• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DNA N6-methyladenine demethylase ALKBH1 enhances osteogenic differentiation of human MSCs

    2016-03-22 05:36:17ChenchenZhouYutingLiuXiaobingLiJingZouandShujuanZou
    Bone Research 2016年3期

    Chenchen Zhou,Yuting Liu,Xiaobing Li,Jing Zou and Shujuan Zou

    DNA N6-methyladenine demethylase ALKBH1 enhances osteogenic differentiation of human MSCs

    Chenchen Zhou,Yuting Liu,Xiaobing Li,Jing Zou and Shujuan Zou

    ALKBH1 was recently discovered as a demethylase for DNA N6-methyladenine(N6-mA),a new epigenetic modi f i cation,and interacts with the core transcriptional pluripotency network of embryonic stem cells. However,the role of ALKBH1 and DNA N6-mA in regulating osteogenic differentiation is largely unknown. In this study,we demonstrated that the expression of ALKBH1 in human mesenchymal stem cells(MSCs) was upregulated during osteogenic induction.Knockdown of ALKBH1 increased the genomic DNA N6-mA levels and signi f i cantly reduced the expression of osteogenic-related genes,alkaline phosphatase activity,and mineralization.ALKBH1-depleted MSCs also exhibited a restricted capacity for bone formation in vivo. By contrast,the ectopic overexpression of ALKBH1 enhanced osteoblastic differentiation.Mechanically, we found that the depletion of ALKBH1 resulted in the accumulation of N6-mA on the promoter region of ATF4,which subsequently silenced ATF4 transcription.In addition,restoring the expression of ATP by adenovirus-mediated transduction successfully rescued osteogenic differentiation.Taken together,our results demonstrate that ALKBH1 is indispensable for the osteogenic differentiation of MSCs and indicate that DNA N6-mA modi f i cations area new mechanism for the epigenetic regulation of stem cell differentiation.

    INTRODUCTION

    Stem cells are characterized by two features:the ability to differentiate into multiple cell types and the ability to selfrenew.1–2Mesenchymal stem cells(MSCs)are one type of postnatal stem cell with a pluripotent differentiation potential that is broader than originally envisioned or perhaps as broad as that of embryonic stem cells.2MSCs have the ability to differentiate into different mesenchymal lineages,such as osteoblasts,chondrocytes,adipocytes, fi broblasts,and adventitial reticular cells.3Consequently, MSCs can be seen as bona fi de cells for all tissues in which they induce osteoprogenitors and then transform into osteoblasts,which are crucial for the mineralization of the extracellular matrix(ECM)of bone.4–6

    The osteogenic differentiation of MSCs is regulated by multiple mechanisms,such as key transcription factors,including runt-related transcription factor 2 and Osterix,2,5,7as well as other hormones.1,8–10In addition, epigenetic regulations have an important role in mammalian biology11–12and regulate tissue-speci fi c gene expression.13–14Recently,DNA methylation,which is an epigenetic regulation,was found to have a pivotal role in stem cell differentiation.15DNA methylation occurs on the fi fth position of cytosine(5mC).16DNA cytosines experience a series of modi fi cations performed by a variety of enzymes,including DNA methyltransferases,17which add a methyl group on the fi fth position of cytosine to form 5mC;TET family dioxygenases(TET1,TET2,and TET3),18–19which then oxidize the methyl group to create 5-hydroxymethylcytosine;20and 5-formylcytosine and 5-carboxyl cytosine,which complete the cycle.21The epigenetic activation of bone-spec i fi c genes mediated by promoter demethylation typically occurs when MSCs differentiate into osteoblasts,22and the inhibition of stem-cell-speci fi c genes by promoter methylation is a crucial epigenetic mechanism during stem cell differentiation.23

    Very recently,the methylation of N6-methyladenine (N6-mA)has been reported as another DNA methylationevent,and ALKBH1 was discovered as a demethylase for DNA N6-mA.11,24ALKBH1,a member of the AlkB family,is a 2-oxoglutarate and Fe2+-dependent hydroxylase.25–26ALKBH1 has an important role in epigenetic regulation by accommodating the expression of pluripotency markers and genes related to neural differentiation during embryogenesis.27ALKBH1 is involved in f i ne-tuning the level of a core transcriptional network and regulating the developmental regulatory microRNAs involved in pluripotency and differentiation.21Most of the Alkbh1?/?mice died during embryogenesis,and survivors exhibit tissue developmental defects,including prolonging the expression of pluripotency markers,28and multiple defects in eyes, craniofacial,sternum,and limb skeleton,26which suggests that ALKBH1 is indispensable for stem differentiation and development.However,the role of ALKBH1 and DNA N6-mA in regulating osteogenic differentiation is largely unknown.

    In this study,we demonstrated that the depletion or overexpression of ALKBH1 in human MSCs regulates the levels of genomic DNA N6-mA and signi f i cantly affects osteogenic differentiation and bone formation.Mechanically,we found that the depletion of ALKBH1 results in the accumulation of N6-mA on the promoter region of activating transcription factor 4(ATF4),which subsequently silences ATF4 transcription.

    MATERIALS AND METHODS

    Cell culture

    Human bone marrow-derived MSCs were obtained from American Type Culture Collection(ATCC,Manassas,VA, USA).Cells were cultured in Dulbecco’s modi f i ed Eagle’s medium(DMEM)supplemented with 10%fetal bovine serum(Gibco,Carlsbad,CA,USA)plus 100 U·mL-1of penicillin and 100 mg·mL-1of streptomycin(Gibco)at 37°C with a humidi f i ed atmosphere of 5%CO2.To induce osteogenic differentiation,MSCs were seeded in 6-or 24-well plates.After con f l uence,cells were treated with osteogenic medium containing 50 μmol·L-1ascorbic acid, 10 mmol·L-1β-glycerophosphate,and 10 nmol·L-1dexamethasone(Sigma,Shanghai,China).All experimental protocols and procedures were approved by the State Key Laboratory of Oral Diseases,West China Hospital of Stomatology,Sichuan University.

    Gene knockdown and overexpression

    ALKBH1-targeted and control small interfere RNAs were purchased from Santa Cruz(Dallas,TX,USA).Transfection was performed using Lipofectamine RNAiMAX reagent (Invitrogen)according to the manufacturer's instructions.Knockdown ef f i ciency was determined by reverse transcription-PCR(RT-PCR)and western blot 2 days after the transfection.The lentivirus particles of ALKBH1 and scrambled shRNAs were obtained from Genecopoeia (Guangzhou,China).The stable cell lines were established by puromycin selection.

