• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A memristive map with coexisting chaos and hyperchaos?

    2021-11-23 07:25:44SixiaoKong孔思曉ChunbiaoLi李春彪ShaoboHe賀少波
    Chinese Physics B 2021年11期

    Sixiao Kong(孔思曉) Chunbiao Li(李春彪) Shaobo He(賀少波)

    Serdar C?ic?ek4, and Qiang Lai(賴強(qiáng))5

    1Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology(CICAEET),Nanjing University of Information Science&Technology,Nanjing 210044,China

    2School of Artificial Intelligence,Nanjing University of Information Science&Technology,Nanjing 210044,China

    3School of Physics and Electronics,Central South University,Changsha 410083,China

    4Department of Electronic&Automation,Vocational School of Hac?bektas?,Nevs?ehir Hac? Bektas?Veli University,Hac?bektas?50800,Nevs?ehir,Turkey

    5School of Electrical and Automation Engineering,East China Jiaotong University,Nanchang 330013,China

    Keywords: memristor,hyperchaos,coexisting attractors,amplitude control,neural network

    1. Introduction

    The memristor[1]as the fourth component is used to construct the connection between magnetic flux and electric charge in circuits. Because of this special nonlinear function, memristor has become a research hot spot in fields of chaotic oscillation and computing applications.[2-6]In a continuous nonlinear dynamic system,multistable attractors[7-14]can be extracted via flexible selection of the initial state,which brings great convenience to applications of chaotic engineering. Liet al.[15,16]introduced trigonometric functions for constructing self-reproducing chaotic systems. Based on the Sprott B system[17]or the four-dimensional autonomous system,[18]various types of coexisting attractors are studied.Multistability can be identified through offset-boosting,[19]since multiple coexisting attractors can be visited by changing the offset accordingly.[20,21]For those circuits and systems with memristors,[22-28]complex chaotic behavior with extreme multistability can also be found. Even in discrete systems, the memristor still gives its nonlinearity for producing chaos.[29]Inspired by the continuous memristor, and discrete memristor in the literature,[30-33]discrete memristor and trigonometric functions are introduced in a discrete map for more possible hidden features. As a result, in this work, it is found that the introduction of discrete memristor and trigonometric functions can give complex dynamics including multistability in a discrete map. More regimes of coexistence, especially coexisting chaotic and hyperchaotic attractors,under different Lyapunov exponents are expected by this exaggerated nonlinear introduction.

    On the other hand, chaotic sequences also have great potential in radar and communication systems as continuous chaotic signals. For each application, the scale of a discrete sequence should meet the requirement of the integrated application system. Therefore, it is also important to control the discrete sequence accordingly. To the best of our knowledge,the amplitude control and offset-boosting of discrete mapping have not received enough attention even though they have been well studied in continuous systems. There is no related report on geometric control in discrete maps so far. For this reason,research of the control of amplitude and offset in chaotic maps is carried out.

    Furthermore, in the rapidly developing field of artificial intelligence, the research in this field has been gradually extended to nonlinear science including prediction of the solution from continuous chaotic systems and discrete maps. For predicting chaotic signal, Alataset al.introduced chaotic particle swarm optimization algorithm[34]and whale optimization algorithm.[35]In addition, the genetic algorithm is also introduced in chaotic systems.[36]Artificial neural network,[37-39]multistep neural network,[40]deep neural network,[41]and complex neural network[42]methods are also used for prediction of complex structures of nonlinear systems. Cryptography[43]and random number generators[44]further reflect the application of artificial intelligence in chaotic system engineering. It is often necessary to extract or recover the chaotic signal or sequences in a chaos application. The traditional approach for signal reconstruction is based on chaos synchronization.[45-47]As a new alternative way, here the prediction of hyperchaotic and chaotic sequences based on external factor input autoregressive neural network algorithm is technically realized for chaotic sequence reconstruction.

    Aim to reveal the coexistence of heterogeneous attractors related to periodic trigonometric functions,a memristive map with multistability is designed in this paper, where the initial state of the memristor cannot be ignored for picking out the present solution. In Section 2, the discrete memristor model and the constructed hyperchaotic map are given, and the stability of fixed points is also analyzed.In Section 3,the bifurcation property and typical phase trajectories are demonstrated.In Section 4, the multistability of the system is analyzed. In Section 5, the offset and amplitude control are discussed to further reveal the dynamic behavior of the system. In Section 6,the hyperchaos and other coexisting solutions are well predicted based on the NARX neural network(NARX:nonlinear auto-regressive model with exogenous inputs). Conclusions and discussions are given in the last section.

