea I stage might indicate the involvement ofin somitogenesis. However, many efforts should be con- ducted on revealing the functions ofgenes in mud crab possibly by means of up-regulating or down-regula- ting technique in the future. Our present findings enhance our understanding of DM domain genes in sexual dimor- phism in crustaceans and lay the foundation for the fur- ther study ingenes in mud crab.

    Acknowledgements

    This study was funded by the National Natural Science Foundation of China (No. 31772837), the National Key Research & Development Program of China (No. 2018YF D0900201), the Science and Technology Project of Guang- dong Province (No. 2018A050506080), the Shantou Uni- versity Scientific Research Foundation for Talents (No. NTF17006), and the Program for Innovation and Enhance- ment of School of Department of Education of Guangdong Province (No. 2017KCXTD014).

    Abayed, F. A., Manor, R., Aflalo, E. D., and Sagi, A., 2019. Screen- ing forgenes from embryo to matureprawns., 282: 113205.

    Balciuniene, J., Bardwell, V. J., and Zarkower, D., 2006. Mice mutant in the DM domain geneare viable and fertile but have polyovular follicles., 26 (23): 8891-8984.

    Bellefroid, E. J., Leclere, L., Saulnier, A., Keruzore, M., Sirakov, M., Vervoort, M.,., 2013. Expanding roles for the evolutionarily conserved Dmrt sex transcriptional regulators during embryogenesis., 70: 3829- 3845.

    Brunner, B., Hornung, U., Shan, Z., Nanda, I., Kondo, M., Zend- Ajusch, E.,., 2001. Genomic organization and expression of the doublesex-related gene cluster in vertebrates and detection of putative regulatory regions for., 77 (1-2): 8-17.

    Chandler, J. C., Fitzgibbon, Q. P., Smith, G., Elizur, A., and Ven- tura, T., 2017. Y-linkedparalogue () in the East- ern spiny lobster,: The first invertebrate sex-linked., 430 (2): 337-345.

    De Clercq, S., Keruzore, M., Desmaris, E., Pollart, C., Assimacopoulos, S., Preillon, J.,., 2016. DMRT5 together with DMRT3 directly controls hippocampus development and neo- cortical area map formation., 28 (2): 493-509.

    Felsenstein, J., 1985. Confidence limits on phylogenies: An ap- proach using the bootstrap., 39: 783-791.

    Fontana, J. R., and Crews, S. T., 2012. Transcriptome analysis ofCNS midline cells reveals diverse peptidergic pro- perties and a role for castor in neuronal differentiation., 372: 131-142.

    Galindo-Torres, P., Garcia-Gasca, A., Llera-Herrera, R., Escobedo-Fregoso, C., Abreu-Goodger, C., and Ibarra, A. M., 2018.Sex determination and differentiation genes in a functional her-maphrodite scallop,.,37: 161-175.

    Guan, G., Kobayashi, T., and Nagahama, Y., 2000. Sexually di- morphic expression of two types of DM (Doublesex/Mab-3)- domain genes in a teleost fish, the Tilapia ()., 272 (3): 662-666.

    Guo, Y., Li, Q., Gao, S., Zhou, X., He, Y., Shang, X.,., 2004. Molecular cloning, characterization, and expression in brain and gonad ofof zebrafish., 324 (2): 569-575.

    Henry, G. L., Davis, F. P., Picard, S., and Eddy, S. R., 2012. Cell type-specific genomics ofneurons., 40 (19): 9691-9704.

    Hong, C. S., Park, B. Y., and Saint-Jeannet, J. P., 2007. The func- tion ofgenes in vertebrate development: It is not just about sex., 310 (1): 1-9.

    Jiang, Q., Lu, B., Wang, G., and Ye, H., 2020. Transcriptional in- hibition of Sp-IAG by crustacean female sex hormone in the mud crab,., 21 (15): 5300.

    Jones, D. T., Taylor, W. R., and Thornton, J. M., 1992. The rapid generation of mutation data matrices from protein sequences., 8: 275-282.

    Kasahara, R., Aoki, F., and Suzuki, M. G., 2018. Deficiency inortholog causes behavioral abnormalities in the silkworm,., 53 (3): 381-393.

    Kato, Y., Kobayashi, K., Oda, S., Colbourn, J. K., Tatarazako, N., Watanabe, H.,., 2008. Molecular cloning and sexually di- morphic expression of DM-domain genes in., 91 (1): 94-101.