    For ALKBH1 overexpression,lentiviruses expressing the human ALKBH1 gene were purchased from Genecopoeia. MSCs were infected with ALKBH1 or empty vectors in the presence of polybrene(Sigma)for 24 h and were selected with puromycin(Sigma).For ATF4 overexpression,the adenovirus particles expressing human ATF4 or GFP (control)were obtained from Cyagen(Guangzhou,China).

    RNA isolation and RT-PCR

    Total RNA was isolated using the Trizol reagent(Invitrogen) according to the manufacturer’s instructions.The complementary DNA was prepared from 2 μg aliquots of RNA using a QuantiTec reverse transcription kit(Qiagen,Valencia,CA,USA).29–31Quantitative real-time PCR was performed using SYBR Premix Ex Taq(Takara,Dalian,China)in an ABI7500 real-time PCR system(Applied Biosystems, Foster City,CA,USA).The primer sequences used are listed in Table 1.Relative expression was calculated using a 2-ΔΔCtmethod32by normalization with Gapdh housekeeping gene expression and presented as fold increase relative to control.

    Western blot

    Cells were lysed in RIPA buffer(Pierce,Rockford,IL,USA) supplemented with a protease inhibitor cocktail(Roche, Mannheim,Germany)and centrifuged at 18 000 g for 15 min at 4°C.The supernatants were heated at 95°C for 5 min in sample buffer containing 2%SDS and 1% 2-mercaptoethanol,separated on 10%SDS–polyacrylamide gels,and transferred to polyvinylidene di f l uoride membranes using a semi-dry transfer apparatus(Bio-Rad).33The membranes were blocked with 5%milk for 1 h and then incubated with anti-ALKBH1(Millipore,Billerica,MA,USA, 1:1 000),anti-ATF4(Abcam,Cambridge,MA,USA,1:1 000) or anti-α-Tubulin(Sigma,1:5 000)overnight followed by a horseradish peroxidase-conjugated anti-rabbit or antimouse IgG(Jackson ImmunoResearch,West Grove,PA, USA).The antibody–antigen complexes were visualized with SuperSignal reagents(Pierce,Rockford,IL,USA).

    Dot blot

    Genomic DNA was isolated using a PureLink Genomic DNA kit(Invitrogen)and then denatured at 95°C for 10 min in 0.4 mol·L-1NaOH and 10 mmol·L-1EDTA buffer.Samples were spotted on the membrane(Zeta-Probe,Bio-Rad, Hercules,CA,USA)using a Dot-Blot micro f i ltration apparatus(Bio-Rad)and baked at 80°C for 30 min.Membranes were blocked in blocking buffer(5%milk in PBST)for 1 h at room temperature and incubated with N6-mA antibody (202-003,Synaptic Systems,Goettingen,Germany,1:2 000) overnight at 4°C.After three washes,membranes were incubated with horseradish peroxidase-linked secondary anti-rabbit IgG(Jackson ImmunoResearch).The antibody–antigen complexes were visualized with SuperSignal reagents(Pierce).To ensure an equal amount of DNA was spotted,the same membrane was stained with 0.02% methylene blue in 0.3 mol·L-1sodium acetate(pH 5.2).

    ALP and Alizarin red staining

    For alkaline phosphatase(ALP)staining,cells were grown in osteogenic differentiation medium for 7 days.Cells were then

    fi xed in 70%ethanol and incubated with a staining solution of 0.25%naphthol AS-BI phosphate and 0.75%Fast Blue BB dissolved in 0.1 mol·L-1Tris buffer(pH 9.3).We also quanti fi ed the ALP activity using a commercial kit according to the manufacturer’s protocol(Cell Biolab,San Diego,CA,USA).

    For mineralization assays,cells were cultured in differentiation medium for 2–3 weeks,f i xed with 70%ethanol, and stained with 40 mmol·L-1Alizarin red S(pH 4.2,Sigma) for 10 min.34Mineralized bone nodules stained with alizarin red were distained with 10%cetylpyridinium chloride in 10 mmol·L-1sodium phosphate(pH 7.0),and the calcium concentration was determined by absorbance measurements at 562 nm.

    Ectopic bone formation

    Three-month-old immunocompromised beige mice were obtained from the Experimental Animal Center of the University and housed in pathogen-free facilities under a 12-h light and 12-h dark cycle.All procedures were conducted in accordance with The Guidelines for the Care and Use of Laboratory Animals of State Key Laboratory of Oral Diseases,West China Hospital of Stomatology,Sichuan University.Approximately 5×106of cells were mixed with 60 mg of pure phase β-tricalcium phosphate particles(SynthoGraft,Bicon,Boston,MA,USA) and then transplanted subcutaneously under the dorsal surface as described previously.11,24Six weeks after transplantation,the transplants were collected,f i xed with 10% formalin,and decalci f i ed with 10%EDTA.Paraf f i n sections were fabricated and stained with hematoxylin and eosin.35

    Chromatin immunoprecipitation assay

    The chromatin immunoprecipitation assay was performed using a Simple ChIP Assay kit(Cell Signaling Technology, Danvers,MA,USA)according to the manufacturer’s protocol31with an antibody against N6-mA(cat#202003, Synaptic Systems)or the control normal rabbit IgG(cat#sc-2027,Santa Cruz).After dissociating the DNA–protein complexes,pulled down DNA along with the input DNA(devoid of antibody)were subjected to quantitative PCR analysis with primers to interrogate the ATF4 promoter(Table 1).The results are expressed as the percentage of input DNA.

    Statistical analysis

    All values were presented as the mean±s.e.Two-tailed Student’s t-test and one-way analysis of variance followed by the Tukey’s test were used for single and multiple comparisons with assess the statistical inference on difference among each pair of data sets,respectively. A P value<0.05 was considered statistically signi f i cant.

    RESULTS

    ALKBH1 is upregulated during osteogenic differentiation We f i rst evaluated the expression pro f i le of ALKBH1 in human MSCs during osteogenic differentiation.As determined by real-time RT-PCR,the ALKBH1 messenger RNA levels were signi f i cantly upregulated in response to osteogenic induction(Figure 1a).This observation was also con f i rmed by western blot analysis(Figure 1b).These results suggest that ALKBH1 may have a role in the osteogenic differentiation of MSCs.

