陳建光,倪旭翔,袁 波,嚴(yán)惠民
SiPM激光雷達(dá)陽(yáng)光下探測(cè)概率性能分析
陳建光,倪旭翔,袁 波,嚴(yán)惠民*
浙江大學(xué)光電科學(xué)與工程學(xué)院,浙江 杭州 310027
硅基光電倍增管(SiPM)是由數(shù)百乃至數(shù)千單光子雪崩二極管(SPAD)組成的陣列,它具有增益高、易于集成到陣列以及抗干擾等優(yōu)點(diǎn),在激光雷達(dá)測(cè)距方面具有廣泛的應(yīng)用前景。本文分析了激光雷達(dá)測(cè)距中的信號(hào)和噪聲模型,仿真計(jì)算了陽(yáng)光下的SiPM模擬輸出,通過(guò)高斯擬合得到相應(yīng)的均值,并在SPAD接收光子受激發(fā)概率服從泊松分布的基礎(chǔ)上,給出了背景光電子數(shù)在0.001個(gè)/ns~0.01個(gè)/ns,探測(cè)器死時(shí)間在5 ns~50 ns范圍內(nèi)受背景光影響的SiPM模擬輸出計(jì)算公式,推導(dǎo)了目標(biāo)探測(cè)概率表達(dá)式。在室外環(huán)境光下進(jìn)行的激光測(cè)距探測(cè)概率實(shí)驗(yàn)結(jié)果與理論計(jì)算值相吻合。
硅基光電倍增管;背景光;死時(shí)間;激光測(cè)距;探測(cè)概率
激光雷達(dá)測(cè)距技術(shù)具有精度高、測(cè)程遠(yuǎn)、受背景干擾小、能夠短時(shí)間內(nèi)獲取目標(biāo)距離信息等優(yōu)勢(shì),近些年在自動(dòng)駕駛、深度成像等領(lǐng)域得到了越來(lái)越廣泛的應(yīng)用[1-4]。激光雷達(dá)測(cè)距技術(shù)包括三角測(cè)距法、ToF (time of flight)測(cè)距法、AMCW(amplitude modulation continuous wave)測(cè)距法等,其中ToF技術(shù)利用激光器向目標(biāo)發(fā)射脈沖,通過(guò)記錄激光往返時(shí)間來(lái)計(jì)算目標(biāo)距離,相比其他方法原理簡(jiǎn)單,功耗要求較低[5]。
脈沖回波信號(hào)能量隨探測(cè)距離的平方衰減,因此光電探測(cè)器要有一定的放大倍數(shù)。雪崩光電二極管(aualanche photo diode,APD)作為一種常見(jiàn)的光電探測(cè)器,響應(yīng)速度快,應(yīng)用廣泛,但電流增益較小,一般為102~103。單光子雪崩二極管(single photon avalanche diode,SPAD)是處于蓋革模式的APD,它的增益達(dá)到105~107,能夠進(jìn)行單光子事件響應(yīng),但在背景噪聲條件下,需進(jìn)行較多次測(cè)量,利用光子事件累計(jì)計(jì)數(shù)把距離信息從噪聲和暗計(jì)數(shù)中提取出來(lái),處理過(guò)程復(fù)雜[6]。
硅基光電倍增管(Silicon photomultiplier,SiPM)是一種新型的光電探測(cè)器。SiPM也被稱(chēng)為MPPC(multi-pixel photon counter),它是由數(shù)百乃至數(shù)千個(gè)SPAD組成的陣列,電流增益與單個(gè)SPAD一致。在存在背景光的條件下,部分SPAD單元響應(yīng)背景光子并受死時(shí)間效應(yīng)影響保持“淬滅”,但其他SPAD單元仍處于“就緒”狀態(tài)[5],因此不影響對(duì)激光回波信號(hào)的探測(cè)。近幾年在自動(dòng)駕駛領(lǐng)域應(yīng)用的激光雷達(dá)有陣列化和小型化的趨勢(shì),SiPM憑借易于集成到陣列、工作電壓低等優(yōu)點(diǎn)[7],在激光雷達(dá)測(cè)距與成像方面得到了許多研究和應(yīng)用。