    Kato, Y., Kobayashi, K., Watanabe, H., and Iguchi, T., 2011. En- vironmental sex determination in the branchiopod crustacean: Deep conservation of a doublesex gene in the sex-determining pathway., 7: e1001345.

    Kim, S., Kettlewell, J. R., Anderson, R. C., Bardwell, V. J., and Zarkower, D., 2003. Sexually dimorphic expression of multiple doublesex-related genes in the embryonic mouse gonad., 3 (1): 77-82.

    Kondo, M., Froschauer, A., Kitano, A., Nanda, I., Hornung, U., Volff, J.,., 2002. Molecular cloning and characterization ofgenes from the medakaand the platy- fish., 295 (2): 213-222.

    Kopp, A., 2012.genes in the development and evolution of sexual dimorphism., 28 (4): 175-184.

    Kumar, S., Stecher, G., and Tamura, K., 2016. MEGA7: Mole- cular Evolutionary Genetics Analysis version 7.0 for bigger datasets., 33 (7): 1870-1874.

    Le Vay, L., Ut, V. N., and Walton, M., 2007. Population ecology of the mud crab(Estampador) in an estuarine mangrove system; a mark-recapture study., 151 (3): 1127-1135.

    Li, S., Li, F., Yu, K., and Xiang, J., 2018. Identification and characterization of a doublesex gene which regulates the expression of insulin-like androgenic gland hormone in., 649: 1-7.

    Li, Y. Y., Ai, C. X., and Liu, L. J., 2018. Mud crab,China’s leading maricultured crab. In:. Gui, J. F.,., eds., Wiley Online Library, 226-233.

    Lin, J., Yuan, Y., Shi, X., Fang, S., Zhang, Y., Guan, M.,., 2020. Molecular cloning, characterization and expression pro- files of a SoxB2 gene related to gonadal development in mud crab ()., 64 (2): 126-136.

    Livak, K. J., and Schmittgen, T. D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2?ΔΔCTmethod., 25 (4): 402-408.

    Meng, A., Moore, B., Tang, H., Yuan, B., and Lin, S., 1999. Adoublesex-related gene, terra, is involved in somi- togenesis in vertebrates., 126 (6): 1259-1268.

    Miller, S. W., Hayward, D. C., Bunch, T. A., Miller, D. J., Ball, E. E., Bardwell, V. J.,., 2003. A DM domain protein from a coral,, homologous to proteins important for sex determination., 5: 251- 258.

    Muralidharan, B., Keruzore, M., Pradhan, S. J., Roy, B., Shetty, A. S., Kinare, V.,., 2017. Dmrt5, a novel neurogenic factor, reciprocally regulates Lhx2 to control the neuron-glia cell fate switch in the developing hippocampus., 37 (46): 11245-11254.

    Murphy, M. W., Lee, J. K., Rojo, S., Gearhart, M. D., Kurahashi, K., Banerjee, S.,., 2015. An ancient protein-DNA interaction underlying metazoan sex determination., 22 (6): 442-451.

    Ottolenghi, C., Fellous, M., Barbieri, M., and McElreavey, K., 2002. Novel paralogy relations among human chromosomes support a link between the phylogeny of doublesex-related ge- nes and the evolution of sex determination., 79 (3): 333-343.

    Parlier, D., Moers, V., Van Campenhout, C., Preillon, J., Leclère, L., Saulnier, A.,., 2013. Thedoublesex-related geneis required for olfactory placode neurogenesis., 373 (1): 39-52.

    Raymond, C. S., Murphy, M. W., Osullivan, M. G., Bardwell, V. J., and Zarkower, D., 2000., a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation., 14 (20): 2587-2595.

    Raymond, C. S., Parker, E. D., Kettlewell, J. R., Brown, L. G., Page, D. C., Kusz, K.,., 1999. A region of human chromosome 9p required for testis development contains two genes related to known sexual regulators., 8 (6): 989-996.

    Raymond, C. S., Shamu, C. E., Shen, M. M., Seifert, K. J., Hirsch, B., Hodgkin, J.,., 1998. Evidence for evolutionary conservation of sex-determining genes., 391: 691.

    Rideout, E. J., Dornan, A. J., Neville, M. C., Eadie, S., and Good- win, S. F., 2010. Control of sexual differentiation and beha- vior by the doublesex gene in., 13 (4): 458-466.

