• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Large deformation analysis in geohazards and geotechnics

    2021-11-21 09:18:06ZhenyuYINGuestEditorinChiefYinfuJINXueZHANGGuestEditors

    Zhen-yu YIN, Guest Editor-in-Chief Yin-fu JIN, Xue ZHANG, Guest Editors

    Large deformation analysis in geohazards and geotechnics

    Zhen-yu YIN1, Guest Editor-in-Chief Yin-fu JIN1, Xue ZHANG2, Guest Editors

    Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China Department of Civil Engineering and Industrial Design, University of Liverpool, Liverpool, L69 7ZX, UK E-mail: zhenyu.yin@polyu.edu.hk; yinfu.jin9019@gmail.com; xue.zhang2@liverpool.ac.uk

    For geohazards and geotechnics, numerous problems involve large deformation, such as the installation of foundations (Jin YFet al., 2018a), landslides (Jin YFet al., 2020b), debris ?ow (Daiet al., 2017), collapse of underground structures (Zhanget al., 2019), and the formation of sinkholes (Barandiarán Villegas, 2018). Bene?tting from the sustained development of computing power, numerical simulations have become useful analytical methods in geomechanics and related ?elds.

    Among those numerical methods, the finite element method (FEM) features prominently in engineering practice (Rao, 2017). For conventional FEM, however, excessive deformation may result in mesh distortion with numerical inaccuracy, even to the point of making calculation impossible. To solve this issue and enable application to large deformation analysis, different numerical approaches have been successfully developed. These approaches can be generally classified into three categories: discontinuous, continuous, and coupled continuous– discontinuous (Zhang, 2014). One of the most popular discontinuous approaches is discrete element method (DEM) (Cundall and Strack, 1979; Calvetti, 2008). Practical applications of this kind of method are limited by their high computational cost, although their robustness and potential have been demonstrated in academic exercises. Continuous approaches can be sub-divided into three groups: (1) mesh-based methods, such as the arbitrary Lagrangian–Eulerian (ALE) (Belytschkoet al., 2013) and the remeshing and interpolation technique with small strain (RITSS) (Hu and Randolph, 1998); (2) mesh-free particle methods, such as the smoothed particle hydrodynamics (SPH) method (Lucy, 1977), element-free Galerkin (EFG) method (Belytschkoet al., 1994), and reproducing kernel particle method (RKPM) (Chenet al., 1996); (3) mesh-based particle methods, such as the material point method (MPM) (Harlow, 1964) and particle finite element method (PFEM) (O?ateet al., 2004; Zhanget al., 2013) and its variants-strain smoothed PFEM (Zhang et al., 2018; Yuan et al., 2019; Jin YF et al., 2020a, 2020b, 2021a, 2021b; Guo and Yang, 2021; Meng et al., 2021). The coupled Eulerian–Lagrangian (CEL) is another mesh-based method (Qiuet al., 2011; Hamannet al., 2015), similar to MPM, and requires a background mesh. The third category of methods used for large deformation analysis, the coupled continuous–discontinuous approach, includes finite difference method (FDM)-DEM (Yinet al., 2020), PFEM-DEM (Guoet al., 2021), and MPM-DEM (Liang and Zhao, 2019). Significant developments have been made in this field, which has attracted more attention in recent years due to consideration of the physics of geomaterials.

    This special issue contains original research articles on the application of numerical methods to large deformation analysis of geohazards and geotechnics. Focal points of the issue include innovative uses of: (1) mesh-based methods, (2) mesh-free particle methods, (3) mesh-based particle methods, (4) discontinuous numerical methods, and finally (5) practical applications of the above techniques, e.g. case studies and benchmarking exercises.

    We invited prestigious scientists in the field to share their expertise and perspectives. The collected articles cover the various topics mentioned, and are briefly introduced as follows.

    Shan et al. (2021) implemented a damping layer and dashpot absorbing boundary conditions (ABCs) into the MPM with slight adjustments. The feasibility of the ABCs was assessed through benchmark problems of 1D compression, submarine landslides impacting mudmat, and dynamic penetration of a pipeline. Velocity fluctuations induced by elastic wave propagation and the impact force fluctuations on structures were investigated at specific observation points. Based on accurate derivations of wave equations, the dashpot ABC was found to be more feasible than the damping layer ABC for free surfaces with a complex kinematic field. The impact forces predicted by the MPM with ABCs were verified by comparison with those estimated using a computational fluid dynamics approach.

    Jin Z et al. (2021) proposed a novel numerical approach to study soil collapse involving large deformation. The approach combined a recently developed critical state-based sand model SIMSAND for describing complex sand mechanical behaviors (Jin YF et al., 2016, 2018a, 2018b, 2019), and the SPH method for dealing with large deformation. To demonstrate the high efficiency and accuracy of the proposed approach, a series of column collapses using DEM and considering the influence of particle shapes (i.e. spherical shape (SS), tetrahedral shape (TS), and elongated shape (ES)) were adopted as benchmarks and simulated by the proposed method. Compared with the results of DEM simulations and reference solutions derived by published collapse experiments, the runout distance and final height of specimens with different particle shapes simulated by SPH-SIMSAND were well characterized and incurred a lower computational cost. Comparisons showed that the novel SPH-SIMSAND approach is highly efficient and accurate for simulating collapse, and can be a useful numerical analytical tool for real scale engineering problems.