2009年,Kyu Tak Son等人[8]首先進(jìn)行了SiPM作為激光雷達(dá)探測(cè)器可行性實(shí)驗(yàn)的研究;2013年,國(guó)內(nèi)的張國(guó)青等人[9]在不考慮死時(shí)間效應(yīng)的情況下對(duì)MPPC應(yīng)用到激光雷達(dá)測(cè)距的探測(cè)率和虛警率進(jìn)行了公式推導(dǎo),驗(yàn)證了MPPC的單光子分辨能力;Ravil Agishev等人[10]分析了基于SiPM的激光雷達(dá)在真實(shí)環(huán)境中探測(cè)的各種限制,包括環(huán)境噪聲和內(nèi)部噪聲等;2019年,日本的Sagamihara等人[11]搭建32~32 SiPM陣列并進(jìn)行了flash激光雷達(dá)三維成像,設(shè)計(jì)的電路系統(tǒng)使時(shí)間分辨率達(dá)到326 ps;劉鴻彬等人[12]提出了一種基于少光子的高精度測(cè)量方法,實(shí)現(xiàn)了在隨機(jī)噪聲下的高精度測(cè)距。
在很多場(chǎng)景下,激光雷達(dá)測(cè)距會(huì)受到背景光的干擾。目前關(guān)于SiPM受環(huán)境光影響的分析一部分只是定性描述,一部分涉及到公式推導(dǎo)[13-15],但是把SiPM內(nèi)SPAD的輸出看作是二值的,和有些SiPM的真實(shí)情況有所出入。本文針對(duì)被動(dòng)淬滅的SiPM器件,采用仿真方式,詳細(xì)分析背景光影響下SiPM模擬輸出分布情況,并推導(dǎo)相應(yīng)的探測(cè)概率表達(dá)公式,最終搭建實(shí)驗(yàn)系統(tǒng)進(jìn)行驗(yàn)證。
環(huán)境中的目標(biāo)可視為朗伯反射體,假設(shè)探測(cè)目標(biāo)始終充滿(mǎn)視場(chǎng),經(jīng)目標(biāo)反射回來(lái)的激光信號(hào)被光電探測(cè)器接收,SiPM中單個(gè)SPAD對(duì)單脈沖激光產(chǎn)生的平均光電子數(shù)可以用激光雷達(dá)方程計(jì)算[6]:
激光雷達(dá)系統(tǒng)中的噪聲主要來(lái)自探測(cè)器視場(chǎng)內(nèi)的背景光噪聲和內(nèi)部的暗計(jì)數(shù),這兩部分是隨機(jī)獨(dú)立的,因此總的噪聲是二者的線(xiàn)性疊加。暗計(jì)數(shù)與探測(cè)器本身的性能有關(guān)[6],一般取值小于1 kHz。當(dāng)背景光較強(qiáng)時(shí),可以用背景光噪聲代替總噪聲。
背景光噪聲水平可由下式表述:
在大多數(shù)情況下,經(jīng)目標(biāo)反射到達(dá)探測(cè)器的光子數(shù)服從泊松分布[9],光電轉(zhuǎn)換產(chǎn)生的光電子數(shù)也服從泊松分布。因此當(dāng)?shù)竭_(dá)SPAD表面的平均光子數(shù)恒定時(shí),SPAD產(chǎn)生光電子數(shù)為的概率滿(mǎn)足:
其中為平均光電子數(shù)。
式(4)也被解釋為SPAD的被占據(jù)概率。
圖1 Matlab仿真流程圖
圖2為不同背景光電子數(shù)及死時(shí)間情況下仿真得到的SiPM模擬輸出分布情況,都近似為高斯分布。
這樣在不同dead,不同n的情況下,可以通過(guò)高斯分布擬合得到SiPM模擬輸出的均值,再除以SPAD單元總數(shù)就得到SiPM中平均每個(gè)SPAD單元模擬輸出幅度SPAD。我們用Matlab編寫(xiě)程序仿真分析了n在0.001個(gè)/ns~0.01個(gè)/ns,dead在5 ns~50 ns范圍內(nèi)的SPAD,并從部分?jǐn)M合數(shù)據(jù)中發(fā)現(xiàn)SPAD和n與dead的乘積有關(guān),如表1所示。
圖2 SPAD單元總數(shù)為1000時(shí),SiPM模擬輸出分布及高斯分布擬合。(a) Nn=0.001, tdead=20 ns; (b) Nn=0.001, tdead=40 ns; (c) Nn=0.005, tdead=20 ns; (d) Nn=0.005, tdead=40 ns
表1 不同背景光電子數(shù)及死時(shí)間下平均每個(gè)SPAD輸出幅度