    Sato, T., Rocancourt, D., Marques, L., Thorsteinsdóttir, S., and Buckingham, M., 2010. A Pax3/Dmrt2/Myf5 regulatory cascade functions at the onset of myogenesis., 6 (4): e1000897.

    Toyota, K., Kato, Y., Sato, M., Sugiura, N., Miyagawa, S., Miya- kawa, H.,., 2013. Molecular cloning of doublesex genes of four cladocera (water flea) species., 14: 239.

    Urquhart, J. E., Beaman, G. M., Byers, H., Roberts, N. A., Cher- vinsky, E., Osullivan, J.,., 2016. DMRTA2 () is mutated in a novel cortical brain malformation., 89 (6): 724-727.

    Veith, A. M., Schafer, M., Kluver, N., Schmidt, C., Schultheis, C., Schartl, M.,., 2006. Tissue-specific expression of dmrt genes in embryos and adults of the platyfish., 3 (3): 325-337.

    Volff, J., Zarkower, D., Bardwell, V. J., and Schartl, M., 2003. Evolutionary dynamics of the DM domain gene family in me- tazoans., 57 (1): S241-S249.

    Wang, M., Xie, X., Xu, D., Wang, Z., Yu, G., Jin, Z.,., 2020. Molecular characterization of the sex-lethal gene in mud craband its potential role in sexual develop- ment., 250: 110486.

    Wang, Y., Jin, S., Fu, H., Qiao, H., Sun, S., Zhang, W.,., 2019. Identification and characterization of thegene in the oriental river prawn., 20 (7): 1734.

    Wexler, J. R., Plachetzki, D. C., and Kopp, A., 2014. Pan-me- tazoan phylogeny of the DMRT gene family: A framework for functional studies., 224 (3): 175-181.

    Williams, M. J., and Primavera, J. H., 2001. Choosing tropical portunid species for culture, domestication and stock enhance- ment in the Indo-Pacific., 14 (2): 121- 142.

    Winkler, C., Hornung, U., Kondo, M., Neuner, C., Duschl, J., Shi- ma, A.,., 2004. Developmentally regulated and non-sex- specific expression of autosomal dmrt genes in embryos of the Medaka fish ()., 121(7): 997-1005.

    Wu, Q., Waiho, K., Huang, Z., Li, S., Zheng, H., Zhang, Y.,., 2020. Growth traits and biochemical composition dynamics of ovary, hepatopancreas and muscle tissues at different ovarian maturation stages of female mud crab,., 515: 734560.

    Yang, X., Ikhwanuddin, M., Li, X., Lin, F., Wu, Q., Zhang, Y.,., 2018. Comparative transcriptome analysis provides insights into differentially expressed genes and long non-coding RNAs between ovary and testis of the mud crab ()., 20 (1): 20-34.

    Yoshizawa, A., Nakahara, Y., Izawa, T., Ishitani, T., Tsutsumi, M., Kuroiwa, A.,., 2011. Zebrafish Dmrta2 regulates neurogenesis in the telencephalon., 16 (11): 1097-1109.

    Yu, Y., Ma, W., Zeng, Q., Qian, Y., Yang, J., and Yang, W., 2014. Molecular cloning and sexually dimorphic expression of two Dmrt genes in the giant freshwater prawn,., 3 (2): 181-191.

    Yu, Y., Zhang, X., Yuan, J., Li, F., Chen, X., Zhao, Y.,., 2015.Genome survey and high-density genetic map construction pro- vide genomic and genetic resources for the Pacific White Shrimp., 5: 15612.

    Yu, Y., Zhang, X., Yuan, J., Wang, Q., Li, S., Huang, H.,., 2017. Identification of sex-determining loci in Pacific White Shrimpusing linkage and association analysis., 19 (3): 277-286.

    Zhang, E., and Qiu, G., 2010. A novel Dmrt gene is specifically expressed in the testis of Chinese mitten crab,., 220 (5): 151-159.

    Zhang, T., and Zarkower, D., 2017. DMRT proteins and coordi- nation of mammalian spermatogenesis., 24: 195-202.

    Zhong, P., Zhou, T., Zhang, Y., Chen, Y., Yi, J., Lin, W.,., 2019. Potential involvement of a DMRT family member (Mr- Dsx) in the regulation of sexual differentiation and moulting in the giant river prawn., 50 (10): 3037-3049.