    Zheng et al. (2021) adopted the CEL modelling technique to investigate the influence of a failed tunnel (FT) on an adjacent tunnel, termed an “influenced tunnel” (IT). The safety of the IT was analyzed in detail under different circumstances, such as different failure positions of the FT, different failure degrees of the FT, and different spatial relationships between the two tunnels. The simulation results indicated that the most adverse case may occur when the two tunnels are arranged as offsets, and when the IT is the upper tunnel. Under these circumstances, significant shear deformation may occur in the IT because it is located at the shear band of the FT.

    Qu et al. (2021) investigated the effects of the cross-correlation between cohesion and the friction angle on the probability of slope failure and post- failure behavior (e.g. run-out distance, influence distance, and influence zone) using a random MPM. The study showed that the mesh size, strength reduction shape factor parameter, and residual strength all play critical roles in the calculated post-failure behavior of a slope. A stochastic Monte Carlo simulation was used to study the effects of cross-correlation between cohesion and the friction angle on the probability of slope failure, and its run-out distance, influence distance, influence zone, and sliding volume. The study showed that the MPM has great advantages compared with the FEM in handling large deformations.

    Yuan et al. (2021) presented a quasi-static implicit generalized interpolation material point method (iGIMP) with B-bar approach for large deformation geotechnical problems. The iGIMP algorithm is an extension of the implicit material point method (iMPM). A global stiffness matrix was formed explicitly and the Newton-Raphson iterative method was used to solve the equilibrium equations. The generalized interpolation function was assigned to eliminate the inherent cell crossing noise within conventional MPM. For the first time, the B-bar approach was used to overcome volumetric locking in the standard GIMP method for near-incompressible non-linear geomechanics. The proposed iGIMP was tested and compared with iMPM and analytical solutions via a 1D column compression problem. Results highlighted the superiority of the iGIMP approach in reducing stress oscillations, thereby improving computational accuracy. Then, elasto-plastic slope stabilities and rigid footing problems were considered, to further illustrate the ability of the proposed method to overcome volumetric locking due to incompressibility. Results showed that the proposed iGIMP with B-bar approach can be used to simulate geotechnical problems with large deformations.

    Zhang et al. (2021) explored the failure mode of the interface layer under uniform corrosion, and the influence of different factors on the corrosion expansion cracking and shedding mode of a concrete cover. This was achieved by establishing a three-phase meso-scale model of concrete based on secondary development of ABAQUS, simulating the mechanical behavior of the interface transition zone (ITZ) using a cohesive element, and establishing a rust expansion cracking model for single and multiple rebars. The results showed that: (1) Under uniform rust expansion, concrete cracks are distributed in a cross pattern with a slightly shorter lower limb. (2) When the corrosion rate is low, the ITZ is not damaged; with an increase in the corrosion rate, the proportion of elements with tensile damage in the ITZ first increases and then decreases. (3) In the case of a single rebar, the larger the cover thickness, the higher the corrosion rate corresponding to ITZ failure, and the arrangement of the rebar has little influence on the ITZ failure mode. (4) In the case of multiple rebars, the concrete cover cracks when the rebar spacing is small, and wedge-shaped spalling occurs when the spacing is large.

    We believe that this special issue provided a valuable platform for researchers and engineers to present and discuss recent developments in large deformation analysis in geotechnical engineering. The interdisciplinary connections between advanced numerical methods and geotechnics were well highlighted and expressed by the selected publications. We sincerely hope the new and advanced methods shared in this special issue will improve the understanding of approaches and strategies related to large deformation analysis, and promote the application of new methods in the field of geotechnical engineering. We expect the selected articles will promote discussion among scientific researchers, and inspire and inform readers of this journal.

    Contributors

    Zhen-yu YIN conceived and edited the draft of manuscript. Yin-fu JIN conducted the literature review and wrote the first draft of the manuscript. Xue ZHANG edited the draft of manuscript.

    Conflict of interest

    Zhen-yu YIN, Yin-fu JIN, and Xue ZHANG declare that they have no conflict of interest.

    Belytschko T, Lu YY, Gu L, 1994. Element-free Galerkin methods., 37(2):229-256. https://doi.org/10.1002/nme.1620370205

    Belytschko T, Liu WK, Moran B, et al., 2013. Nonlinear Finite Elements for Continua and Structures. John Wiley & Sons, Hoboken, USA.

    Calvetti F, 2008. Discrete modelling of granular materials and geotechnical problems., 12(7-8):951-965. https://doi.org/10.1080/19648189.2008.9693055

    Chen JS, Pan CH, Wu CT, et al., 1996. Reproducing kernel particle methods for large deformation analysis of non-linear structures., 139(1-4):195-227. https://doi.org/10.1016/S0045-7825(96)01083-3

    Cundall PA, Strack OD, 1979. A discrete numerical model for granular assemblies., 29:47-65.