    Depletion of ALKBH1 inhibits osteogenic differentiation in vitro

    To investigate the role of ALKBH1 in osteogenic differentiation,we knocked down ALKBH1 in human MSCs.The knockdown ef f i ciency was con f i rmed by RT-PCR and western blot(Figure 2a and b).Given that ALKBH1 was recently discovered as a demethylase for DNA N6-mA,we evaluated the modi f i cation of N6-mA using a DNA dot blot assay.As shown in Figure 2c,depletion of ALKBH1 markedly increased N6-mA levels in whole genomic DNA of MSCs. After osteogenic induction for 7 days,we found that the small interfere RNA-mediated depletion of ALKBH1signi f i cantly reduced ALP activity,which is an early marker of osteoblastic differentiation(Figure 2d and e). We also assessed ECM mineralization by Alizarin red S staining.As shown in Figure 2f and g,the mineralization was signi f i cantly decreased after ALKBH1 depletion.In addition, the knockdown of ALKBH1 inhibited the expression of osteogenic-related genes,such as RUNX2,Osterix(SP7), and Osteocalcin(GBLAP)(Figure 2h–j).

    Depletion of ALKBH1 inhibits bone formation in vivo

    To verify our in vitro f i ndings,we examined whether the knockdown of ALKBH1 affected MSC-mediated bone formation in vivo.To this end,we generated the stable knockdown MSCs using lentiviruses expressing shRNA and implanted them with β-TCP carriers into immunocompromised mice subcutaneously.RT-PCR and western blot analysis showed that>85%of the ALKBH1 was depleted in MSCs expressing ALKBH1 shRNA(shALKBH1)compared with those expressing scrambled shRNA(shScram).The N6-mA levels in whole genomic DNA were increased.Notably,hematoxylin and eosin staining showed that ALKBH1-depleted cells formed less bone tissues(Figure 3d)than did the shScram cells.Quantitative measurement of mineralized tissue areas revealed a>40%decrease in bone formation(Figure 3e).

    Overexpression of ALKBH1 enhances osteoblastic

    differentiation of MSCs

    To investigate the effects of ectopic overexpression of ALKBH1on osteoblastic differentiation,human MSCs were stably transduced with lentiviruses expressing ALKBH1 (Figure 4a and b).As expected,ALKBH1 overexpression decreased the N6-mA levels in whole genomic DNA (Figure 4c).In addition,ALP activity and cell mineralization of MSCs were enhanced by the overexpression of ALKBH1 (Figure 4d–g).RT-PCR showed that the expression of osteogenic-related genes,such as RUNX2,SP7,and GBLAP, was signi f i cantly elevated after osteogenic induction for 7 days(Figure 4h–j).

    Depletion of ALKBH1 impairs ATF4 transcription

    ATF4 is a transcription factor that has a pivotal role in osteogenesis along with RUNX2 and Osterix.Interestingly, we found that the depletion of ALKBH1 in MSCs signi f i cantly reduced the ATF4 messenger RNA and protein levels after osteogenic reduction for 7 days(Figure 5a and b). More importantly,chromatin immunoprecipitation assays demonstrated that ALKBH1 binds to the promoter region of ATF4(Figure 5c).Knockdown of ALKBH1 restricted this binding(Figure 5c)and increased the abundance of N6-mA on the promoter(Figure 5d),which led to transcription silencing.These f i ndings indicated that ALKBH1 may regulate the osteoblastic differentiation of MSCs by removing the N6-mA modi f i cations on ATF4.

    ATF4 overexpression rescues the phenotypes

    To further elucidate the mechanism,we performed rescue experiments by overexpressing ATF4 or control GFP in stable ALKBH1-depleted MSCs using adenoviruses.The successful transduction was con f i rmed by RT-PCR and western blot (Figure 6a and b).Ectopic ATF4 expression signi f i cantly increased the expression of SP7,a master transcription factor for osteogenic differentiation(Figure 6c).In addition,ALP activity and mineralization were rescued(shALKBh1 +Ad-ATF4 vs shALKBh1+Ad-GFP;Figure 6d–f).

    DISCUSSION

    MSCs have garnered attention owing to their potential for osteogenic differentiation and regeneration therapy.36–38Exploring the mechanism of MSC lineage speci f i cation and differentiation offers a brand-new perspective for clinical applications.39In the present study,we found that the expression of ALKBH1 is upregulated during osteogenic differentiation in vivo.The depletion of ALKBH1 markedly increased the N6-mA levels and signi f i cantly reduced the expression of osteogenic-related genes,ALP activity,and ECM mineralization.By contrast,the ectopic overexpression of ALKBH1 enhanced the osteoblastic differentiation of MSCs.Mechanically,we found that ALKBH1 may regulate osteoblastic differentiation by removing N6-mA modi f i cations on ATF4.

    Previous studies have shown that ALKBH1,which was identi f i ed as a DNA demethylase for N6-mA in Embryonic stem cells,has a crucial function in early development by regulating genes that are involved in differentiation and pluripotency.25–26In our study,ALKBH1 depletion inhibits bone formation both in vivo and in vitro.We further noticed an increase in N6-mA and reduction in osteogenic-related genes and indexes.Ougland et al.reported that ALKBH1 interacts with several core transcriptional factors,such as OCT4,SOX2,and NANOG,to maintain the pluripotency of Embryonic stem cell.25,40–41Moreover,ALKBH1 may regulate microRNAs that are associated with the differentiation of neuronal cells.21In contrast,mice lacking ALKBH1 display defects of small or missing eyes,especially in the right eye,and multiple defects in the craniofacial,sternum, and limb skeleton.26Together with the f i ndings on ALKBH1 by Nordstrand et al.,these data indicate that Alkbh1?/?mice exhibited an incomplete condensation of mesenchymal cells during ossi f i cation,which is consistent with our hypothesis.

    Recently,ALKBH1 was discovered as a demethylase for DNA N6-mA,thus offering a new perspective for DNA methylation.However,there is wide acceptance that the DNA methylation always occurs on the C5 position of cytosine residues in CpG sites in DNA.20,42Fu et al.22demonstrated that epigenetic activation of bone-speci f i c genes mediated by promoter demethylation typically occurs when MSCs differentiate into osteoblasts.Moreover, Dansranjavin et al.23suggested that the inhibition of stem-cell-speci f i c genes by promoter methylation is a crucial epigenetic mechanism during stem cell differentiation.In previous studies,Wu et al.demonstrated that an increase of N6-mA in Alkbh1?/?cells leads to genesilencing and that most of these genes are developmental factors and lineage-specifying genes.11Intriguingly,these genes are most markedly enriched on the X chromosome and Chr13,indicating that the increase in N6-mA inhibits the transcription on X chromosome,especially on young full-length LINE-1 transposons(L1 elements).11Taken together,these data indicate that accumulation of N6-mA at L1 elements is related to the inhibition of nearby gene.Thus,N6-mA modi f i cations have a great in f l uence on the activation of differentiation genes.It would be interesting to explore the relationship between ALKBH1 and N6-mA,and the mechanisms that affect osteogenic differentiation and bone formation.Our result indicated an inverse correlation between ALKBH1 and N6-mA.In addition,the depletion of ALKBH1 in vivo leads to less bone tissue and decreased bone formation.However,fewer papers on DNA demethylases have been published compared with RNA demethylases,which needs further exploration.