    2. A 2-D memristive hyperchaotic map

    2.1. A discrete memristor model

    The preliminary idea of discretization of continuous memristors was proposed in Refs. [29,30]. According to the relationship of voltagev(t) and currenti(t), a magnetic flux?(t)based on the forward Euler difference method,theni(t),?(t) andv(t) are changed to beim,?m,vm, the memristor mathematical model is defined as follows:

    where?m+1represents the(m+1)iteration of magnetic flux.For the following application, we leta= 1,b= 0.1 andk=0.4. In order to further prove the essential characteristics of the memristor,a discrete sinusoidal voltagevm=Asin(ωm)is selected as the terminal input. WhenA=0.1,ω=0.01,?0=0 the hysteresis loop shows up, as shown in Fig. 1(a).The hysteresis loop changes like the issue in the continuous system when the amplitude or frequency of the input signal increases, as shown in Figs. 1(b) and 1(c). More strikingly,whenA=0.1,ω=0.01, and?0=?0.5,?0=0,?0=0.5,the hysteresis loops that depend on initial condition are shown in Fig. 1(d). The numerical simulation proves the essential characteristics of a memristor.[1]

    Fig.1. The hysteresis loop of the discrete memristor(1)with sinusoidal input vm=Asin(ωm): (a)A=0.1,ω =0.01,?0=0,(b)ω =0.01,?0=0,(c)A=0.1,?0=0,(d)A=0.1,ω =0.01.

    2.2. A memristive hyperchaotic map

    Introducing trigonometric functions into a nonlinear system can produce infinitely many coexisting attractors, while the memristor as a new nonlinear element can promote the complexity. Here, by introducing the discrete memristor and trigonometric function,and a new two-dimensional map is obtained as

    The memristorWis applied for restraining the internal variableyrather than?in Eq. (1), and now correspondingly the state variablexcan be regarded as the voltagev. Heremis a natural number(0,1,2,3...),xmandymrepresents them-th state value,ais a system parameter,anda=0.

    2.3. Fixed point analysis

    In the discrete map, the stability characteristics are usually characterized by fixed points. The fixed points (x?,y?)satisfy the equation

    Therefore,

    whereβis an arbitrary constant,and the Jacobian matrix corresponding to Eq.(4)is

    Substituting Eq.(4)into Eq.(5),we have

    The eigenvalueλ1= 1 always lies on the unit circle.Becausea= 0 andβis any nonzero real number,λ2< 1,which is always in the unit circle, implying that the fixed point is stable. For the casea=1, whenβis in the range of [?20,?5.619]∪[?3.441,0], the eigenvalueλ2≤1, the fixed point is within the unit circle; whenβis in the range of (?5.619,?3.441), the eigenvalueλ2>1, the fixed point is unstable. For the casea= 2, whenβis in the range of [?20,?17.69]∪[?16.65,?11.87]∪[?9.913,?5.926]∪[?3.253,0], the eigenvalueλ2≤1, the fixed point is in the unit circle; whenβis in the range of (?17.69,?16.65)∪(?11.87,?9.913)∪(?5.926,?3.253), the eigenvalueλ2>1, the fixed point is unstable. For the casea= 4,whenβis in the range of [?20,?18.3]∪[?16.04,?12.18]∪[?9.552,?6.088]∪[?3.189,0], the eigenvalueλ2< 1, and the fixed point is in the unit circle; whenβis in the range of(?18.3,?16.04)∪(?12.18,?9.552)∪(?6.088,?3.189),the eigenvalueλ2>1, the fixed point is unstable. In conclusion,the fixed points of the hyperchaotic map are critically stable or unstable, depending on the values ofaandβ, as shown in Fig.2.

    Fig.2. The second eigenvalue of the fixed point swings with the parameter a.

    3. Bifurcation analysis

    Let initial condition (x0,y0)=(1,?2), when the system parameterachanges in the range of[1,4.2],the bifurcation diagram and corresponding Lyapunov exponents are shown in Fig.3.

    Fig. 3. Dynamical behavior of hyperchaotic map (2) under the initial condition (x0,y0)=(1,?2) when a varies in the range of [1,4.2]: (a)bifurcation diagram,(b)Lyapunov exponents.

    When the parameteraincreases,a period-doubling bifurcation shows up. Chaos and hyperchaos become the dominant oscillation with occasionally periodic windows, some typical phase trajectories are shown in Fig. 4. Lyapunov exponents and Kaplan-Yorke dimension are calculated based on Wolf’s algorithm,as listed in Table 1. We can see that for the hyperchaotic attractors,all Lyapunov exponents are positive.

    Fig.4. Typical phase trajectories of map(2)under the initial condition(x0,y0)=(1,?2): (a) a=3.00, closed quasi-periodic, (b) a=3.36,chaos,(c)a=3.40,discrete periodic points,(d)a=3.60,hyperchaos.

    Table 1. Detailed analysis of typical phase trajectories of the map (2)under the initial condition(x0,y0)=(1,?2).

    4. Coexisting chaos and hyperchaos

    In the memristive map, there are many coexisting solutions for the existence of trigonometric function and memristor. To find those coexisting attractors, the bifurcation diagram depending on the variation of the initial state is explored.Meanwhile, the corresponding Lyapunov exponents are obtained. As shown in Fig. 5, when the initial state varies in a certain range,various coexisting solutions are observed. Besides coexisting chaos and hyperchaos, more strikingly, here in fact,various chaotic attractors and different hyperchaotic attractors coexist together,which has not been reported in other systems.

    Typical phase portraits and the coexistence are displayed in Fig. 6 under the different parametersa. To get attractors more clearly, green, red, cyan and magenta, are selected to represent different phase trajectories. Four cases are considered in the following.