    Dai ZL, Huang Y, Cheng HL, et al., 2017. SPH model for fluid–structure interaction and its application to debris flow impact estimation., 14(3):917-928. https://doi.org/10.1007/s10346-016-0777-4

    Guo N, Yang ZX, 2021. NSPFEM2D: a lightweight 2D node-based smoothed particle finite element method code for modeling large deformation., 140:104484. https://doi.org/10.1016/j.compgeo.2021.104484

    Guo N, Yang ZX, Yuan WH, et al., 2021. A coupled SPFEM/DEM approach for multiscale modeling of large-deformation geomechanical problems., 45(6):648-667. https://doi.org/10.1002/nag.3175

    Hamann T, Qiu G, Grabe J, 2015. Application of a coupled Eulerian–Lagrangian approach on pile installation problems under partially drained conditions., 63:279-290. https://doi.org/10.1016/j.compgeo.2014.10.006

    Harlow FH, 1964. The particle-in-cell computing method for fluid dynamics., 3: 319-343.

    Hu Y, Randolph MF, 1998. A practical numerical approach for large deformation problems in soil., 22(5):327-350. https://doi.org/10.1002/(SICI)1096-9853(199805)22:5<327::AID-NAG920>3.0.CO;2-X

    Jin YF, Yin ZY, Shen SL, et al., 2016. Selection of sand models and identification of parameters using an enhanced genetic algorithm., 40(8): 1219-1240. https://doi.org/10.1002/nag.2487

    Jin YF, Yin ZY, Wu ZX, et al., 2018a. Identifying parameters of easily crushable sand and application to offshore pile driving., 154:416-429. https://doi.org/10.1016/j.oceaneng.2018.01.023

    Jin YF, Yin ZY, Wu ZX, et al., 2018b. Numerical modeling of pile penetration in silica sands considering the effect of grain breakage., 144:15-29. https://doi.org/10.1016/j.finel.2018.02.003

    Jin YF, Yin ZY, Zhou WH, et al., 2019. Identifying parameters of advanced soil models using an enhanced transitional Markov chain Monte Carlo method., 14(6):1925-1947. https://doi.org/10.1007/s11440-019-00847-1

    Jin YF, Yuan WH, Yin ZY, et al., 2020a. An edge-based strain smoothing particle finite element method for large deformation problems in geotechnical engineering., 44(7):923-941. https://doi.org/10.1002/nag.3016

    Jin YF, Yin ZY, Yuan WH, 2020b. Simulating retrogressive slope failure using two different smoothed particle finite element methods: a comparative study., 279:105870. https://doi.org/10.1016/j.enggeo.2020.105870

    Jin YF, Yin ZY, Li J, et al., 2021a. A novel implicit coupled hydro-mechanical SPFEM approach for modelling of delayed failure of cut slope in soft sensitive clay., 140:104474. https://doi.org/10.1016/j.compgeo.2021.104474

    Jin YF, Yin ZY, Zhou XW, et al., 2021b. A stable node-based smoothed PFEM for solving geotechnical large deformation 2D problems., 387:114179. https://doi.org/10.1016/j.cma.2021.114179

    Jin Z, Lu Z, Yang Y, 2021. Numerical analysis of column collapse by smoothed particle hydrodynamics with an advanced critical state-based model., 22(11):882-893. https://doi.org/10.1631/jzus.A2000598

    Liang WJ, Zhao JD, 2019. Multiscale modeling of large deformation in geomechanics., 43(5):1080-1114. https://doi.org/10.1002/nag.2921

    Lucy LB, 1977. A numerical approach to the testing of the fission hypothesis., 82:1013-1024. https://doi.org/10.1086/112164

    Meng JJ, Zhang X, Utili S, et al., 2021. A nodal-integration based particle finite element method (N-PFEM) to model cliff recession., 381:107666. https://doi.org/10.1016/j.geomorph.2021.107666

    O?ate E, Idelsohn SR, Del Pin F, et al., 2004. The particle finite element method—an overview., 1(2):267-307. https://doi.org/10.1142/S0219876204000204

    Qiu G, Henke S, Grabe J, 2011. Application of a coupled Eulerian–Lagrangian approach on geomechanical problems involving large deformations., 38(1):30-39. https://doi.org/10.1016/j.compgeo.2010.09.002

    Qu CX, Wang G, Feng KW, et al., 2021. Large deformation analysis of slope failure using material point method with cross-correlated random fields., 22(11):856-869. https://doi.org/10.1631/jzus.A2100196

    Rao SS, 2017. The Finite Element Method in Engineering, 6th Edition. Butterworth-Heinemann, Oxford, UK. https://doi.org/10.1016/C2016-0-01493-6

    Shan ZG, Liao ZX, Dong YK, et al., 2021. Implementation of absorbing boundary conditions in dynamic simulation of the material point method., 22(11): 870-881. https://doi.org/10.1631/jzus.A2000399

    Barandiarán Villegas LB, 2018. Sinkhole Development over Karstic Substratum. An MPM Approach. Universitat Politècnica de Catalunya, Barcelona, Spain.