    In this study,we demonstrated that ALKBH1 binds to the promoter region of ATF4.The lack of ALKBH1 restricted this binding and increased N6-mA in this region,which led to transcription silencing.Our outcome suggested that ALKBH1 removes the N6-mA on ATF4 to regulate the osteogenic differentiation of human MSCs.ATF4,an osteoblast-enriched transcriptional factor of the CREB family,is indispensable for the latest phases of osteogenic differentiation,43bone formation,and mineralization of the ECM.44Previous studies have demonstrated that ATF4 promotes differentiation by upregulating the expression of osteoblast-speci f i c genes,such as RANKL,and by promoting the synthesis of type I collagen,which is a main component of the ECM.5,44These two distinct mechanisms are both dependent on the phosphorylation by RSK2.45Taken together,these data suggested that ALKBH1 enhances osteogenic differentiation by interacting with ATF4.

    It needs to be noted that our f i ndings are based on the in vitro experiments.Further in vivo studies are expected. Given that Alkbh1?/?in mice leads to embryonic and postnatal lethality,26a tissue-speci f i c mouse model is desired to further elucidate the role of ALKBH1 and DNA N6-mA in regulating osteogenic differentiation.

    Collectively,we demonstrated that ALKBH1 enhances osteogenic differentiation by removing the N6-mA modi f ications on ATF4.Our results indicate that N6-mA modi f i cations area mechanism for epigenetic regulation of osteogenic differentiation.

    Acknowledgements

    This work was supported by grants from the National Natural Science Foundation of China(No.81271178 and 81470777).

    Competing interests

    The authors declare no con f l ict of interest.

    1 Nombela-Arrieta C,Ritz J,Silberstein LE.The elusive nature and function of mesenchymal stem cells.Nat Rev Mol Cell Biol 2011;12: 126–131.

    2 Deng P,Chen QM,Hong C et al.Histone methyltransferases and demethylases:regulators in balancing osteogenic and adipogenic differentiation of mesenchymal stem cells.Int J Oral Sci 2015;7:197–204.

    3 Bianco P,Robey PG,Simmons PJ.Mesenchymal stem cells:revisiting history,concepts,and assays.Cell Stem Cell 2008;2:313–319.

    4 Bianco P,Cao X,Frenette PS et al.The meaning,the sense and the signi f i cance:translating the science of mesenchymal stem cells into medicine.Nat Med 2013;19:35–42.

    5 Yu S,Zhu K,Lai Y et al.atf4 promotes beta-catenin expression and osteoblastic differentiation of bone marrow mesenchymal stem cells. Int J Biol Sci 2013;9:256–266.

    6 Crane JL,Zhao L,Frye JS et al.IGF-1 signaling is essential for differentiation of mesenchymal stem cells for peak bone mass.Bone Res 2013; 1:186–194.

    7 Rahman MS,Akhtar N,Jamil HM et al.TGF-beta/BMP signaling and other molecular events:regulation of osteoblastogenesis and bone formation.Bone Res 2015;3:15005.

    8 Chiavistelli S,Giustina A,Mazziotti G.Parathyroid hormone pulsatility: physiological and clinical aspects.Bone Res 2015;3:14049.

    9 Yuan Q,Sato T,Densmore M et al.Deletion of PTH rescues skeletal abnormalities and high osteopontin levels in Klotho-/-mice.PLoS Genet 2012;8:e1002726.

    10 Yuan Q,Sato T,Densmore M et al.FGF-23/Klotho signaling is not essential for the phosphaturic and anabolic functions of PTH.J Bone Miner Res 2011;26:2026–2035.

    11 Wu TP,Wang T,Seetin MG et al.DNA methylation on N(6)-adenine in mammalian embryonic stem cells.Nature 2016;532:329–333.

    12 Guo H,Zhu P,Yan L et al.The DNA methylation landscape of human early embryos.Nature 2014;511:606–610.

    13 Bonder MJ,Kasela S,Kals M et al.Genetic and epigenetic regulation of gene expression in fetal and adult human livers.BMC Genomics 2014; 15:860.

    14 Wu Y,Zhang S,Yuan Q.N(6)-methyladenosine methyltransferases and demethylases:new regulators of stem cell pluripotency and differentiation.Stem Cells Dev 2016;25:1050–1059.

    15 Tsankov AM,Gu H,Akopian V et al.Transcription factor binding dynamics during human ES cell differentiation.Nature 2015;518:344–349.

    16 Ye C,Li L.5-hydroxymethylcytosine:a new insight into epigenetics in cancer.Cancer Biol Ther 2014;15:10–15.

    17 Ooi SK,O'Donnell AH,Bestor TH.Mammalian cytosine methylation at a glance.J Cell Sci 2009;122:2787–2791.

    18 Pastor WA,Aravind L,Rao A.TETonic shift:biological roles of TET proteins in DNA demethylation and transcription.Nat Rev Mol Cell Biol 2013;14:341–356.

    19 Hu L,Li Z,Cheng J et al.Crystal structure of TET2-DNA complex: insight into TET-mediated 5mC oxidation.Cell 2013;155:1545–1555.

    20 Tahiliani M,Koh KP,Shen Y et al.Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009;324:930–935.

    21 Hon GC,Song CX,Du T et al.5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation.Mol Cell 2014;56:286–297.

    22 Fu G,Ren A,Qiu Y et al.Epigenetic regulation of osteogenic differentiation of mesenchymal stem cells.Curr Stem Cell Res Ther 2016;11: 235–246.

    23 Dansranjavin T,Krehl S,Mueller T et al.The role of promoter CpG methylation in the epigenetic control of stem cell related genes during differentiation.Cell Cycle 2009;8:916–924.