    Case 1a=3.00. As shown in Fig. 6(a), there are four classes of attractors, which are hyperchaotic attractor, quasiperiodic curve, chaotic attractor, and discrete periodic points when the initial conditions are(1,?8),(1,?6),(1,0),(1,10).

    Case 2a=3.36. As shown in Fig. 6(b), coexisting hyperchaotic attractors and chaotic attractors are seen when the initial conditions are(1,?18),(1,?12),(1,?5),(1,2).

    Fig.5. Dynamical behavior of map(2)under the initial condition(x0,y0)=(1,y0): (a)a=3.00,(b)a=3.36,(c)a=3.40,(d)a=3.60.

    Case 3a=3.40. As shown in Fig.6(c),there are discrete periodic points,hyperchaotic attractors,and chaotic attractors when the initial conditions are(1,?4),(1,3),(1,10),(1,13).

    Case 4a=3.60. As shown in Fig. 6(d), there are only coexisting chaotic attractors and hyperchaotic attractors when the initial conditions are(1,?10),(1,?6),(1,3),(1,9).

    Fig.6. Various regimes of multistability in map(2): (a)a=3.00,(b)a=3.36,(c)a=3.40,(d)a=3.60.

    All the above regimes of multistability can be indicated by the offset boosting under a fixed initial condition.[48]Suppose that the offset boosting is applied to the dimension ofy,

    In this case, the fixed initial point will pass by the moving basins of attraction induced by the offset boosting, consequently,various coexisting attractors show up leading to a couple of jumps among different Lyapunov exponents, as shown in Fig.7. The frequently happened switches of Lyapunov exponents confirm the coexistence of multiple dynamics.

    Fig.7. Multistability in map(9)detected by the offset boosting under the initial condition(x0,y0)=(1,?2), when q varies in[?10,10]: (a)a=3.00,(b)a=3.36,(c)a=3.40,(d)a=3.60.

    5. Offset-boosting and amplitude control

    The discrete map can be controlled in the offset and amplitude. Taking a substitution ofgx+p,hy+q(heregandhare for amplitude control,pandqare for offset boosting,g=0,h=0)in Eq.(2),

    Unlike those continuous systems, to realize the offsetboosting in a discrete map it is necessary to introduce two offset boosters at both sides of the equation. In particular,when the amplitude control is realized in Eq.(10),the offset boosterspandqget coupled with the amplitude controller. As a special case, wheng=h=1, offset boosting can be realized via

    As shown in Fig.8,whena=4.2 andp=q=0 are satisfied, the bipolar signal of the chaotic signalxandycan be obtained as shown in the green attractor. Due to the attracting domain of the system itself,adjusting the corresponding initial conditions (x0,y0) can help to get the offset of the attractor.Figure 8 gives the offset-boosting attractors in the dimension ofxandy. Corresponding waveforms are shown on the right,indicating that the offset can be switched flexibly from negative to positive. When the attractor is offset boosted,the corresponding basin of attraction shifts accordingly in phase space,as shown in Fig.9. Similarly,it can be seen from Fig.10 that the bifurcation diagram and Lyapunov exponents also illustrate the existence of offset-boosting.

    Fig.8. The offset-boosted attractors in map(11)under the initial condition(x0,y0)=(1?p, ?2?q):(a)x-dimension(cyan for p=8,q=0;green for p=0,q=0;magenta for p=?8,q=0),(b)y-dimension(red for p=0,q=4;green for p=0,q=0;blue for p=0,q=?4).

    Fig.9.Shifted basin of attraction in hyperchaotic map(11)with a=4.2 in[?12, 12](cyan for p=8;green for p=0;magenta for p=?8).

    Ignoring the offset constantsp,qand the amplitude controllerhin Eq.(10),a single amplitude control can be obtained in the dimension ofx,

    As shown in Fig. 11, in thex-dimension, the constantgcontrols the amplitude of the hyperchaotic attractor. There is a certain relation between offset-boosting and amplitude control,which influences the depth in offset boosting.

    Fig. 10. Independent bifurcations in map (11) under different offset boosting when the initial condition (x0,y0) = (1 ?p,?2) (cyan for p=8;green for p=0;magenta for p=?8): (a)bifurcation diagram,(b)Lyapunov exponents.

    Fig.11. The hyperchaotic map(12)with a=4.2 under the initial conditions (x0,y0)=(1,?2) (yellow for g=1; magenta for g=1.5; red for g=2;blue for g=2.5;green for g=3): (a)rescaled hyperchaotic attractors,(b)signal waveforms.

    6. System prediction with NARX neural network

    The NARX neural network essentially belongs to the category of artificial neural networks. In the NARX neural network structure, to achieve the desired effect, the number of layers, the number of neurons in each layer, the learning algorithm, and the activation function can be selected. Layers are connected via activation functions. We give the mathematical expression of the input-output relationship of the NARX model,revealing the relationship between the current value of the time series and the current and past values of external input,as follows:

    NARX neural networks show high performance in predicting the map based on the input and output of a dynamic system. The network model structure[49]is shown in Fig.12.Layer 1 represents the hidden layer,layer 2 represents the output layer,u(t) represents the input, and ?yrepresents the output,f1andf2activation functions, IW is the input weight,LW is the output weight,b1is the bias of the first layer(input bias),b2is the bias of the second layer (output bias), andtis the time step. The input and output data will be multiplied by the corresponding weights through the delay line (TDLtapped delay line),and the offset is added,the excitation function is used to further establish the connection so that the previous value of the independent input signalu(t) and the next value of the dependent output signaly(t) can establish a regression time-series relationship,thereby building a complete cyclic dynamic network. The specific mathematical expression of the NARX network model is given as follows:

    Fig.12. The structure diagram of the NARX neural network.