    Yin ZY, Wang P, Zhang FS, 2020. Effect of particle shape on the progressive failure of shield tunnel face in granular soils by coupled FDM-DEM method., 100:103394. https://doi.org/10.1016/j.tust.2020.103394

    Yuan WH, Wang B, Zhang W, et al., 2019. Development of an explicit smoothed particle finite element method for geotechnical applications., 106: 42-51. https://doi.org/10.1016/j.compgeo.2018.10.010

    Yuan WH, Wang HC, Liu K, et al., 2021. Analysis of large deformation geotechnical problems using implicit generalized interpolation material point method., 22(11):909-923. https://doi.org/10.1631/jzus.A2100219

    Zhang W, Yuan WH, Dai BB, 2018. Smoothed particle finite-element method for large-deformation problems in geomechanics., 18(4): 04018010. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001079

    Zhang X, 2014. Particle Finite Element Method in Geomechanics. PhD Thesis, The University of Newcastle, Australia.

    Zhang X, Krabbenhoft K, Pedroso DM, et al., 2013. Particle finite element analysis of large deformation and granular flow problems., 54:133-142. https://doi.org/10.1016/j.compgeo.2013.07.001

    Zhang ZQ, Li YL, Zhu XY, et al., 2021. Meso-scale corrosion expansion cracking of ribbed reinforced concrete based on a 3D random aggregate model., 22(11):924-940.https://doi.org/10.1631/jzus.A2100304

    Zhang ZY, Jin XG, Luo W, 2019. Numerical study on the collapse behaviors of shallow tunnel faces under open-face excavation condition using mesh-free method., 145(11):04019085. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001661

    Zheng G, Zhu R, Sun JB, et al., 2021. Numerical study on failure propagation between two closely spaced tunnels., 22(11):894-908.https://doi.org/10.1631/jzus.A2000502

    Dr. Zhen-yu YIN has been an Editorial Board Member ofsince 2019.

    Dr. Zhen-yu YIN has been an Associate Professor of Geotechnical Engineering at The Hong Kong Polytechnic University (China) since 2018. Dr. YIN received his BEng in Civil Engineering from Zhejiang University (China) in 1997, followed by a 5-year engineering consultancy at the Zhejiang Jiahua Architecture Design Institute (China). Then, he obtained his MSc and PhD in Geotechnical Engineering at Ecole Centrale de Nantes (France) in 2003 and 2006, respectively. Dr. YIN worked at Helsinki University of Technology (Finland), the University of Strathclyde (UK), University of Massachusetts (USA), Shanghai Jiao Tong University (China), Tongji University (China), and Ecole Centrale de Nantes before moving to Hong Kong. Dr. YIN has published over 220 articles in peer reviewed international journals with an-index of Web of Science of 43.

    Dr. Yin-fu JIN,

    Postdoctoral fellow

    Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China

    E-mail: yinfu.jin9019@gmail.com

    Dr. Xue ZHANG,

    PhD Lecturer

    Department of Civil Engineering and Industrial Design, University of Liverpool, Liverpool, UK

    E-mail: xue.zhang2@liverpool.ac.uk

    https://doi.org/10.1631/jzus.A21LDGG1

    *Project supported by the Research Impact Fund (RIF) Project of Hong Kong Special Administrative Region Government of China (No. R5037-18)