n×dead表示死時(shí)間范圍內(nèi)累積的背景光電子數(shù),表1數(shù)據(jù)啟示我們?cè)跀M合不同背景光水平或死時(shí)間情況下SPAD單元模擬輸出表達(dá)式時(shí),可以將n×dead作為一個(gè)整體,從而降低擬合的復(fù)雜程度。同時(shí)考慮到單個(gè)SPAD吸收光電子被激發(fā)的概率服從泊松分布,假設(shè)表達(dá)式為泊松分布的近似形式,最終擬合表達(dá)式曲線(xiàn)與仿真數(shù)據(jù)點(diǎn)分布情況如圖3所示。
SPAD的擬合表達(dá)式為
擬合的效果非常理想,2=0.99985??紤]到SPAD是概率意義下的平均輸出幅度,式(5)適用cells較大的情況;當(dāng)SiPM中SPAD單元數(shù)很少時(shí),意味著重復(fù)試驗(yàn)次數(shù)很少,器件的輸出與SPAD有一定的偏差。SPAD和死時(shí)間以及單位時(shí)間內(nèi)光電子數(shù)有關(guān),在一定范圍內(nèi),死時(shí)間或背景光電子數(shù)越大,SPAD越大。
成功探測(cè)脈沖信號(hào)需要滿(mǎn)足這兩個(gè)條件:
1) 激光回波信號(hào)到達(dá)前背景光影響的探測(cè)器輸出沒(méi)有超過(guò)閾值;
2) 激光回波信號(hào)輸出超過(guò)閾值。
條件1)的概率和探測(cè)距離有關(guān),在選通時(shí)間內(nèi)噪聲信號(hào)超過(guò)閾值的概率為noise,背景噪聲是均勻分布的,因此距離處條件1)的概率:
條件2)的概率為
則成功探測(cè)目標(biāo)距離的概率可表述為
圖3 SiPM中SPAD平均輸出幅度與死時(shí)間內(nèi)光電子數(shù)關(guān)系及擬合曲線(xiàn)
圖4 激光雷達(dá)測(cè)距系統(tǒng)結(jié)構(gòu)圖
為驗(yàn)證上述背景光影響下的激光雷達(dá)測(cè)距相關(guān)理論,設(shè)計(jì)研制了基于SiPM的激光雷達(dá)測(cè)距系統(tǒng),實(shí)驗(yàn)系統(tǒng)原理結(jié)構(gòu)如圖4所示。
系統(tǒng)工作原理如下:激光器發(fā)射的激光脈沖信號(hào)先經(jīng)過(guò)透鏡1發(fā)散照射到目標(biāo)表面,目標(biāo)散射回來(lái)的激光信號(hào)經(jīng)過(guò)透鏡2匯聚后被SiPM探測(cè)器所接收。激光器發(fā)射的初始激光信號(hào)和探測(cè)器接收到的回波信號(hào)輸入到TDC測(cè)時(shí)模塊中,計(jì)算得到光子飛行時(shí)間??刂颇K可以調(diào)整SiPM的門(mén)控時(shí)間和閾值,從而調(diào)整SiPM的電平輸出。
在室外不同的陽(yáng)光條件下,SiPM的模擬輸出情況會(huì)有所不同,從而影響整個(gè)激光雷達(dá)系統(tǒng)的探測(cè)概率。圖5為在虛警概率10%,目標(biāo)反射率0.7的條件下,系統(tǒng)在不同背景光水平下的測(cè)距探測(cè)概率情況。由圖5可知,不同的陽(yáng)光水平對(duì)雷達(dá)系統(tǒng)測(cè)距的探測(cè)概率有很大影響,背景光越強(qiáng),同一距離下探測(cè)概率越低。
圖5 不同背景光下系統(tǒng)理論測(cè)距探測(cè)概率
在實(shí)際環(huán)境中,探測(cè)目標(biāo)表面反射率可能相差很大,目標(biāo)反射率會(huì)直接影響探測(cè)器接收到的背景噪聲和激光回波信號(hào)能量。圖6為系統(tǒng)在測(cè)距目標(biāo)表面反射率不同情況下的探測(cè)概率-距離分布情況,背景光為50 klux,虛警概率仍然為10%。由圖6可見(jiàn),當(dāng)反射率超過(guò)0.3以后,不同反射率條件下探測(cè)概率-距離曲線(xiàn)差別不大,這主要是因?yàn)樾盘?hào)和噪聲都受到目標(biāo)反射率影響,但信噪比基本不變。
圖6 不同目標(biāo)反射率下系統(tǒng)理論測(cè)距探測(cè)概率