    24 Greer EL,Blanco MA,Gu L et al.DNA Methylation on N6-Adenine in C.elegans.Cell 2015;161:868–878.

    25 Ougland R,Jonson I,Moen MN et al.Role of ALKBH1 in the core transcriptional network of embryonic stem cells.Cell Physiol Biochem 2016;38:173–184.

    26 Nordstrand LM,Sv?rd J,Larsen E et al.Mice lacking Alkbh1 display sexratio distortion and unilateral eye defects.PLoS One 2010;5:e13827.

    27 Pan Z,Sikandar S,Witherspoon M et al.Impaired placental trophoblast lineage differentiation in Alkbh1(-/-)mice.Dev Dyn 2008;237:316–327.

    28 Ougland R,Lando D,Jonson I et al.ALKBH1 is a histone H2A dioxygenase involved in neural differentiation.Stem Cells 2012;30: 2672–2682.

    29 Yuan Q,Jiang Y,Zhao X et al.Increased osteopontin contributes to inhibition of bone mineralization in FGF23-de f i cient mice.J Bone Miner Res 2014;29:693–704.

    30 Chen D,Jarrell A,Guo C et al.Dermal beta-catenin activity in response to epidermal Wnt ligands is required for f i broblast proliferation and hair follicle initiation.Development 2012;139:1522–1533.

    31 Peng L,Hu Y,Chen D et al.Ubiquitin speci f i c peptidase 21 regulates interleukin-8 expression,stem-cell like property of human renal cell carcinoma.Oncotarget 2016;7:42007–42016.

    32 Budnick I,Hamburg-Shields E,Chen D et al.De f i ning the identity of mouse embryonic dermal f i broblasts.Genesis 2016;54:415–430.

    33 Pei M,Chen D,Li J et al.Histone deacetylase 4 promotes TGF-beta1-induced synovium-derived stem cell chondrogenesis but inhibits chondrogenically differentiated stem cell hypertrophy.Differentiation 2009; 78:260–268.

    34 Zou H,Zhao X,Sun N et al.Effect of chronic kidney disease on the healing of titanium implants.Bone 2013;56:410–415.

    35 Liang Y,Zhu F,Zhang H et al.Conditional ablation of TGF-beta signaling inhibits tumor progression and invasion in an induced mouse bladder cancer model.Sci Rep 2016;6:29479.

    36 Henkel J,Woodruff MA,Epari DR et al.Bone Regeneration Based on Tissue Engineering Conceptions-A 21st Century Perspective.Bone Res 2013;1:216–248.

    37 Kim MO,Jung H,Kim SC et al.Electromagnetic f i elds and nanomagnetic particles increase the osteogenic differentiation of human bone marrowderived mesenchymal stem cells.Int J Mol Med 2015;35:153–160.

    38 Peng L,Ye L,Zhou XD.Mesenchymal stem cells and tooth engineering. Int J Oral Sci 2009;1:6–12.

    39 Lee J,Abdeen AA,Kilian KA.Rewiring mesenchymal stem cell lineage speci f i cation by switching the biophysical microenvironment.Sci Rep 2014;4:5188.

    40 Tay Y,Zhang J,Thomson AM et al.MicroRNAs to Nanog,Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 2008;455:1124–1128.

    41 Olariu V,Lovkvist C,Sneppen K.Nanog,Oct4 and Tet1 interplay in establishing pluripotency.Sci Rep 2016;6:25438.

    42 Ficz G,Branco MR,Seisenberger S et al.Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 2011;473:398–402.

    43 Elefteriou F,Ahn JD,Takeda S et al.Leptin regulation of bone resorption by the sympathetic nervous system and CART.Nature 2005;434: 514–520.

    44 Elefteriou F,Benson MD,Sowa H et al.ATF4 mediation of NF1 functions in osteoblast reveals a nutritional basis for congenital skeletal dysplasiae. Cell Metab 2006;4:441–451.

    45 Yang X,Matsuda K,Bialek P et al.ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology;implication for Cof f i n-Lowry Syndrome.Cell 2004;117:387–398.

    This work is licensed under a Creative Commons Attribution 4.0 International License.The images or other third party material in this article are included in the article’s Creative Commons license,unless indicated otherwise in the credit line;if the material is not included under the Creative Commons license,users will need to obtain permission from the license holder to reproduce the material.To view a copy of this license,visit http://creativecommons.org/licenses/by/4.0/

    ?The Author(s)2016

    Research(2016)4,16033;

    10.1038/boneres.2016.33;published online:11 October 2016

    State Key Laboratory of Oral Diseases,West China Hospital of Stomatology,Sichuan University,Chengdu,China

    Correspondence:Shujuan Zou(shujuanzou@aliyun.com)