    ? Zhejiang University Press 2021

    黄网站色视频无遮挡免费观看| 又黄又粗又硬又大视频| 69av精品久久久久久 | 又大又爽又粗| 久久中文字幕人妻熟女| 国产欧美日韩精品亚洲av| 天天影视国产精品| 男女午夜视频在线观看| 久久久久国内视频| 9热在线视频观看99| 777米奇影视久久| 欧美人与性动交α欧美精品济南到| 满18在线观看网站| 久久中文字幕人妻熟女| 免费少妇av软件| 国产极品粉嫩免费观看在线| 在线观看66精品国产| 老司机在亚洲福利影院| 国产精品久久久久久精品电影小说| 一边摸一边抽搐一进一出视频| 下体分泌物呈黄色| 亚洲精品成人av观看孕妇| 欧美性长视频在线观看| 脱女人内裤的视频| 51午夜福利影视在线观看| 久久久久国产一级毛片高清牌| 日韩视频一区二区在线观看| www.999成人在线观看| 丝袜在线中文字幕| 久久婷婷成人综合色麻豆| 一级黄色大片毛片| 欧美精品亚洲一区二区| 一边摸一边抽搐一进一小说 | 久久久久视频综合| 大码成人一级视频| 精品少妇久久久久久888优播| 欧美久久黑人一区二区| 久久久久久亚洲精品国产蜜桃av| 色精品久久人妻99蜜桃| av有码第一页| 欧美黄色淫秽网站| 99riav亚洲国产免费| 99国产精品一区二区蜜桃av | 狠狠狠狠99中文字幕| 欧美日韩亚洲综合一区二区三区_| 国产淫语在线视频| kizo精华| 亚洲视频免费观看视频| 97在线人人人人妻| 亚洲成国产人片在线观看| 午夜免费成人在线视频| 久久久久久久大尺度免费视频| 日本黄色视频三级网站网址 | 黑人欧美特级aaaaaa片| 日韩一卡2卡3卡4卡2021年| 两性夫妻黄色片| 99热国产这里只有精品6| 国产区一区二久久| 亚洲欧洲精品一区二区精品久久久| 别揉我奶头~嗯~啊~动态视频| 久久久精品94久久精品| 蜜桃在线观看..| 考比视频在线观看| 一区福利在线观看| 80岁老熟妇乱子伦牲交| 日韩 欧美 亚洲 中文字幕| 国产在线一区二区三区精| 国产高清国产精品国产三级| 另类精品久久| 婷婷丁香在线五月| 国产精品免费大片| 久久国产精品人妻蜜桃| 精品欧美一区二区三区在线| 大码成人一级视频| 亚洲情色 制服丝袜| 50天的宝宝边吃奶边哭怎么回事| 啪啪无遮挡十八禁网站| 久久人妻av系列| 两个人看的免费小视频| 淫妇啪啪啪对白视频| 色视频在线一区二区三区| www.熟女人妻精品国产| 免费在线观看黄色视频的| 国产高清videossex| 亚洲国产av影院在线观看| 老司机福利观看| 亚洲av成人一区二区三| 热99国产精品久久久久久7| 国产精品亚洲一级av第二区| 9热在线视频观看99| 黄色视频在线播放观看不卡| svipshipincom国产片| 岛国在线观看网站| 日日夜夜操网爽| 丝袜美足系列| 国产1区2区3区精品| av电影中文网址| 激情在线观看视频在线高清 | 国产欧美日韩综合在线一区二区| 香蕉国产在线看| 男人操女人黄网站| 成人黄色视频免费在线看| 露出奶头的视频| 久久精品人人爽人人爽视色| 午夜福利乱码中文字幕| 9热在线视频观看99| 国产在线精品亚洲第一网站| 国产亚洲欧美精品永久| 欧美人与性动交α欧美精品济南到| 91国产中文字幕| tocl精华| 午夜精品久久久久久毛片777| 久久久久国内视频| 99热国产这里只有精品6| 久9热在线精品视频| 精品熟女少妇八av免费久了| 69av精品久久久久久 | 精品久久久精品久久久| 成人三级做爰电影| 两个人看的免费小视频| 欧美精品av麻豆av| 国产精品熟女久久久久浪| 亚洲午夜精品一区,二区,三区| 99国产精品一区二区三区| 午夜激情av网站| 妹子高潮喷水视频| 激情在线观看视频在线高清 | 欧美激情 高清一区二区三区| 在线观看免费视频网站a站| 久久精品国产亚洲av香蕉五月 | 999久久久精品免费观看国产| 婷婷成人精品国产| 在线亚洲精品国产二区图片欧美| 久久婷婷成人综合色麻豆| 超碰成人久久| 一二三四在线观看免费中文在| 午夜免费鲁丝| 国产免费福利视频在线观看| 国产精品九九99| 久久久国产精品麻豆| 国产精品电影一区二区三区 | 亚洲人成77777在线视频| 国产精品欧美亚洲77777| 性色av乱码一区二区三区2| 男人操女人黄网站| 日日摸夜夜添夜夜添小说| 9热在线视频观看99| 亚洲精品在线美女| 波多野结衣av一区二区av| 80岁老熟妇乱子伦牲交| 男女之事视频高清在线观看| 