    The NARX neural network model predicts the memristive map as shown in Fig.13.

    Fig.13. The NARX neural network model.

    Table 2. The performance of the network with various learning algorithms and hidden layer neurons.

    Fig. 14. Performance of the network: (a) means square error of test network,(b)error histograms.

    Fig.15. The correlation of target and output.

    Fig. 16. The memristive map (2) with a = 3.00 for closed quasiperiodic, a=3.36 for chaos, a=3.40 for discrete periodic points and a=3.60 for hyperchaos: (a) phase trajectory of target attractors, (b)NARX neural network output.

    The network model has two inputs (x,y) and two outputs (x?,y?). The data obtained by the map in the simulation results under the given system parameters and initial conditions, where the data set 36000 data are used for training(60% of the data set), 12000 data are used for validation(20% of the data set) and 12000 data are used for testing(20% of the data set). The training set is used for training to optimize the model iteratively, while the validation set further optimizes the model by adjusting hyperparameters. The test sets further monitor the model effect without participating in the training process. Training, testing, and verification data are performed randomly. Provide 20000 sets of data to the network for testing, the hidden layer uses hyperbolic tangent as the activation function, and the output layer uses a linear function as the activation function.The network training uses three different learning algorithms,namely Levenberg-Marquardt, Bayesian regularization, and quantized conjugate gradient.By selecting the number of neurons in the hidden layer with different numbers of neurons,the performance of the three different training algorithms is compared. Table 2 shows the performance(mean square error)of the network under different learning algorithms and different numbers of hidden layer neurons. It can be seen that using the Levenberg-Marquardt learning algorithm and 15 neurons in the hidden layer gives the best results. The performance(mean square error)and error histogram of the tested network are shown in Fig.14. As shown in Fig.15,the correlation between the output data and the target data is measured, whereR=1 indicates that the output and target are closely related.In the experimental simulation process,the obtained mean square error value is 2.1712×10?9. Therefore, the trained network can predict the map based on this mean square error value.

    Table 3. Performance of the predicting of typical attractors.

    Fig.17. The memristive map(2)under different initial states: (a)phase trajectories of the target attractor,(b)NARX neural network output.

    Table 4. Performance of the predicting of coexisting attractors.

    Fig.18. The memristive map(11)under the initial conditions(x0,y0)=(1?p, ?2?q): (a)phase trajectories of target attractors,(b)output of NARX neural network prediction.

    Table 5. Performance of the predicting of offset-boosting attractors.

    Fig.19. The memristive map(12)with a=4.2 under the initial condition(x0,y0)=(1,?2): (a)phase trajectories of the target attractor with amplitude controlled,(b)NARX neural network prediction.

    Table 6. Performance of the predicting of amplitude controlled attractors.

    The algorithm is selected with the best training effect and the number of corresponding hidden layer neurons to predict the attractor phase trajectory of the map. Figure 16 gives the prediction comparison of the typical attractors’ phase trajectories; the multistability predictions are shown in Fig.17,the corresponding offset-boosting and amplitude modulation attractors’phase trajectories are shown in Figs.18 and 19. Tables 3-6 correspond to the predicted performance. Here, to better distinguish the phase trajectories,the real attractors(as the target)are marked in green and the predicted ones by the neural network are marked in red. From Figs. 16-19, the attractors’ phase trajectories are basically consistent with the corresponding NARX neural network prediction outputs, so the designed NARX neural network can successfully predict the hyperchaotic map.

    7. Conclusion

    When a discrete memristor and two trigonometric functions are applied in a discrete map, a novel map with coexisting chaos and hyperchaos is proposed, which also exhibits various regimes of multistability including the coexistence of quasi-periodic, chaotic, periodic, and hyperchaotic attractors.Numerical analysis shows that the emergence of multistability greatly depends on the initial conditions of the memristor.Furthermore,offset-boosting and amplitude control are discussed in detail by a linear transformation aiming at accelerating the application of chaotic sequences in radar and communication systems. The prediction based on NARX neural network verifies the consistency of numerical simulation and theoretical analysis. The application of memristive maps combined with image encryption algorithms[50-53]is expected soon.