    Received:3 August 2016;Revised:13 August 2016;Accepted:14 August 2016

    欧美精品啪啪一区二区三区| av不卡在线播放| 成人精品一区二区免费| 欧美 亚洲 国产 日韩一| 精品国产乱子伦一区二区三区| 99国产精品99久久久久| 欧美精品亚洲一区二区| 91字幕亚洲| 亚洲美女黄片视频| 婷婷成人精品国产| 99国产精品一区二区三区| 久热爱精品视频在线9| 欧美日韩av久久| 真人做人爱边吃奶动态| 午夜两性在线视频| 日韩 欧美 亚洲 中文字幕| 91麻豆精品激情在线观看国产 | 国产精品一区二区在线观看99| 99国产综合亚洲精品| 啪啪无遮挡十八禁网站| 99久久国产精品久久久| 三级毛片av免费| 国产精品亚洲av一区麻豆| 男人操女人黄网站| 国产成人啪精品午夜网站| 亚洲精华国产精华精| 亚洲熟女精品中文字幕| av一本久久久久| 国产日韩一区二区三区精品不卡| 免费日韩欧美在线观看| 久久久久久久大尺度免费视频| 欧美精品高潮呻吟av久久| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品1区2区在线观看. | 国产一区二区三区综合在线观看| 人人妻人人澡人人爽人人夜夜| 亚洲av欧美aⅴ国产| 在线观看免费午夜福利视频| 国产精品一区二区在线不卡| 久久青草综合色| 欧美国产精品va在线观看不卡| 精品国产亚洲在线| 少妇被粗大的猛进出69影院| 久久中文字幕一级| 欧美乱妇无乱码| 国产精品亚洲av一区麻豆| 国产成人一区二区三区免费视频网站| 久久人妻av系列| 久久精品亚洲精品国产色婷小说| 成人特级黄色片久久久久久久 | 欧美性长视频在线观看| 老司机靠b影院| 美女午夜性视频免费| 中文字幕人妻丝袜一区二区| 欧美日本中文国产一区发布| 啪啪无遮挡十八禁网站| e午夜精品久久久久久久| 成人18禁高潮啪啪吃奶动态图| 高清欧美精品videossex| 国产av国产精品国产| 五月天丁香电影| 女人被躁到高潮嗷嗷叫费观| 考比视频在线观看| 蜜桃在线观看..| 久久国产精品男人的天堂亚洲| 亚洲精品一二三| 黑丝袜美女国产一区| 国产黄频视频在线观看| svipshipincom国产片| 精品高清国产在线一区| 欧美人与性动交α欧美软件| 在线亚洲精品国产二区图片欧美| 亚洲欧美色中文字幕在线| 在线天堂中文资源库| 国产精品久久久久久人妻精品电影 | 久久精品aⅴ一区二区三区四区| 国产在线免费精品| 久9热在线精品视频| 成年女人毛片免费观看观看9 | 久久久国产欧美日韩av| 日韩熟女老妇一区二区性免费视频| a级毛片在线看网站| 99香蕉大伊视频| 午夜久久久在线观看| 色综合婷婷激情| 国产黄频视频在线观看| tocl精华| 亚洲国产av新网站| tocl精华| 男女边摸边吃奶| 欧美日韩成人在线一区二区| 欧美人与性动交α欧美精品济南到| 中国美女看黄片| 免费在线观看黄色视频的| 精品午夜福利视频在线观看一区 | 国产在线精品亚洲第一网站| 国产精品99久久99久久久不卡| 午夜免费成人在线视频| 国产一区二区三区综合在线观看| 欧美日韩成人在线一区二区| 女警被强在线播放| 国产人伦9x9x在线观看| 色婷婷久久久亚洲欧美| 亚洲欧美激情在线| 热99久久久久精品小说推荐| 人成视频在线观看免费观看| 亚洲第一欧美日韩一区二区三区 | 一区二区av电影网| 91麻豆av在线| 国产成+人综合+亚洲专区| 超碰97精品在线观看| 在线观看www视频免费| 激情视频va一区二区三区| 大片免费播放器 马上看| 亚洲国产欧美一区二区综合| 久久婷婷成人综合色麻豆| 又紧又爽又黄一区二区| 欧美激情久久久久久爽电影 | 黄色成人免费大全| 精品少妇一区二区三区视频日本电影| 国产高清视频在线播放一区| 免费看a级黄色片| 91成人精品电影| 亚洲欧美精品综合一区二区三区| 国产精品1区2区在线观看. | 在线观看66精品国产| 中文字幕av电影在线播放| 老司机亚洲免费影院| 日韩欧美国产一区二区入口| 日韩欧美一区视频在线观看| 91成年电影在线观看| 中文字幕人妻丝袜制服| 亚洲国产av新网站| 午夜福利视频精品| 丁香六月天网| 国产主播在线观看一区二区| videosex国产| 久久免费观看电影| av超薄肉色丝袜交足视频| 汤姆久久久久久久影院中文字幕| 免费av中文字幕在线| 夜夜骑夜夜射夜夜干| 999精品在线视频| 亚洲视频免费观看视频| av超薄肉色丝袜交足视频| 高清黄色对白视频在线免费看| 成人手机av| 男女高潮啪啪啪动态图| 亚洲欧美日韩另类电影网站| 考比视频在线观看| 欧美精品人与动牲交sv欧美| 色综合欧美亚洲国产小说| 欧美日韩国产mv在线观看视频| 中文字幕制服av| 日韩精品免费视频一区二区三区| 日韩欧美一区二区三区在线观看 | 欧美激情高清一区二区三区| 91麻豆av在线| 欧美精品亚洲一区二区| 国产欧美日韩综合在线一区二区| bbb黄色大片| 婷婷丁香在线五月| 精品久久久精品久久久| 一级黄色大片毛片| 少妇粗大呻吟视频| 国产亚洲欧美在线一区二区| 两性夫妻黄色片| 欧美精品av麻豆av| 亚洲三区欧美一区| 久久av网站| 人成视频在线观看免费观看| 黑人猛操日本美女一级片| netflix在线观看网站| 亚洲精品中文字幕在线视频| 国产主播在线观看一区二区| 91av网站免费观看| 在线av久久热| 无限看片的www在线观看| 91字幕亚洲| 精品一区二区三卡| 中亚洲国语对白在线视频| 91国产中文字幕| 久久ye,这里只有精品| a级毛片黄视频| 999久久久精品免费观看国产| 日韩欧美国产一区二区入口| 久久精品国产亚洲av香蕉五月 | 91字幕亚洲| 国产精品久久久av美女十八| 亚洲国产看品久久| 日本黄色日本黄色录像| 最黄视频免费看| 国产精品欧美亚洲77777| 首页视频小说图片口味搜索| 搡老熟女国产l中国老女人| 国产成人精品久久二区二区免费| 亚洲欧美一区二区三区久久| 