    Zhu, L., Wilken, J., Phillips, N. B., Narendra, U., Chan, G., Strat- ton, S. M.,., 2000. Sexual dimorphism in diverse metazoans is regulated by a novel class of intertwined zinc fingers., 14 (14): 1750-1764.

    Zwarts, L., Broeck, L. V., Cappuyns, E., Ayroles, J. F., Magwire, M. M., Vulsteke, V.,., 2015. The genetic basis of natural variation in mushroom body size in., 6 (1): 10115-10115.

    September 16, 2020;

    December 21, 2020;

    February 22, 2021

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2021

    . Tel: 0086-754-86503471

    E-mail: mahy@stu.edu.cn

    (Edited by Qiu Yantao)

    国产成人精品久久二区二区91| 窝窝影院91人妻| 久热爱精品视频在线9| 精品亚洲成a人片在线观看| 日韩三级视频一区二区三区| 中文欧美无线码| 国产亚洲午夜精品一区二区久久| 岛国在线观看网站| 国产xxxxx性猛交| 欧美日韩亚洲综合一区二区三区_| 国产欧美日韩一区二区精品| 国精品久久久久久国模美| 亚洲成人免费电影在线观看| 高清视频免费观看一区二区| a在线观看视频网站| 精品午夜福利视频在线观看一区 | 精品国产超薄肉色丝袜足j| 精品人妻在线不人妻| 满18在线观看网站| 国产精品久久电影中文字幕 | 黄网站色视频无遮挡免费观看| 久久精品aⅴ一区二区三区四区| 国产伦人伦偷精品视频| 老司机午夜福利在线观看视频 | 欧美日本中文国产一区发布| 日本一区二区免费在线视频| netflix在线观看网站| 亚洲 国产 在线| 啦啦啦 在线观看视频| 两性夫妻黄色片| 亚洲情色 制服丝袜| 国产视频一区二区在线看| 日本五十路高清| 久久精品人人爽人人爽视色| 热99re8久久精品国产| 啦啦啦在线免费观看视频4| 蜜桃国产av成人99| av有码第一页| 桃花免费在线播放| 成人永久免费在线观看视频 | 午夜激情久久久久久久| 一二三四在线观看免费中文在| avwww免费| 男女免费视频国产| 国产精品欧美亚洲77777| 欧美激情久久久久久爽电影 | 精品少妇久久久久久888优播| 国产亚洲av高清不卡| 国产欧美日韩一区二区三| av超薄肉色丝袜交足视频| 国产亚洲欧美精品永久| 色综合婷婷激情| 精品久久久精品久久久| 操美女的视频在线观看| 欧美大码av| 757午夜福利合集在线观看| 午夜视频精品福利| 久久人人97超碰香蕉20202| 少妇被粗大的猛进出69影院| 欧美激情极品国产一区二区三区| 国产精品自产拍在线观看55亚洲 | 亚洲黑人精品在线| 亚洲精品国产色婷婷电影| 黄色成人免费大全| 亚洲,欧美精品.