最黄视频免费看| av天堂久久9| 精品久久久精品久久久| 少妇 在线观看| 成人特级黄色片久久久久久久 | 亚洲成人手机| 91成年电影在线观看| 亚洲精品国产精品久久久不卡| av有码第一页| 精品熟女少妇八av免费久了| 午夜激情久久久久久久| 国产精品一区二区免费欧美| 久久精品亚洲精品国产色婷小说| 黄色成人免费大全| videos熟女内射| 考比视频在线观看| 大香蕉久久网| 国产三级黄色录像| 国产99久久九九免费精品| 国产精品美女特级片免费视频播放器 | 国产黄色免费在线视频| 国产精品 国内视频| 国产欧美日韩一区二区三| 成年女人毛片免费观看观看9 | 国产高清激情床上av| 亚洲全国av大片| 日本欧美视频一区| 成人国产一区最新在线观看| 一级片免费观看大全| 男女之事视频高清在线观看| 人成视频在线观看免费观看| av福利片在线| 精品少妇久久久久久888优播| 91大片在线观看| 91大片在线观看| 欧美精品亚洲一区二区| 国产精品亚洲一级av第二区| 99久久99久久久精品蜜桃| 青青草视频在线视频观看| 精品久久蜜臀av无| 久久国产亚洲av麻豆专区| 成人18禁在线播放| 日韩三级视频一区二区三区| 天堂动漫精品| 纵有疾风起免费观看全集完整版| 成人手机av| 亚洲avbb在线观看| 男男h啪啪无遮挡| 国产成+人综合+亚洲专区| 我要看黄色一级片免费的| 成人特级黄色片久久久久久久 | 精品国产乱子伦一区二区三区| 国产在线观看jvid| 亚洲成人国产一区在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 美女主播在线视频| 极品少妇高潮喷水抽搐| 真人做人爱边吃奶动态| 91九色精品人成在线观看| 手机成人av网站| 少妇精品久久久久久久| 国产免费av片在线观看野外av| 成人亚洲精品一区在线观看| 五月开心婷婷网| 女人爽到高潮嗷嗷叫在线视频| 91精品国产国语对白视频| 热re99久久国产66热| 老熟妇乱子伦视频在线观看| 自线自在国产av| 亚洲熟妇熟女久久| 成人手机av| 精品欧美一区二区三区在线| 亚洲精品国产精品久久久不卡| 亚洲成人免费电影在线观看| tube8黄色片| 国产一区二区激情短视频| 亚洲精品中文字幕一二三四区 | 伊人久久大香线蕉亚洲五| 精品国产一区二区三区四区第35| 日韩三级视频一区二区三区| 最新的欧美精品一区二区| 色尼玛亚洲综合影院| 亚洲午夜精品一区,二区,三区| 国产精品麻豆人妻色哟哟久久| 精品国产一区二区三区久久久樱花| 麻豆av在线久日| 精品久久蜜臀av无| 亚洲欧美一区二区三区久久| 精品一品国产午夜福利视频| 久久精品熟女亚洲av麻豆精品| 国产有黄有色有爽视频| 久久性视频一级片| 国产高清国产精品国产三级| 亚洲自偷自拍图片 自拍| 国产精品亚洲一级av第二区| 免费在线观看日本一区| 成年人黄色毛片网站| 欧美日韩亚洲国产一区二区在线观看 | 国产高清激情床上av| 国内毛片毛片毛片毛片毛片| 国产精品美女特级片免费视频播放器 | 欧美精品一区二区大全| 国产成人系列免费观看| avwww免费| 母亲3免费完整高清在线观看| 欧美日韩福利视频一区二区| 欧美久久黑人一区二区| 搡老熟女国产l中国老女人| 女人高潮潮喷娇喘18禁视频| videosex国产| 国产av又大| 日韩免费高清中文字幕av| 国产亚洲精品第一综合不卡| 99re6热这里在线精品视频| 久久精品亚洲av国产电影网| av网站在线播放免费| 黄色视频在线播放观看不卡| 免费黄频网站在线观看国产| 免费观看人在逋| 国产男女内射视频| 久久国产精品影院| 国产xxxxx性猛交| 久久人妻福利社区极品人妻图片| 日韩一卡2卡3卡4卡2021年| 黑人操中国人逼视频| 天天躁狠狠躁夜夜躁狠狠躁| 久久av网站| 国产国语露脸激情在线看| 一级毛片女人18水好多| 欧美日韩亚洲高清精品| 啦啦啦免费观看视频1| 国产在线一区二区三区精| 国产aⅴ精品一区二区三区波| 高清av免费在线| 大片免费播放器 马上看| 午夜两性在线视频| 亚洲成人免费av在线播放| 亚洲伊人久久精品综合| 亚洲综合色网址| 两性午夜刺激爽爽歪歪视频在线观看 | 少妇猛男粗大的猛烈进出视频| 成人三级做爰电影| 久久中文字幕一级| 香蕉国产在线看| 日韩熟女老妇一区二区性免费视频| 亚洲av日韩在线播放| 亚洲五月婷婷丁香| 黑人猛操日本美女一级片| 欧美精品亚洲一区二区| 亚洲第一av免费看| 国产免费福利视频在线观看| 久久久精品国产亚洲av高清涩受| 