日韩中文字幕欧美一区二区| 日韩三级视频一区二区三区| 中国美女看黄片| 国产成人啪精品午夜网站| 亚洲午夜精品一区,二区,三区| 一级a爱视频在线免费观看| 波多野结衣av一区二区av| 国产午夜精品久久久久久| 波多野结衣一区麻豆| 久久影院123| 午夜两性在线视频| 天堂动漫精品| 嫁个100分男人电影在线观看| 亚洲情色 制服丝袜| 99久久99久久久精品蜜桃| 成人国产一区最新在线观看| 亚洲精品粉嫩美女一区| 最黄视频免费看| 丁香六月欧美| 免费黄频网站在线观看国产| 最近最新免费中文字幕在线| 可以免费在线观看a视频的电影网站| 91九色精品人成在线观看| 老熟女久久久| 精品免费久久久久久久清纯 | 老司机午夜福利在线观看视频 | 两个人免费观看高清视频| 国产精品九九99| 一级,二级,三级黄色视频| 2018国产大陆天天弄谢| 又黄又粗又硬又大视频| 天天躁狠狠躁夜夜躁狠狠躁| 丁香欧美五月| 久热这里只有精品99| 精品国产超薄肉色丝袜足j| 91精品国产国语对白视频| 18禁黄网站禁片午夜丰满| 高清av免费在线| 日韩中文字幕视频在线看片| 精品一区二区三区av网在线观看 | 午夜免费成人在线视频| 国产在线观看jvid| 免费看a级黄色片| 欧美黑人欧美精品刺激| 成人免费观看视频高清| 亚洲国产精品一区二区三区在线| 香蕉国产在线看| 如日韩欧美国产精品一区二区三区| 欧美一级毛片孕妇| 国产av国产精品国产| 精品卡一卡二卡四卡免费| 国产一区二区 视频在线| 成年女人毛片免费观看观看9 | 岛国毛片在线播放| 在线观看人妻少妇| 青草久久国产| 丝袜美腿诱惑在线| 国产亚洲欧美在线一区二区| 久久午夜亚洲精品久久| 王馨瑶露胸无遮挡在线观看| 无遮挡黄片免费观看| 18禁美女被吸乳视频| 国产激情久久老熟女| 精品高清国产在线一区| 少妇粗大呻吟视频| 国产男女超爽视频在线观看| 久久天躁狠狠躁夜夜2o2o| √禁漫天堂资源中文www| 中文亚洲av片在线观看爽 | 亚洲精品av麻豆狂野| 99久久人妻综合| 久久中文字幕一级| 亚洲欧洲日产国产| 不卡一级毛片| 日韩熟女老妇一区二区性免费视频| 欧美黄色淫秽网站| 精品少妇一区二区三区视频日本电影| 国产精品麻豆人妻色哟哟久久| 免费女性裸体啪啪无遮挡网站| 脱女人内裤的视频| 国产xxxxx性猛交| 久久亚洲真实| 亚洲精品av麻豆狂野| kizo精华| 99久久精品国产亚洲精品| 美女国产高潮福利片在线看| 人人妻,人人澡人人爽秒播| 亚洲精品在线美女| 女人精品久久久久毛片| 精品国产一区二区久久| 亚洲人成电影观看| 欧美成狂野欧美在线观看| 波多野结衣一区麻豆| 操美女的视频在线观看| 国产激情久久老熟女| 老熟妇乱子伦视频在线观看| 十八禁网站免费在线| 久久这里只有精品19| 久久精品亚洲熟妇少妇任你| 久久久久久久国产电影| 亚洲中文av在线| 亚洲精品乱久久久久久| 黄色视频在线播放观看不卡| 视频区欧美日本亚洲| 最新在线观看一区二区三区| 亚洲三区欧美一区| 国产亚洲精品久久久久5区| 欧美一级毛片孕妇| 天堂俺去俺来也www色官网| 精品久久久久久久毛片微露脸| 成年女人毛片免费观看观看9 | 成在线人永久免费视频| 亚洲精品国产色婷婷电影| 亚洲精品国产区一区二| 久久中文字幕人妻熟女| 精品第一国产精品| 美女视频免费永久观看网站| 日韩视频一区二区在线观看| av一本久久久久| 中文字幕制服av| 一夜夜www| 高清在线国产一区| 久久婷婷成人综合色麻豆| 俄罗斯特黄特色一大片| 久久影院123| 午夜精品国产一区二区电影| 一本一本久久a久久精品综合妖精| 久久这里只有精品19| 美女国产高潮福利片在线看| 捣出白浆h1v1| 操美女的视频在线观看| 国产亚洲一区二区精品| 久久中文字幕一级| 性少妇av在线| 成人特级黄色片久久久久久久 | 美女主播在线视频| 97人妻天天添夜夜摸| 国产日韩欧美在线精品| 69精品国产乱码久久久| 国产精品98久久久久久宅男小说| 啦啦啦 在线观看视频| 婷婷丁香在线五月| 少妇粗大呻吟视频| 精品福利永久在线观看| 99精品在免费线老司机午夜| 欧美黑人精品巨大| 久久久精品国产亚洲av高清涩受| 国产亚洲一区二区精品| 中文欧美无线码| 高清欧美精品videossex| 久久国产精品大桥未久av| www.熟女人妻精品国产| 少妇精品久久久久久久| 十八禁人妻一区二区| 日本av手机在线免费观看| 好男人电影高清在线观看| 久久中文字幕人妻熟女| 国产97色在线日韩免费| 精品福利观看| 午夜福利乱码中文字幕| 男女边摸边吃奶| www.熟女人妻精品国产| 欧美激情久久久久久爽电影 | 久久精品国产综合久久久| 久久精品亚洲精品国产色婷小说| 韩国精品一区二区三区| 黄色视频不卡| 日本黄色日本黄色录像| 十八禁人妻一区二区| 欧美中文综合在线视频| 午夜激情av网站| 巨乳人妻的诱惑在线观看| 麻豆av在线久日| 成人精品一区二区免费| 久久天堂一区二区三区四区| 可以免费在线观看a视频的电影网站| 欧美日韩黄片免| 久久精品国产亚洲av高清一级| 50天的宝宝边吃奶边哭怎么回事| 久热这里只有精品99| 黄色片一级片一级黄色片| 亚洲精品国产区一区二| cao死你这个sao货| 午夜福利影视在线免费观看| 亚洲精品国产精品久久久不卡| 国产男女内射视频| 色在线成人网| 精品熟女少妇八av免费久了| 亚洲专区字幕在线| 国产免费现黄频在线看| 国产aⅴ精品一区二区三区波| 十八禁高潮呻吟视频| 一区二区三区精品91| 亚洲自偷自拍图片 自拍| 在线天堂中文资源库| 色尼玛亚洲综合影院| 在线观看人妻少妇| 久久久精品国产亚洲av高清涩受| 黄色 视频免费看| 国产精品 国内视频| 9191精品国产免费久久| 他把我摸到了高潮在线观看 | 黄色 视频免费看| 亚洲国产精品一区二区三区在线| 啦啦啦视频在线资源免费观看| 国产高清激情床上av| 大香蕉久久成人网| 一边摸一边抽搐一进一出视频| 成人亚洲精品一区在线观看| 国产99久久九九免费精品| 亚洲成人免费av在线播放| 