| 大香蕉久久成人网| 我的亚洲天堂| av天堂在线播放| 久久中文字幕人妻熟女| 法律面前人人平等表现在哪些方面| 国产成人精品在线电影| 日韩一卡2卡3卡4卡2021年| 黑人操中国人逼视频| 精品亚洲成a人片在线观看| 少妇裸体淫交视频免费看高清 | 丝袜美腿诱惑在线| 国产成人啪精品午夜网站| 9热在线视频观看99| 久久亚洲精品不卡| 两性夫妻黄色片| 国产99久久九九免费精品| 纯流量卡能插随身wifi吗| 精品乱码久久久久久99久播| 后天国语完整版免费观看| 精品国内亚洲2022精品成人 | 男女无遮挡免费网站观看| 久久久久久久久久久久大奶| 黄色怎么调成土黄色| 久久久久久久大尺度免费视频| 美女高潮到喷水免费观看| 一区二区av电影网| 国产精品久久久久久精品电影小说| 午夜福利欧美成人| 久久午夜亚洲精品久久| 国产成+人综合+亚洲专区| 国产精品麻豆人妻色哟哟久久| 狠狠狠狠99中文字幕| 国产精品亚洲av一区麻豆| 色婷婷久久久亚洲欧美| 男女床上黄色一级片免费看| 国产精品美女特级片免费视频播放器 | 老汉色∧v一级毛片| 欧美激情极品国产一区二区三区| 少妇的丰满在线观看| 亚洲午夜精品一区,二区,三区| 一区二区日韩欧美中文字幕| 麻豆国产av国片精品| 热re99久久国产66热| 国产野战对白在线观看| 精品福利永久在线观看| 精品国内亚洲2022精品成人 | 日韩欧美一区视频在线观看| 一级,二级,三级黄色视频| 久久午夜综合久久蜜桃| 国产深夜福利视频在线观看| 欧美在线一区亚洲| 国产免费视频播放在线视频| h视频一区二区三区| 亚洲av欧美aⅴ国产| 亚洲成国产人片在线观看| 高清在线国产一区| 午夜日韩欧美国产| 91九色精品人成在线观看| 亚洲va日本ⅴa欧美va伊人久久| 少妇 在线观看| 欧美+亚洲+日韩+国产| 久久毛片免费看一区二区三区| 免费女性裸体啪啪无遮挡网站| 美女主播在线视频| 久久ye,这里只有精品| 一区二区三区乱码不卡18| 热re99久久精品国产66热6| 啦啦啦免费观看视频1| 国产免费现黄频在线看| 两性夫妻黄色片| √禁漫天堂资源中文www| 亚洲自偷自拍图片 自拍| 久久久国产欧美日韩av| 免费人妻精品一区二区三区视频| 91九色精品人成在线观看| av欧美777| 亚洲人成电影观看| 热re99久久国产66热| 亚洲第一av免费看| 又大又爽又粗| 国产在视频线精品| 午夜福利,免费看| av福利片在线| 97人妻天天添夜夜摸| 在线观看一区二区三区激情| 亚洲男人天堂网一区| 色老头精品视频在线观看| 丝瓜视频免费看黄片| 国产亚洲欧美在线一区二区| 男女边摸边吃奶| 最新在线观看一区二区三区| 精品国内亚洲2022精品成人 | 建设人人有责人人尽责人人享有的| 国产一区二区三区综合在线观看| 人人妻人人澡人人看| 国产亚洲午夜精品一区二区久久| 亚洲精品中文字幕在线视频| 国产欧美亚洲国产| 18禁黄网站禁片午夜丰满| 国产精品熟女久久久久浪| 精品乱码久久久久久99久播| 欧美一级毛片孕妇| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品中文字幕一二三四区 | 老司机影院毛片| 色综合欧美亚洲国产小说| 黄网站色视频无遮挡免费观看| 国产精品久久久人人做人人爽| 十八禁网站免费在线| 夜夜骑夜夜射夜夜干| 97人妻天天添夜夜摸| 极品人妻少妇av视频| 久久午夜综合久久蜜桃| 9热在线视频观看99| 99re在线观看精品视频| 女警被强在线播放| 亚洲欧美精品综合一区二区三区| 亚洲av电影在线进入| 高清av免费在线| 999久久久精品免费观看国产| 极品教师在线免费播放| 国产片内射在线| 91字幕亚洲| 男女下面插进去视频免费观看| 最近最新中文字幕大全电影3 | 老熟女久久久| av超薄肉色丝袜交足视频| 亚洲精品国产色婷婷电影| 黄色 视频免费看| 一夜夜www| 精品一区二区三区av网在线观看 | 女警被强在线播放| 日韩中文字幕欧美一区二区| 国产精品av久久久久免费| 国产精品 欧美亚洲| 男人舔女人的私密视频| 亚洲五月婷婷丁香| 老司机深夜福利视频在线观看| 人人妻人人爽人人添夜夜欢视频| 免费久久久久久久精品成人欧美视频| 午夜免费成人在线视频| 中文欧美无线码| 我要看黄色一级片免费的| 国产一卡二卡三卡精品| 精品午夜福利视频在线观看一区 | 搡老岳熟女国产| 精品福利观看| 久久久精品区二区三区| 