    精品一区二区三卡| 亚洲天堂av无毛| 国产无遮挡羞羞视频在线观看| 中文字幕最新亚洲高清| 免费高清在线观看视频在线观看| 丰满饥渴人妻一区二区三| 久久精品久久精品一区二区三区| 日韩大片免费观看网站| 精品熟女少妇av免费看| 欧美97在线视频| 久久99热6这里只有精品| 久久 成人 亚洲| 一本色道久久久久久精品综合| 午夜福利在线观看免费完整高清在| 国产精品不卡视频一区二区| 侵犯人妻中文字幕一二三四区| 亚洲情色 制服丝袜| 精品久久久久久电影网| 人体艺术视频欧美日本| 青春草视频在线免费观看| 国产精品久久久久久久久免| 国产1区2区3区精品| 一级片'在线观看视频| 免费人妻精品一区二区三区视频| 久热这里只有精品99| 久热久热在线精品观看| 久久久久人妻精品一区果冻| 免费播放大片免费观看视频在线观看| 精品人妻偷拍中文字幕| 亚洲国产日韩一区二区| 在线观看国产h片| 久久久久久久久久成人| 丝袜美足系列| av网站免费在线观看视频| 又黄又粗又硬又大视频| 欧美精品一区二区免费开放| 国产成人精品一,二区| 伦理电影免费视频| 人成视频在线观看免费观看| 热99国产精品久久久久久7| 婷婷色综合大香蕉| 亚洲国产精品999| 2021少妇久久久久久久久久久| 91午夜精品亚洲一区二区三区| 国产69精品久久久久777片| 久久精品久久久久久噜噜老黄| 国产一区二区三区综合在线观看 | 国产精品久久久久久久电影| 少妇的逼水好多| 老熟女久久久| 91在线精品国自产拍蜜月| 国产黄频视频在线观看| 国产成人精品无人区| 高清视频免费观看一区二区| 久久精品久久久久久久性| 在线观看免费高清a一片| 在线精品无人区一区二区三| 性色avwww在线观看| 久久久久久久精品精品| 久久精品国产自在天天线| 亚洲欧美一区二区三区黑人 | 久热久热在线精品观看| 在线 av 中文字幕| 久久久久久久精品精品| 各种免费的搞黄视频| 国产成人精品在线电影| 黄网站色视频无遮挡免费观看| 好男人视频免费观看在线| 日韩精品有码人妻一区| 高清黄色对白视频在线免费看| 久久久久久久久久成人| 18禁观看日本| 人妻少妇偷人精品九色| av在线播放精品| 中国三级夫妇交换| 亚洲av欧美aⅴ国产| 欧美人与善性xxx| 日韩视频在线欧美| 亚洲av免费高清在线观看| 成人影院久久| av有码第一页| 99视频精品全部免费 在线| 久久久久久久久久久久大奶| 国产成人精品久久久久久| 国产av精品麻豆| 久久久久久久久久久免费av| 免费在线观看完整版高清| 色5月婷婷丁香| 亚洲国产成人一精品久久久| 久久精品国产综合久久久 | 久久毛片免费看一区二区三区| 久久精品人人爽人人爽视色| av播播在线观看一区| 成人国语在线视频| 国产麻豆69| 99国产综合亚洲精品| videosex国产| 久久久国产精品麻豆| 免费大片黄手机在线观看| 国产一区二区激情短视频 | 人成视频在线观看免费观看| 久久人人97超碰香蕉20202| 两个人看的免费小视频| videosex国产| 国产免费又黄又爽又色| 久久精品久久精品一区二区三区| 成人国语在线视频| 日韩中字成人| 国产激情久久老熟女| 午夜激情久久久久久久| 伦理电影免费视频| 成人无遮挡网站| av不卡在线播放| 欧美成人午夜精品| 精品亚洲乱码少妇综合久久| 亚洲精品美女久久av网站| 只有这里有精品99| 国产国语露脸激情在线看| 极品人妻少妇av视频| 久久这里只有精品19| 91国产中文字幕| 大香蕉久久成人网| 欧美精品一区二区免费开放| 亚洲一区二区三区欧美精品| 久久免费观看电影| 成人毛片a级毛片在线播放| 久久人妻熟女aⅴ| 最近中文字幕2019免费版| 宅男免费午夜| 80岁老熟妇乱子伦牲交| 又黄又爽又刺激的免费视频.