啦啦啦中文免费视频观看日本| 曰老女人黄片| 亚洲视频免费观看视频| cao死你这个sao货| 久久精品亚洲精品国产色婷小说| 女人爽到高潮嗷嗷叫在线视频| 国产日韩欧美亚洲二区| 亚洲av电影在线进入| 99精品久久久久人妻精品| 人人澡人人妻人| 亚洲精品中文字幕在线视频| 久久狼人影院| 欧美亚洲 丝袜 人妻 在线| 免费久久久久久久精品成人欧美视频| 少妇 在线观看| 亚洲精品国产精品久久久不卡| 中文欧美无线码| 王馨瑶露胸无遮挡在线观看| 悠悠久久av| 久久中文字幕人妻熟女| 99久久精品国产亚洲精品| 女性被躁到高潮视频| 人妻 亚洲 视频| av片东京热男人的天堂| 男人舔女人的私密视频| 免费观看a级毛片全部| 欧美日韩精品网址| 亚洲精华国产精华精| 午夜福利影视在线免费观看| 国产免费现黄频在线看| 久久99热这里只频精品6学生| 一区二区日韩欧美中文字幕| 一本色道久久久久久精品综合| 久久精品国产亚洲av香蕉五月 | 久久精品国产99精品国产亚洲性色 | 亚洲精品一二三| 18禁裸乳无遮挡动漫免费视频| 久久精品国产综合久久久| 99re在线观看精品视频| 这个男人来自地球电影免费观看| 久久久久精品国产欧美久久久| 啦啦啦视频在线资源免费观看| 夜夜夜夜夜久久久久| 国产午夜精品论理片| 久久精品国产亚洲av香蕉五月| 在线观看日韩欧美| 欧美激情久久久久久爽电影| 巨乳人妻的诱惑在线观看| www.www免费av| 特级一级黄色大片| 老汉色av国产亚洲站长工具| 亚洲第一欧美日韩一区二区三区| 成年女人看的毛片在线观看| 国产一区二区三区在线臀色熟女| 亚洲欧洲精品一区二区精品久久久| 欧美日韩黄片免| 午夜亚洲福利在线播放| 级片在线观看| 精品久久久久久,| 久久久国产成人免费| 免费在线观看视频国产中文字幕亚洲| 长腿黑丝高跟| 亚洲avbb在线观看| 国产av在哪里看| 男人和女人高潮做爰伦理| 亚洲av成人精品一区久久| 国产99白浆流出| 日韩欧美免费精品| 成人18禁在线播放| 国产乱人视频| 欧美成人一区二区免费高清观看 | 搡老熟女国产l中国老女人| 色在线成人网| 亚洲精华国产精华精| 国产成人欧美在线观看| 免费在线观看日本一区| 黄色日韩在线| 久久久久久久久久黄片| 久久亚洲真实| 欧美日韩亚洲国产一区二区在线观看| 啦啦啦韩国在线观看视频| 身体一侧抽搐| 亚洲性夜色夜夜综合| 国产日本99.免费观看| 免费一级毛片在线播放高清视频| 成人特级黄色片久久久久久久| 久久中文看片网| 天天躁日日操中文字幕| 亚洲第一电影网av| 757午夜福利合集在线观看| 久久欧美精品欧美久久欧美| 欧美日韩中文字幕国产精品一区二区三区| 亚洲人与动物交配视频| 亚洲在线自拍视频| www.自偷自拍.com| 黄频高清免费视频| 日本三级黄在线观看| 欧美激情久久久久久爽电影| 亚洲欧美日韩无卡精品| 黄频高清免费视频| 狂野欧美激情性xxxx| 99久久99久久久精品蜜桃| 99国产极品粉嫩在线观看| 最近视频中文字幕2019在线8| 午夜成年电影在线免费观看| 99久久久亚洲精品蜜臀av| a级毛片在线看网站| 国产欧美日韩精品一区二区| 国产熟女xx| 国产成人福利小说| 亚洲国产精品久久男人天堂| 九九在线视频观看精品| 欧美性猛交╳xxx乱大交人| 国产综合懂色| 亚洲国产看品久久| 欧美黑人巨大hd| 久久久精品大字幕| 日本五十路高清| 国产亚洲av嫩草精品影院| 精品无人区乱码1区二区| 国产一区二区在线观看日韩 | 在线观看舔阴道视频| 熟女电影av网| 岛国在线免费视频观看| 日日摸夜夜添夜夜添小说| 午夜影院日韩av| 亚洲人成电影免费在线| 色老头精品视频在线观看| 国产成人福利小说| 欧美中文综合在线视频| 动漫黄色视频在线观看| 精品国产乱码久久久久久男人| 久久精品国产99精品国产亚洲性色| www日本在线高清视频| 国产精品,欧美在线| 国产人伦9x9x在线观看| 色吧在线观看| 99久久精品一区二区三区| 久久久久久久午夜电影| 看免费av毛片| 国产精品精品国产色婷婷| 国产1区2区3区精品| 亚洲,欧美精品.