久热这里只有精品99| 国产精品一区二区在线观看99| 国产欧美日韩一区二区精品| 人人澡人人妻人| 老司机靠b影院| 一二三四社区在线视频社区8| 国产欧美日韩一区二区精品| 50天的宝宝边吃奶边哭怎么回事| 国产无遮挡羞羞视频在线观看| 高清视频免费观看一区二区| 男人操女人黄网站| 看免费av毛片| 久久久久久久大尺度免费视频| 在线天堂中文资源库| 国产成人一区二区三区免费视频网站| 99国产精品99久久久久| 国产一卡二卡三卡精品| 91麻豆av在线| 精品亚洲成国产av| bbb黄色大片| 午夜激情av网站| 精品久久久久久久毛片微露脸| 国产高清videossex| 女同久久另类99精品国产91| 九色亚洲精品在线播放| 亚洲情色 制服丝袜| 在线观看舔阴道视频| 丁香欧美五月| 精品福利永久在线观看| 欧美国产精品一级二级三级| 欧美日韩精品网址| 日韩欧美一区二区三区在线观看 | 在线观看人妻少妇| 国产成人精品无人区| 成人18禁在线播放| 亚洲精品成人av观看孕妇| 99精品欧美一区二区三区四区| 亚洲天堂av无毛| 亚洲精品久久午夜乱码| 国产深夜福利视频在线观看| 99国产综合亚洲精品| 高清av免费在线| 精品少妇一区二区三区视频日本电影| 天堂动漫精品| 国产精品亚洲av一区麻豆| 国产精品免费视频内射| 亚洲精品美女久久av网站| 精品熟女少妇八av免费久了| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精品美女久久av网站| 最新的欧美精品一区二区| 国产精品免费大片| 日韩一区二区三区影片| 18禁国产床啪视频网站| 超色免费av| 精品少妇久久久久久888优播| 男人舔女人的私密视频| 亚洲九九香蕉| 婷婷丁香在线五月| 侵犯人妻中文字幕一二三四区| 深夜精品福利| 久9热在线精品视频| 色播在线永久视频| 国产成人系列免费观看| 亚洲精华国产精华精| 久久人人爽av亚洲精品天堂| 欧美日韩亚洲高清精品| 极品教师在线免费播放| 精品一区二区三区av网在线观看 | 两人在一起打扑克的视频| 丝袜在线中文字幕| a级毛片在线看网站| 中文字幕精品免费在线观看视频| 成人免费观看视频高清| 国产av国产精品国产| 亚洲成人国产一区在线观看| 国产激情久久老熟女| 久久久国产欧美日韩av| 久久久久久亚洲精品国产蜜桃av| www.自偷自拍.com| 三级毛片av免费| 一区二区三区激情视频| av网站免费在线观看视频| 一区二区三区乱码不卡18| av有码第一页| 久久国产亚洲av麻豆专区| 日本精品一区二区三区蜜桃| 人人澡人人妻人| 精品国产一区二区三区四区第35| 免费人妻精品一区二区三区视频| 香蕉久久夜色| 欧美老熟妇乱子伦牲交| 久久久久久亚洲精品国产蜜桃av| 成人特级黄色片久久久久久久 | 国产一区二区在线观看av| a级毛片黄视频| 亚洲视频免费观看视频| 久久久久精品国产欧美久久久| 美女午夜性视频免费| 国产成人免费观看mmmm| 久久久久久久国产电影| 亚洲人成电影免费在线| 亚洲专区中文字幕在线| 99久久国产精品久久久| 婷婷成人精品国产| 波多野结衣一区麻豆| 成人特级黄色片久久久久久久 | 两性午夜刺激爽爽歪歪视频在线观看 | 天天躁日日躁夜夜躁夜夜| 美女高潮到喷水免费观看| 亚洲欧美日韩高清在线视频 | 99九九在线精品视频| 国产在线免费精品| 精品国内亚洲2022精品成人 | 免费观看人在逋| 王馨瑶露胸无遮挡在线观看| e午夜精品久久久久久久| 男人舔女人的私密视频| 国产成人一区二区三区免费视频网站| 亚洲av成人不卡在线观看播放网| 精品久久久久久电影网| 人人妻,人人澡人人爽秒播| 人人妻人人澡人人看| 美女视频免费永久观看网站| 美女主播在线视频| 亚洲 国产 在线| 中文字幕人妻熟女乱码| 久久婷婷成人综合色麻豆| 最近最新免费中文字幕在线| 国产精品99久久99久久久不卡| 男女下面插进去视频免费观看| av不卡在线播放| 国产av精品麻豆| 午夜日韩欧美国产| 日韩欧美免费精品| 老司机深夜福利视频在线观看| 欧美日韩亚洲综合一区二区三区_| 国产高清国产精品国产三级| 国产亚洲av高清不卡| 国产片内射在线| 变态另类成人亚洲欧美熟女 | 欧美日本中文国产一区发布| 亚洲成a人片在线一区二区| 日韩一区二区三区影片| 黑丝袜美女国产一区| 国产高清videossex| 丝瓜视频免费看黄片| 麻豆av在线久日| 午夜日韩欧美国产| 蜜桃在线观看..