| 亚洲少妇的诱惑av| 日韩制服丝袜自拍偷拍| 亚洲国产成人一精品久久久| 国产成人欧美| 亚洲成人一二三区av| 成人二区视频| 久热久热在线精品观看| 欧美成人精品欧美一级黄| 中国三级夫妇交换| 日韩不卡一区二区三区视频在线| 久久99蜜桃精品久久| 男女啪啪激烈高潮av片| 伊人亚洲综合成人网| 交换朋友夫妻互换小说| 日本-黄色视频高清免费观看| 制服丝袜香蕉在线| 天堂中文最新版在线下载| 在线天堂最新版资源| 成人亚洲欧美一区二区av| 欧美日韩综合久久久久久| 大陆偷拍与自拍| 99精国产麻豆久久婷婷| 国产熟女欧美一区二区| 国产有黄有色有爽视频| 九九在线视频观看精品| 欧美日韩综合久久久久久| 国产高清不卡午夜福利| 亚洲人成77777在线视频| 亚洲第一区二区三区不卡| 免费女性裸体啪啪无遮挡网站| 肉色欧美久久久久久久蜜桃| 你懂的网址亚洲精品在线观看| 永久网站在线| 免费观看在线日韩| 亚洲国产精品一区二区三区在线| 视频在线观看一区二区三区| 国产永久视频网站| 国产精品 国内视频| 免费观看a级毛片全部| 五月伊人婷婷丁香| 久久这里只有精品19| 又粗又硬又长又爽又黄的视频| 亚洲欧洲精品一区二区精品久久久 | 在线观看人妻少妇| 丝袜喷水一区| 人妻 亚洲 视频| 亚洲精品一二三| 99国产精品免费福利视频| 97超碰精品成人国产| 18+在线观看网站| 成年人免费黄色播放视频| 永久免费av网站大全| 精品人妻偷拍中文字幕| 看非洲黑人一级黄片| 国产精品免费大片| 精品少妇久久久久久888优播| 亚洲婷婷狠狠爱综合网| 97人妻天天添夜夜摸| 免费黄网站久久成人精品| 精品国产一区二区三区四区第35| 亚洲精品成人av观看孕妇| 秋霞在线观看毛片| 最近手机中文字幕大全| av女优亚洲男人天堂| 精品福利永久在线观看| 国产av一区二区精品久久| 亚洲第一区二区三区不卡| 亚洲av中文av极速乱| 亚洲伊人久久精品综合| 777米奇影视久久| 少妇猛男粗大的猛烈进出视频| 一边摸一边做爽爽视频免费| 人妻 亚洲 视频| 少妇高潮的动态图| 欧美激情极品国产一区二区三区 | 国产成人精品婷婷| 人人澡人人妻人| 美女福利国产在线| 在现免费观看毛片| 三级国产精品片| 中文字幕免费在线视频6| av黄色大香蕉| 精品国产一区二区三区四区第35| 亚洲欧美成人精品一区二区| 一级爰片在线观看| 国产免费现黄频在线看| 欧美精品一区二区大全| 在线观看免费日韩欧美大片| 亚洲欧美成人综合另类久久久| 午夜激情久久久久久久| 观看美女的网站| 9191精品国产免费久久| 精品一区二区三区视频在线| 天堂俺去俺来也www色官网| 18禁动态无遮挡网站| 久久久久久久亚洲中文字幕| 18禁国产床啪视频网站| 伦理电影大哥的女人| 亚洲欧美一区二区三区黑人 | 成年美女黄网站色视频大全免费| 日本午夜av视频| 欧美精品国产亚洲| 校园人妻丝袜中文字幕| 一本大道久久a久久精品| 日韩一区二区三区影片| 黑人巨大精品欧美一区二区蜜桃 | av免费观看日本| 色吧在线观看| 王馨瑶露胸无遮挡在线观看| 国产 精品1| 在线观看一区二区三区激情| 亚洲中文av在线| 1024视频免费在线观看| 少妇人妻久久综合中文| 国产片内射在线| 久久韩国三级中文字幕| 国产成人aa在线观看| 丝袜在线中文字幕| 国产精品麻豆人妻色哟哟久久| av视频免费观看在线观看| 免费高清在线观看日韩| 日韩中字成人| 久久人人爽av亚洲精品天堂| 亚洲高清免费不卡视频| 51国产日韩欧美| 老熟女久久久| 国产精品人妻久久久久久| 成年美女黄网站色视频大全免费| 日本午夜av视频| 亚洲精品国产色婷婷电影| 美女内射精品一级片tv| 中文字幕免费在线视频6| 亚洲精华国产精华液的使用体验| 国产av精品麻豆| 国产欧美日韩综合在线一区二区| 亚洲婷婷狠狠爱综合网| 亚洲国产毛片av蜜桃av| 欧美xxⅹ黑人| 777米奇影视久久| 国产精品久久久久久精品电影小说| 亚洲久久久国产精品| 又大又黄又爽视频免费| 国语对白做爰xxxⅹ性视频网站| 国产又爽黄色视频| 22中文网久久字幕| 成人影院久久| 女的被弄到高潮叫床怎么办| 国产在线免费精品| 男人操女人黄网站| 欧美国产精品一级二级三级| 又黄又粗又硬又大视频| 欧美97在线视频| 免费观看av网站的网址| 亚洲伊人久久精品综合| 高清不卡的av网站| 丝袜在线中文字幕| 国产又色又爽无遮挡免| 精品人妻偷拍中文字幕| 日本猛色少妇xxxxx猛交久久| 最后的刺客免费高清国语| 伊人久久国产一区二区| 免费观看在线日韩| 精品久久蜜臀av无| 国产精品久久久久成人av| 久久久久久久亚洲中文字幕| 一级毛片黄色毛片免费观看视频| 日本vs欧美在线观看视频| 麻豆乱淫一区二区| 看十八女毛片水多多多| 搡女人真爽免费视频火全软件| 亚洲综合精品二区| 国产又色又爽无遮挡免| 看非洲黑人一级黄片| 99久久综合免费| 自线自在国产av| 