為驗(yàn)證上述基于SiPM的激光雷達(dá)探測(cè)概率模型,在室外不同陽(yáng)光條件下進(jìn)行了激光雷達(dá)測(cè)距實(shí)驗(yàn)。測(cè)量目標(biāo)為遠(yuǎn)處白墻,反射率0.7,在選通時(shí)間為400 ns的條件下調(diào)節(jié)閾值設(shè)置相應(yīng)的的虛警概率。在不同距離處發(fā)射激光脈沖,使用TDC7200EVM測(cè)時(shí)模塊計(jì)算光子飛行時(shí)間,統(tǒng)計(jì)不同距離處探測(cè)概率情況。
圖7為背景光50 klux,虛警概率10%條件下,不同距離處系統(tǒng)理論探測(cè)概率與實(shí)驗(yàn)探測(cè)概率的對(duì)比,7(a)為激光功率1.5 W條件下的探測(cè)情況,7(b)為3 W條件下的探測(cè)情況。
圖8為激光功率1.5 W,虛警概率10%條件下,不同距離處系統(tǒng)理論探測(cè)概率與實(shí)驗(yàn)探測(cè)概率的對(duì)比,8(a)為背景光20 klux條件下的探測(cè)情況,8(b)為70 klux條件下的探測(cè)情況。
圖9為激光功率1.5 W,背景光70 klux條件下,不同距離處系統(tǒng)理論探測(cè)概率與實(shí)驗(yàn)探測(cè)概率的對(duì)比,9(a)為虛警概率1%條件下的探測(cè)情況,9(b)為5%條件下的探測(cè)情況。
圖7 不同激光功率條件下實(shí)驗(yàn)結(jié)果與理論分析對(duì)比。(a) 激光功率1.5 W;(b) 激光功率3 W
由圖7、圖8、圖9中理論分析曲線(xiàn)和實(shí)驗(yàn)數(shù)據(jù)散點(diǎn)可以看出,實(shí)驗(yàn)數(shù)據(jù)與理論分析曲線(xiàn)趨勢(shì)相一致,不同實(shí)驗(yàn)條件下大部分實(shí)驗(yàn)數(shù)據(jù)散點(diǎn)都非常接近理論分析曲線(xiàn)。由于激光光斑能量不均勻性在10%左右,個(gè)別散點(diǎn)略有偏差但在誤差范圍內(nèi)。實(shí)驗(yàn)結(jié)果與建立的背景光下基于SiPM的激光雷達(dá)測(cè)距模型和實(shí)驗(yàn)設(shè)計(jì)參數(shù)相吻合,有效驗(yàn)證了相關(guān)分析的可靠性。
圖8 不同背景光強(qiáng)度條件下實(shí)驗(yàn)結(jié)果與理論分析對(duì)比。(a)背景光20 klux;(b) 背景光70 klux
本文主要進(jìn)行了陽(yáng)光下基于SiPM的激光雷達(dá)探測(cè)概率性能分析,首先對(duì)背景光下SiPM的模擬輸出情況進(jìn)行了仿真,通過(guò)高斯分布擬合得到SiPM模擬輸出均值,然后在泊松分布的基礎(chǔ)上給出了背景光電子數(shù)在0.0001個(gè)/ns~0.001個(gè)/ns,探測(cè)器死時(shí)間在5 ns~50 ns范圍內(nèi)背景噪聲影響的SiPM模擬輸出的計(jì)算公式,2達(dá)到0.99985,能較準(zhǔn)確的反映SiPM輸出的真實(shí)特性,提高了SiPM輸出幅值估計(jì)的準(zhǔn)確度。接著推導(dǎo)了和環(huán)境參數(shù)及光學(xué)參數(shù)相關(guān)的探測(cè)概率公式,最后搭建了實(shí)驗(yàn)平臺(tái)進(jìn)行了距離-探測(cè)概率關(guān)系驗(yàn)證。結(jié)果表明在SiPM死時(shí)間為35 ns,不同背景光條件下,實(shí)驗(yàn)數(shù)據(jù)結(jié)果與系統(tǒng)理論測(cè)距結(jié)果都能很好的相吻合。
圖9 不同虛警概率條件下實(shí)驗(yàn)結(jié)果與理論分析對(duì)比。 (a) 虛警概率1%;(b) 虛警概率5%
[1] Zhang Z J, Zhao Y, Zhang Y,. A real-time noise filtering strategy for photon counting 3D imaging lidar[J]., 2013, 21(8): 9247–9254.