| 可以在线观看毛片的网站| 久久香蕉国产精品| 超碰成人久久| 性色avwww在线观看| 中文亚洲av片在线观看爽| 午夜免费激情av| 12—13女人毛片做爰片一| 在线观看日韩欧美| 亚洲自拍偷在线| 精品日产1卡2卡| 18禁国产床啪视频网站| 国产又黄又爽又无遮挡在线| 午夜免费观看网址| 丁香六月欧美| 日韩欧美免费精品| 小说图片视频综合网站| 18禁裸乳无遮挡免费网站照片| 在线观看免费视频日本深夜| 禁无遮挡网站| 久久久久亚洲av毛片大全| 日本撒尿小便嘘嘘汇集6| av中文乱码字幕在线| 欧美性猛交黑人性爽| 亚洲av片天天在线观看| 91av网站免费观看| 女同久久另类99精品国产91| 给我免费播放毛片高清在线观看| 国产爱豆传媒在线观看| 两人在一起打扑克的视频| 久久久国产欧美日韩av| 久久草成人影院| 五月伊人婷婷丁香| 男女那种视频在线观看| 久久香蕉国产精品| 免费在线观看视频国产中文字幕亚洲| 亚洲aⅴ乱码一区二区在线播放| 国产精品一区二区精品视频观看| 久久久久国内视频| 999久久久国产精品视频| 麻豆国产av国片精品| 国产极品精品免费视频能看的| 精品欧美国产一区二区三| 成人av一区二区三区在线看| 国产美女午夜福利| 久久欧美精品欧美久久欧美| 国产69精品久久久久777片 | 亚洲欧美精品综合久久99| 久久婷婷人人爽人人干人人爱| 久久国产精品人妻蜜桃| 亚洲熟妇熟女久久| 亚洲最大成人中文| tocl精华| 亚洲欧美日韩无卡精品| 国产精品 欧美亚洲| 久久中文看片网| 欧美高清成人免费视频www| 少妇裸体淫交视频免费看高清| 老司机深夜福利视频在线观看| 成人午夜高清在线视频| 又紧又爽又黄一区二区| 成人av在线播放网站| 国产男靠女视频免费网站| 人妻久久中文字幕网| avwww免费| 中文字幕久久专区| а√天堂www在线а√下载| 久久国产精品影院| 国内精品久久久久久久电影| 国产一区在线观看成人免费| 黄色丝袜av网址大全| 国产av不卡久久| 特级一级黄色大片| 香蕉国产在线看| 天天躁狠狠躁夜夜躁狠狠躁| 在线播放国产精品三级| 国产午夜精品久久久久久| 亚洲一区二区三区不卡视频| 精品久久久久久久末码| 国产高清视频在线播放一区| 久久久国产成人精品二区| 九九久久精品国产亚洲av麻豆 | 热99在线观看视频| 精品国内亚洲2022精品成人| 我要搜黄色片| 久久精品91蜜桃| 美女高潮的动态| 日韩欧美三级三区| 搞女人的毛片| 两性夫妻黄色片| 国产成人系列免费观看| 国产综合懂色| 91av网站免费观看| 亚洲中文字幕一区二区三区有码在线看 | 搡老熟女国产l中国老女人| 色播亚洲综合网| 亚洲专区中文字幕在线| 国产v大片淫在线免费观看| 一进一出好大好爽视频| 一级毛片高清免费大全| 51午夜福利影视在线观看| 中文亚洲av片在线观看爽| 无人区码免费观看不卡| 欧美在线黄色| 可以在线观看毛片的网站| 性色av乱码一区二区三区2| 国产亚洲精品久久久久久毛片| 18禁黄网站禁片午夜丰满| 国产一区在线观看成人免费| 亚洲在线自拍视频| 亚洲av熟女| 大型黄色视频在线免费观看| 欧美极品一区二区三区四区| 五月玫瑰六月丁香| 欧美乱码精品一区二区三区| 国产精品久久久久久人妻精品电影| 亚洲电影在线观看av| 99热6这里只有精品| 国产主播在线观看一区二区| 成人欧美大片| 欧美xxxx黑人xx丫x性爽| 日韩人妻高清精品专区| 成人亚洲精品av一区二区| 久久久久久久久久黄片| 亚洲一区二区三区不卡视频| a在线观看视频网站| 神马国产精品三级电影在线观看| 亚洲精品乱码久久久v下载方式 | 香蕉国产在线看| 国产真人三级小视频在线观看| 夜夜躁狠狠躁天天躁| 日本免费a在线| 99久久久亚洲精品蜜臀av| 久久久久国产一级毛片高清牌| 久久中文看片网| 国产精品乱码一区二三区的特点| 日本一二三区视频观看| 神马国产精品三级电影在线观看| 久久伊人香网站| 国产一区二区三区在线臀色熟女| av福利片在线观看| xxxwww97欧美| 一二三四社区在线视频社区8| 一个人看视频在线观看www免费 | 夜夜躁狠狠躁天天躁| 精品国产乱码久久久久久男人| 亚洲成人免费电影在线观看| 亚洲成a人片在线一区二区| 午夜免费观看网址| 两性午夜刺激爽爽歪歪视频在线观看| 成人性生交大片免费视频hd| 国产又色又爽无遮挡免费看| 免费观看精品视频网站| 国产成人精品无人区| 三级国产精品欧美在线观看 | 精品乱码久久久久久99久播| 久久精品国产综合久久久| 国产成人影院久久av| 欧美日本亚洲视频在线播放| 久久热在线av| 免费人成视频x8x8入口观看| 日本免费一区二区三区高清不卡| 欧美成人免费av一区二区三区| 国产av不卡久久| 网址你懂的国产日韩在线| 国产成人av教育| 免费av毛片视频| 精品久久久久久久人妻蜜臀av| 淫秽高清视频在线观看| 亚洲最大成人中文|