国产一区二区三区综合在线观看 | 精品少妇内射三级| 91成人精品电影| 黄片无遮挡物在线观看| 嫩草影院入口| 国产精品麻豆人妻色哟哟久久| 中文字幕精品免费在线观看视频 | a级毛片在线看网站| 又粗又硬又长又爽又黄的视频| 春色校园在线视频观看| 97在线人人人人妻| 少妇高潮的动态图| av福利片在线| 亚洲高清免费不卡视频| 51国产日韩欧美| 国产伦理片在线播放av一区| 亚洲熟女精品中文字幕| 亚洲av成人精品一二三区| 亚洲av电影在线观看一区二区三区| 欧美成人午夜精品| 国产精品麻豆人妻色哟哟久久| 欧美日韩综合久久久久久| 成人国产麻豆网| 高清不卡的av网站| 中文字幕免费在线视频6| 黄色一级大片看看| 国产精品成人在线| 黑人欧美特级aaaaaa片| 亚洲人与动物交配视频| 两个人免费观看高清视频| 中文天堂在线官网| 一边亲一边摸免费视频| 人妻系列 视频| 国产成人精品福利久久| 成人国产av品久久久| 国产 一区精品| 青春草亚洲视频在线观看| 久久久久网色| 日韩欧美一区视频在线观看| 亚洲精品aⅴ在线观看| 免费久久久久久久精品成人欧美视频 | 丰满乱子伦码专区| 国产无遮挡羞羞视频在线观看| 秋霞伦理黄片| 国产免费一级a男人的天堂| 国产激情久久老熟女| 天堂俺去俺来也www色官网| 亚洲精品美女久久久久99蜜臀 | 99热国产这里只有精品6| 在线 av 中文字幕| 久久精品熟女亚洲av麻豆精品| 最近最新中文字幕大全免费视频 | 午夜激情久久久久久久| 人妻少妇偷人精品九色| 亚洲欧美成人精品一区二区| 久久99蜜桃精品久久| 一区二区三区四区激情视频| 欧美日韩亚洲高清精品| 国产高清不卡午夜福利| 日韩三级伦理在线观看| av女优亚洲男人天堂| 宅男免费午夜| 色婷婷av一区二区三区视频| 久久精品久久久久久久性| 交换朋友夫妻互换小说| 久久精品国产综合久久久 | 高清av免费在线| 亚洲美女搞黄在线观看| 男女边摸边吃奶| 国国产精品蜜臀av免费| 精品一区二区三区视频在线| 国产又爽黄色视频| 日韩人妻精品一区2区三区| 国产精品女同一区二区软件| 男人舔女人的私密视频| 亚洲精品aⅴ在线观看| 国产精品三级大全| 久久久久国产精品人妻一区二区| 成人午夜精彩视频在线观看| 婷婷色麻豆天堂久久| 两个人看的免费小视频| 久久精品久久久久久久性| 高清视频免费观看一区二区| 国产精品偷伦视频观看了| 久久久久久久精品精品| 晚上一个人看的免费电影| 深夜精品福利| 大香蕉久久成人网| 成年人午夜在线观看视频| 国产成人午夜福利电影在线观看| 蜜臀久久99精品久久宅男| 成人影院久久| 久热久热在线精品观看| 看免费成人av毛片| 搡女人真爽免费视频火全软件| 成人无遮挡网站| 亚洲伊人色综图| 国产免费一级a男人的天堂| 国产男女内射视频| 欧美3d第一页| 国产在线免费精品| 菩萨蛮人人尽说江南好唐韦庄| 人妻人人澡人人爽人人| 国产色婷婷99| 视频在线观看一区二区三区| 国产日韩一区二区三区精品不卡| 国产精品久久久久久精品古装| 黄色一级大片看看| 国产精品秋霞免费鲁丝片| 一本久久精品| 国产日韩欧美在线精品| 亚洲精品视频女| 欧美日韩视频高清一区二区三区二| 丝袜在线中文字幕| 亚洲av电影在线进入| 各种免费的搞黄视频| 黄色视频在线播放观看不卡| 亚洲欧美成人精品一区二区| 人人妻人人澡人人看| 一本久久精品| 人妻 亚洲 视频| 亚洲美女黄色视频免费看| 卡戴珊不雅视频在线播放| 国产高清三级在线| 久久99精品国语久久久| 免费观看无遮挡的男女| 伊人久久国产一区二区| 国产福利在线免费观看视频| av一本久久久久| 国产精品蜜桃在线观看| 国产熟女欧美一区二区| 国产激情久久老熟女| 少妇人妻精品综合一区二区| 国产一区二区三区综合在线观看 | 亚洲国产色片| 尾随美女入室| 视频区图区小说| 五月天丁香电影| 熟女av电影| 七月丁香在线播放| 午夜精品国产一区二区电影| 免费高清在线观看视频在线观看| www日本在线高清视频| 人人妻人人爽人人添夜夜欢视频| 亚洲av福利一区| 欧美丝袜亚洲另类| 欧美最新免费一区二区三区| 国产男女内射视频| 另类精品久久| 最近中文字幕2019免费版| av不卡在线播放| 国产xxxxx性猛交| 街头女战士在线观看网站| 99久久综合免费| 久久精品aⅴ一区二区三区四区 | 