两人在一起打扑克的视频| 每晚都被弄得嗷嗷叫到高潮| 成人手机av| 成年人午夜在线观看视频| 久久久久久久精品吃奶| 亚洲午夜理论影院| 国产亚洲欧美在线一区二区| 日本av手机在线免费观看| 五月开心婷婷网| netflix在线观看网站| 国产伦人伦偷精品视频| 亚洲欧美日韩高清在线视频 | 国产亚洲精品第一综合不卡| 在线亚洲精品国产二区图片欧美| 18禁国产床啪视频网站| 最近最新免费中文字幕在线| 欧美黄色淫秽网站| 我要看黄色一级片免费的| 男女午夜视频在线观看| 90打野战视频偷拍视频| aaaaa片日本免费| 色老头精品视频在线观看| av天堂在线播放| 极品教师在线免费播放| 国产精品一区二区免费欧美| 久久婷婷成人综合色麻豆| 午夜福利在线免费观看网站| 亚洲综合色网址| 女同久久另类99精品国产91| 免费女性裸体啪啪无遮挡网站| svipshipincom国产片| 国产精品久久久久久精品古装| 国产高清国产精品国产三级| 色在线成人网| 国产熟女午夜一区二区三区| 在线观看66精品国产| 免费观看人在逋| 色综合婷婷激情| www.999成人在线观看| 亚洲欧洲日产国产| 一个人免费看片子| 午夜老司机福利片| 一边摸一边做爽爽视频免费| 色精品久久人妻99蜜桃| 97人妻天天添夜夜摸| 成在线人永久免费视频| 黄色毛片三级朝国网站| 国产精品九九99| 两个人看的免费小视频| 黄片小视频在线播放| 色综合欧美亚洲国产小说| 99国产极品粉嫩在线观看| 久久精品国产99精品国产亚洲性色 | 国产av又大| 91字幕亚洲| 日韩有码中文字幕| 老熟妇仑乱视频hdxx| 黄色视频,在线免费观看| 午夜福利影视在线免费观看| 久久国产精品大桥未久av| 一区二区三区国产精品乱码| 国产精品.久久久| 午夜久久久在线观看| 午夜视频精品福利| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美日韩黄片免| 久久天躁狠狠躁夜夜2o2o| 夜夜骑夜夜射夜夜干| 久久天堂一区二区三区四区| www.熟女人妻精品国产| 日韩欧美一区二区三区在线观看 | 18禁美女被吸乳视频| 在线观看舔阴道视频| 性高湖久久久久久久久免费观看| 欧美一级毛片孕妇| 国产精品99久久99久久久不卡| 亚洲av美国av| 免费女性裸体啪啪无遮挡网站| 日韩中文字幕视频在线看片| a级毛片黄视频| 午夜福利乱码中文字幕| 高清毛片免费观看视频网站 | a级片在线免费高清观看视频| 精品久久久久久电影网| av免费在线观看网站| 欧美激情极品国产一区二区三区| 大片电影免费在线观看免费| 麻豆成人av在线观看| 国产精品一区二区在线观看99| 欧美中文综合在线视频| 91字幕亚洲| 在线看a的网站| 一本综合久久免费| 国产又爽黄色视频| 伦理电影免费视频| 人妻一区二区av| 老司机午夜十八禁免费视频| 精品国产一区二区三区四区第35| 日韩一卡2卡3卡4卡2021年| 自线自在国产av| 1024视频免费在线观看| 黑人巨大精品欧美一区二区mp4| 久久中文字幕一级| 免费日韩欧美在线观看| 精品福利永久在线观看| 在线观看66精品国产| 精品福利永久在线观看| 另类精品久久| 成人黄色视频免费在线看| 悠悠久久av| 丝袜人妻中文字幕| 在线 av 中文字幕| cao死你这个sao货| 一二三四在线观看免费中文在| 国产成人精品无人区| 在线观看免费视频日本深夜| 欧美乱妇无乱码| 久久久久久免费高清国产稀缺| 中国美女看黄片| 国产深夜福利视频在线观看| av片东京热男人的天堂| 精品人妻1区二区| 制服诱惑二区| 午夜激情久久久久久久| 久久国产亚洲av麻豆专区| 啦啦啦免费观看视频1| 久久久久国内视频| 一本大道久久a久久精品| 国产不卡av网站在线观看| 国产成人av激情在线播放| 美女午夜性视频免费| 少妇的丰满在线观看| 免费黄频网站在线观看国产| 国产精品美女特级片免费视频播放器 | 一区二区av电影网| 久久久精品区二区三区| 男女免费视频国产| 午夜日韩欧美国产| 在线天堂中文资源库| 成人影院久久| 免费少妇av软件| 午夜精品久久久久久毛片777| 国产精品熟女久久久久浪| 男女床上黄色一级片免费看| 免费久久久久久久精品成人欧美视频| 国产高清视频在线播放一区| 一边摸一边抽搐一进一小说 | 一本—道久久a久久精品蜜桃钙片| 亚洲熟女毛片儿| 国产免费福利视频在线观看| 在线观看免费高清a一片| 他把我摸到了高潮在线观看 | 精品午夜福利视频在线观看一区 | 久热这里只有精品99| 久久国产精品人妻蜜桃| 国产精品二区激情视频| 91国产中文字幕| 国产亚洲av高清不卡| 精品一区二区三区四区五区乱码| 热99久久久久精品小说推荐| 亚洲午夜理论影院| 成人手机av| 国产精品麻豆人妻色哟哟久久| 黑人欧美特级aaaaaa片| 男女之事视频高清在线观看| 女人被躁到高潮嗷嗷叫费观| 欧美另类亚洲清纯唯美| 性高湖久久久久久久久免费观看| 国产精品98久久久久久宅男小说| 菩萨蛮人人尽说江南好唐韦庄| 国产欧美日韩一区二区三| 一本久久精品| 欧美乱妇无乱码| 国产又爽黄色视频| 真人做人爱边吃奶动态| 久久精品91无色码中文字幕| 精品亚洲成a人片在线观看| 亚洲精品国产色婷婷电影| 日韩欧美免费精品| 国产亚洲一区二区精品| 亚洲综合色网址| 国产三级黄色录像| 一边摸一边做爽爽视频免费| 日韩大片免费观看网站| 十八禁网站免费在线| 美女国产高潮福利片在线看| 亚洲国产av影院在线观看| 18禁国产床啪视频网站| 老司机亚洲免费影院| 国产成人av教育| 少妇被粗大的猛进出69影院| 又黄又粗又硬又大视频| 久久香蕉激情| 久久久欧美国产精品| 成人永久免费在线观看视频 | 飞空精品影院首页| 多毛熟女@视频| 免费高清在线观看日韩| 日韩中文字幕欧美一区二区| 精品久久蜜臀av无| 成人亚洲精品一区在线观看| 亚洲中文字幕日韩| 午夜激情久久久久久久| 久久精品人人爽人人爽视色| 亚洲精品在线美女| 午夜成年电影在线免费观看| 亚洲性夜色夜夜综合|