[2] Liu B, Yu Y, Jiang S. Review of advances in LiDAR detection and 3D imaging[J]., 2019, 46(7): 190167.
劉博, 于洋, 姜朔. 激光雷達(dá)探測(cè)及三維成像研究進(jìn)展[J]. 光電工程, 2019, 46(7): 190167.
[3] Chen X D, Zhang J C, Pang W S,. Key technology and application algorithm of intelligent driving vehicle LiDAR[J]., 2019, 46(7): 190182.
陳曉冬, 張佳琛, 龐偉凇, 等. 智能駕駛車(chē)載激光雷達(dá)關(guān)鍵技術(shù)與應(yīng)用算法[J]. 光電工程, 2019, 46(7): 190182.
[4] Chen J Y, Shi Y C. Research progress in solid-state LiDAR[J]., 2019, 46(7): 190218.
陳敬業(yè), 時(shí)堯成. 固態(tài)激光雷達(dá)研究進(jìn)展[J]. 光電工程, 2019, 46(7): 190218.
[5] Wang J J. Research on high precision laser range finder based on SiPM[D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Technical Physics of the Chinese Academy of Sciences), 2018.
汪佳佳. 基于SiPM的高精度激光測(cè)距技術(shù)研究[D]. 上海: 中國(guó)科學(xué)院大學(xué)(中國(guó)科學(xué)院上海技術(shù)物理研究所), 2018.
[6] Hou L B, Huang G H, Kuang Y W,. Research of photon counting laser ranging technology[J]., 2013, 13(18): 5186–5190.
侯利冰, 黃庚華, 況耀武, 等. 光子計(jì)數(shù)激光測(cè)距技術(shù)研究[J]. 科學(xué)技術(shù)與工程, 2013, 13(18): 5186–5190.
[7] Vinogradov S L. Evaluation of performance of silicon photomultipliers in lidar applications[J]., 2017, 10229: 102290L.
[8] Son K T, Lee C C. Multiple-target laser rangefinding receiver using a silicon photomultiplier array[J]., 2010, 59(11): 3005–3011.
[9] Zhang G Q, Liu L N, Zhu C J. Detection and false-alarm probabilities based on multi-pixel photon counter[J].2013, 42(7): 1819–1824.
張國(guó)青, 劉麗娜, 朱長(zhǎng)軍. 采用多像素光子計(jì)數(shù)器的探測(cè)率與虛警率[J]. 紅外與激光工程, 2013, 42(7): 1819–1824.
[10] Agishev R, Comerón A, Bach J,. Lidar with SiPM: some capabilities and limitations in real environment[J]., 2013, 49: 86–90.
[11] Mizuno T, Ikeda H, Nagano T,. Three-dimensional Image Sensor with MPPC for Flash LIDAR[J]., 2020, 63(2): 42–49.
[12] Liu H B, Li M, Shu R,. Estimation and verification of high-accuracy laser ranging on several photons[J]., 2019, 48(1): 0106001.
劉鴻彬, 李銘, 舒嶸, 等. 少光子靈敏度精密激光測(cè)距方法及驗(yàn)證[J]. 紅外與激光工程, 2019, 48(1): 0106001.
[13] Acerbi F, Gundacker S. Understanding and simulating SiPMs[J]., 2019, 926: 16–35.
[14] Grodzicka M, Moszyński M, Szcz??niak T,. Effective dead time of APD cells of SiPM[C]//. 2011: 553–562.
[15] Sima B Y, Chen Q, He W J. Analysis on the deadtime effect of an SPAD[J]., 2012, 38(5): 515–519.
司馬博羽, 陳錢(qián), 何偉基. 單光子雪崩二極管的死時(shí)間效應(yīng)分析[J]. 光學(xué)技術(shù), 2012, 38(5): 515–519.