| 国产97色在线日韩免费| 亚洲精品在线美女| 久久精品国产亚洲av高清一级| 久久青草综合色| 精品一品国产午夜福利视频| 国产麻豆69| 不卡一级毛片| 最黄视频免费看| 狠狠精品人妻久久久久久综合| 99热国产这里只有精品6| 12—13女人毛片做爰片一| 亚洲一卡2卡3卡4卡5卡精品中文| 少妇粗大呻吟视频| 久久这里只有精品19| 国产在线一区二区三区精| 精品一区二区三区四区五区乱码| 亚洲成人免费av在线播放| 最新在线观看一区二区三区| 99re在线观看精品视频| 2018国产大陆天天弄谢| 91麻豆精品激情在线观看国产 | www.精华液| 欧美黑人精品巨大| 久久热在线av| 日本精品一区二区三区蜜桃| 国产免费视频播放在线视频| 国产有黄有色有爽视频| 亚洲午夜精品一区,二区,三区| av网站免费在线观看视频| 国产精品98久久久久久宅男小说| 黄片大片在线免费观看| 老汉色∧v一级毛片| av福利片在线| 国产野战对白在线观看| 亚洲精品国产一区二区精华液| 久久精品aⅴ一区二区三区四区| av一本久久久久| 亚洲,欧美精品.| xxxhd国产人妻xxx| 天天添夜夜摸| 五月天丁香电影| av超薄肉色丝袜交足视频| 无限看片的www在线观看| 视频区欧美日本亚洲| 国产精品二区激情视频| 操出白浆在线播放| 国产精品一区二区精品视频观看| 天堂动漫精品| 最近最新中文字幕大全电影3 | 久久ye,这里只有精品| 欧美黑人精品巨大| 国产麻豆69| www.自偷自拍.com| 如日韩欧美国产精品一区二区三区| 手机成人av网站| 成人亚洲精品一区在线观看| 美女扒开内裤让男人捅视频| 99久久人妻综合| 制服诱惑二区| 亚洲三区欧美一区| 狠狠狠狠99中文字幕| 亚洲国产欧美网| 亚洲久久久国产精品| 夫妻午夜视频| 亚洲第一av免费看| 久9热在线精品视频| 成年版毛片免费区| 大陆偷拍与自拍| 一区二区三区乱码不卡18| 久久精品人人爽人人爽视色| 午夜福利视频精品| 国产一区二区三区综合在线观看| 精品第一国产精品| 欧美老熟妇乱子伦牲交| 亚洲性夜色夜夜综合| 女警被强在线播放| 激情视频va一区二区三区| 久久久久久久久久久久大奶| 一级毛片电影观看| 人人妻,人人澡人人爽秒播| 日韩大码丰满熟妇| 精品国产乱子伦一区二区三区| 国产不卡一卡二| 日本vs欧美在线观看视频| 建设人人有责人人尽责人人享有的| 超色免费av| 久久精品亚洲熟妇少妇任你| 精品国产一区二区三区久久久樱花| 免费在线观看日本一区| 一进一出好大好爽视频| 精品午夜福利视频在线观看一区 | 国产又色又爽无遮挡免费看| e午夜精品久久久久久久| 嫩草影视91久久| 欧美日韩成人在线一区二区| 精品国产国语对白av| av有码第一页| 国产一区二区 视频在线| 日本精品一区二区三区蜜桃| 成人18禁在线播放| 搡老岳熟女国产| 成人国产av品久久久| 国产免费福利视频在线观看| 在线观看舔阴道视频| 国产三级黄色录像| 精品第一国产精品| 热99久久久久精品小说推荐| 欧美另类亚洲清纯唯美| 美女午夜性视频免费| 一本—道久久a久久精品蜜桃钙片| 人人妻,人人澡人人爽秒播| 国产麻豆69| 老熟女久久久| 别揉我奶头~嗯~啊~动态视频| 国产亚洲av高清不卡| av超薄肉色丝袜交足视频| 色老头精品视频在线观看| 性色av乱码一区二区三区2| 