成人午夜精彩视频在线观看| av福利片在线| 五月天丁香电影| 精品人妻熟女毛片av久久网站| 亚洲一级一片aⅴ在线观看| 一二三四在线观看免费中文在 | 精品福利永久在线观看| 免费观看性生交大片5| 亚洲第一av免费看| 久久99蜜桃精品久久| 下体分泌物呈黄色| 免费观看av网站的网址| 亚洲欧美清纯卡通| 熟女电影av网| 一区二区三区乱码不卡18| 日本黄色日本黄色录像| 亚洲精品乱久久久久久| 另类精品久久| 日本-黄色视频高清免费观看| 黄片播放在线免费| 久久久国产欧美日韩av| 一区在线观看完整版| 亚洲精品日本国产第一区| 国产一区二区三区综合在线观看 | 国产爽快片一区二区三区| 边亲边吃奶的免费视频| 亚洲,一卡二卡三卡| 日韩电影二区| 久久久久精品久久久久真实原创| 在现免费观看毛片| 久久久久国产网址| √禁漫天堂资源中文www| 亚洲美女搞黄在线观看| 亚洲一区二区三区欧美精品| 亚洲成人手机| 亚洲精品一二三| 日韩大片免费观看网站| 亚洲精品456在线播放app| 满18在线观看网站| 久久国产亚洲av麻豆专区| 国产不卡av网站在线观看| 亚洲国产精品专区欧美| 国产精品一二三区在线看| 免费观看在线日韩| 久久国产亚洲av麻豆专区| 18禁国产床啪视频网站| 又粗又硬又长又爽又黄的视频| 日日啪夜夜爽| 最新中文字幕久久久久| 国产精品国产三级国产专区5o| 亚洲av日韩在线播放| 在线观看免费高清a一片| 久久久久久久久久成人| 成人影院久久| 免费少妇av软件| 亚洲欧美成人综合另类久久久| 日韩一区二区三区影片| 免费观看在线日韩| 少妇猛男粗大的猛烈进出视频| 亚洲欧美成人精品一区二区| 中文精品一卡2卡3卡4更新| 韩国精品一区二区三区 | 婷婷色综合www| 亚洲经典国产精华液单| 在线观看美女被高潮喷水网站| 亚洲国产看品久久| 美女国产视频在线观看| 久热久热在线精品观看| a级毛片在线看网站| 欧美 亚洲 国产 日韩一| 日韩熟女老妇一区二区性免费视频| 亚洲精品国产色婷婷电影| 亚洲欧美色中文字幕在线| 亚洲欧美成人综合另类久久久| 亚洲人与动物交配视频| 亚洲第一区二区三区不卡| 精品少妇内射三级| 亚洲经典国产精华液单| 国产综合精华液| 欧美变态另类bdsm刘玥| 亚洲欧洲精品一区二区精品久久久 | 中国美白少妇内射xxxbb| www.熟女人妻精品国产 | 一本色道久久久久久精品综合| 国产深夜福利视频在线观看| 欧美日韩精品成人综合77777| 一边摸一边做爽爽视频免费| 国产精品 国内视频| 人妻少妇偷人精品九色| 成人毛片60女人毛片免费| 日韩免费高清中文字幕av| 色网站视频免费| 精品国产国语对白av| 久久女婷五月综合色啪小说| 国精品久久久久久国模美| 久久鲁丝午夜福利片| 日本爱情动作片www.在线观看| 99re6热这里在线精品视频| 在线观看美女被高潮喷水网站| 亚洲精华国产精华液的使用体验| 国产精品三级大全| 亚洲三级黄色毛片| 欧美精品国产亚洲| 日韩视频在线欧美| 中文精品一卡2卡3卡4更新| 国产亚洲精品第一综合不卡 | 婷婷色av中文字幕| 波多野结衣一区麻豆| 亚洲精品中文字幕在线视频| av免费观看日本| 国产精品蜜桃在线观看| 观看av在线不卡| 成人二区视频| 日本色播在线视频| 国产成人欧美| 哪个播放器可以免费观看大片| 亚洲精品456在线播放app| 日韩伦理黄色片| 精品人妻一区二区三区麻豆| 亚洲精品色激情综合| 日韩电影二区| 黄片播放在线免费| 久久精品久久久久久噜噜老黄| 搡女人真爽免费视频火全软件| 另类精品久久| 国产精品一国产av| 热re99久久精品国产66热6| 国产精品一国产av| 内地一区二区视频在线| 亚洲国产av新网站| 亚洲精品一区蜜桃| 色吧在线观看| 天天影视国产精品| 一级a做视频免费观看| 亚洲精华国产精华液的使用体验| 丰满迷人的少妇在线观看| 高清视频免费观看一区二区| 人人澡人人妻人| 十八禁网站网址无遮挡| 国产精品久久久久久av不卡| 99精国产麻豆久久婷婷| 婷婷色综合www| 国产成人精品无人区| 丝袜脚勾引网站| 亚洲精品自拍成人| 日韩一区二区三区影片| 精品国产乱码久久久久久小说| 亚洲精品一区蜜桃| 一本色道久久久久久精品综合| 日韩视频在线欧美| 黑人猛操日本美女一级片| 18禁国产床啪视频网站| 免费观看性生交大片5| 免费av不卡在线播放|