Analysis of detection probability performance of SiPM LiDAR under sunlight
Chen Jianguang, Ni Xuxiang, Yuan Bo, Yan Huimin*
School of Optoelectronics Science and Engineering, Zhejiang University, Zhejiang, Hangzhou 310027, China
The experimental results are compared with theoretical analysis under different background light intensities. (a) Background light 20 klux; (b) Background light 70 klux
Overview:LiDAR ranging technology has the advantages of high accuracy, long range, low background interference, and the ability to obtain target distance information in a short time. In recent years, it has been more and more widely used in fields such as autonomous driving and depth imaging. Silicon photomultiplier (SiPM) is an array composed of hundreds or even thousands of single photon avalanche diode (SPADs). It has the advantages of high gain, easy integration into the array, and anti-interference, thus has a wide range of application prospects in LiDAR ranging. In many scenarios, LiDAR ranging will be interfered by background light. In the presence of background light, some SPAD units respond to background photons and remain "quenched" due to the dead time effect. However, other SPAD units are still in a "ready" state, so the detector can still respond to the laser echo signal. At present, part of the analysis of SiPM affected by ambient light is only a qualitative description, and some other part involves formula derivation, but the output amplitude of SPAD in SiPM is regarded as binary, which is different from the real situation of SiPM. For passively quenched SiPM devices, considering the actual situation that the simulation output amplitude of SPAD decays exponentially after excitation, the SiPM simulation output amplitude distribution affected by the background light under the dead time effect is simulated through programming firstly. Then the mean value of SiPM simulation output amplitude is calculated by Gaussian fitting. By analyzing the signal and noise models, the range of photoelectrons excited per nanosecond for each SPAD is estimated to be0.001/ns~ 0.01/ns. On the basis that the probability of excitation of the SPAD received photons obeys the Poisson distribution, the calculation formula of SiPM analog output amplitude affected by background light is given when the background photoelectron is 0.001/ns~0.01/ns and the detector dead time is 5 ns~ 50 ns. Finally, the expression of target detection probability at different distances under the influence of ambient light is deduced. In addition, a radar ranging system is built by using KETEK's PM1125-WB-B0 series SiPM. The threshold was adjusted to set the corresponding false alarm probability within 400 ns of the gating time, and the time when the photons arrived at the detector was recorded through the TI's TDC7200EVM timing module. The experimental results of laser ranging detection probability under outdoor ambient light show that the experimental detection probability results are in good agreement with the theoretical calculation values under various experimental conditions, when the laser power is 1.5 W or 3 W, several parameters of false alarm rate change from 1% to 10%, and several parameters of light intensity change from 10 klux to 70 klux.
Chen J G, Ni X X, Yuan B,Analysis of detection probability performance of SiPM LiDAR under sunlight[J]., 2021, 48(10): 210196; DOI:10.12086/oee.2021.210196
Analysis of detection probability performance of SiPM LiDAR under sunlight
Chen Jianguang, Ni Xuxiang, Yuan Bo, Yan Huimin*
School of Optoelectronics Science and Engineering, Zhejiang University, Zhejiang, Hangzhou 310027, China
Silicon photomultiplier (SiPM) is an array composed of hundreds or even thousands of single photon avalanche diode (SPAD). It has the advantages of high gain, easy integration into the array and anti-interference, and has a wide range of application prospects in LiDAR ranging. We analyzed the laser radar ranging signal and noise model, simulated the output of SiPM under sunlight,and obtained the corresponding mean value through Gaussian fitting. On the basis that the probability of being excited after SPAD
photons obeys the Poisson distribution, the calculation formula of SiPM analog output affected by background light when the background photoelectron is 0.001 /ns~0.01 /ns and the detector dead time is 5 ns~50 ns was given. Finally, we derived the expression of target detection probability. The experimental results of laser ranging detection probability under outdoor ambient light are consistent with theoretical calculations.
SiPM; background light; dead time; laser ranging; probability of detection
the 2016 National Key R&D Program Project "Hand and Whole Body Motion Capture Technology and Equipment Supporting Cloud Integration" (2016YFB1001302)
10.12086/oee.2021.210196
TN364.2
A
* E-mail: yhm@zju.edu.cn
陳建光,倪旭翔,袁波,等. SiPM激光雷達(dá)陽(yáng)光下探測(cè)概率性能分析[J]. 光電工程,2021,48(10): 210196
Chen J G, Ni X X, Yuan B, et al. Analysis of detection probability performance of SiPM LiDAR under sunlight[J]. Opto-Electron Eng, 2021, 48(10): 210196
2021-06-09;
2021-09-03基金項(xiàng)目:2016國(guó)家重點(diǎn)研發(fā)計(jì)劃課題“支持云端融合的手部和全身運(yùn)動(dòng)捕捉技術(shù)與設(shè)備”(2016YFB1001302)
陳建光(1996-),男,碩士研究生,主要從事基于SiPM的激光雷達(dá)測(cè)距的研究。E-mail:21830030@zju.edu.cn
嚴(yán)惠民(1961-),男,博士,教授,主要從事光電檢測(cè)及激光雷達(dá)技術(shù)的研究。E-mail:yhm@zju.edu.cn
版權(quán)所有?2021中國(guó)科學(xué)院光電技術(shù)研究所