在线观看舔阴道视频| 女人被躁到高潮嗷嗷叫费观| 51午夜福利影视在线观看| 91精品国产国语对白视频| 午夜福利免费观看在线| 99国产精品99久久久久| 捣出白浆h1v1| e午夜精品久久久久久久| 国产野战对白在线观看| 亚洲免费av在线视频| videos熟女内射| 精品国产一区二区久久| 少妇粗大呻吟视频| 国产成人av教育| 在线观看www视频免费| 成人手机av| 热re99久久精品国产66热6| 电影成人av| 亚洲午夜精品一区,二区,三区| 啪啪无遮挡十八禁网站| a级毛片黄视频| 久久久久久久精品吃奶| 黄色视频在线播放观看不卡| 精品福利永久在线观看| 久久精品亚洲熟妇少妇任你| 欧美在线一区亚洲| 一二三四在线观看免费中文在| 狠狠婷婷综合久久久久久88av| 老司机深夜福利视频在线观看| 99国产综合亚洲精品| 亚洲国产欧美网| 99国产精品免费福利视频| 久久香蕉激情| 妹子高潮喷水视频| 久久天躁狠狠躁夜夜2o2o| 亚洲欧美日韩另类电影网站| 一边摸一边抽搐一进一小说 | 亚洲精品一卡2卡三卡4卡5卡| 午夜福利在线观看吧| 久久国产精品影院| 久久天躁狠狠躁夜夜2o2o| www日本在线高清视频| 最近最新中文字幕大全免费视频| 一本大道久久a久久精品| 成人亚洲精品一区在线观看| 真人做人爱边吃奶动态| 丝袜美腿诱惑在线| 手机成人av网站| a级毛片在线看网站| 在线观看66精品国产| 免费看十八禁软件| 精品一区二区三区视频在线观看免费 | 后天国语完整版免费观看| 精品少妇一区二区三区视频日本电影| 男女之事视频高清在线观看| 超碰成人久久| 国产精品自产拍在线观看55亚洲 | 一本—道久久a久久精品蜜桃钙片| 亚洲国产成人一精品久久久| 极品人妻少妇av视频| 18禁观看日本| 久久久国产成人免费| 亚洲专区中文字幕在线| 99热国产这里只有精品6| 大型黄色视频在线免费观看| 操出白浆在线播放| 无遮挡黄片免费观看| 午夜久久久在线观看| 欧美老熟妇乱子伦牲交| 国产成人av激情在线播放| 人人妻人人爽人人添夜夜欢视频| 色尼玛亚洲综合影院| 亚洲精品久久成人aⅴ小说| 亚洲avbb在线观看| 欧美黑人精品巨大| 黄色丝袜av网址大全| 男女床上黄色一级片免费看| 天堂8中文在线网| 国产精品.久久久| 在线观看舔阴道视频| 肉色欧美久久久久久久蜜桃| 精品卡一卡二卡四卡免费| 交换朋友夫妻互换小说| 国产亚洲av高清不卡| 久久性视频一级片| 精品国产超薄肉色丝袜足j| 久久香蕉激情| 男女午夜视频在线观看| 最新在线观看一区二区三区| 国产淫语在线视频| 中文字幕最新亚洲高清| 在线天堂中文资源库| 香蕉久久夜色| 国产精品av久久久久免费| 中文字幕高清在线视频| 免费高清在线观看日韩| 国产精品熟女久久久久浪| 国产成人精品无人区| 下体分泌物呈黄色| 欧美人与性动交α欧美精品济南到| 午夜视频精品福利| 亚洲人成伊人成综合网2020| 午夜免费成人在线视频| 久久久国产一区二区| 欧美变态另类bdsm刘玥| 国产日韩一区二区三区精品不卡| 欧美激情极品国产一区二区三区| 欧美乱码精品一区二区三区| 国产黄色免费在线视频| 国产精品久久久久久精品古装| 亚洲一卡2卡3卡4卡5卡精品中文| 三上悠亚av全集在线观看| 成人国语在线视频| 91麻豆精品激情在线观看国产 | 99re6热这里在线精品视频| 美女福利国产在线| 亚洲欧美一区二区三区黑人| 成年人午夜在线观看视频| 亚洲精品美女久久av网站| 免费在线观看日本一区| 久久精品人人爽人人爽视色| 午夜福利影视在线免费观看| 少妇裸体淫交视频免费看高清 | 不卡一级毛片| 性少妇av在线| 一区福利在线观看| 亚洲精品久久午夜乱码| 欧美日韩中文字幕国产精品一区二区三区 | 超色免费av| 欧美日韩亚洲高清精品| 一区二区av电影网| 久久精品熟女亚洲av麻豆精品| 91大片在线观看| 五月开心婷婷网|