• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Detecting entanglement of quantum channels

    2021-11-13 05:36:52ChaojianLiBangHaiWangBujiaoWuandXiaoYuan
    Communications in Theoretical Physics 2021年11期

    Chaojian Li,Bang-Hai Wang,Bujiao Wu and Xiao Yuan

    1 School of Computer Science and Technology,Guangdong University of Technology,Guangzhou 510006,China

    2 Advanced Institute of Information Technology,Peking University,China

    3 Center on Frontiers of Computing Studies,Department of Computer Science,Peking University,Beijing 100871,China

    Abstract Entanglement is the crucial resource for different quantum information processing tasks.While conventional studies focus on the entanglement of bipartite or multipartite quantum states,recent works have extended the scenario to the entanglement of quantum channels,an operational quantification of the channel entanglement manipulation capability.Based on the recently proposed channel entanglement resource framework,here we study a further task of resource detection—witnessing entanglement of quantum channels.We first introduce the general framework and show how channel entanglement detection is related to the Choi state of the channel,enabling channel entanglement detection via conventional state entanglement detection methods.We also consider entanglement of multipartite quantum channels and use the stabilizer formalism to construct entanglement witnesses for circuits consisting of controlled-Z gates.We study the effectiveness of the proposed detection methods and compare their performance for several typical channels.Our work paves the way for systematic theoretical studies of channel entanglement and practical benchmarking of noisy intermediate scaled quantum devices.

    Keywords: quantum entanglement,quantum channel,entanglement detection,entanglement witness

    1.lntroduction

    Entanglement is a key feature of quantum physics [1—3],having wide applications in various quantum information processing tasks including quantum dense coding [4],quantum teleportation [5],quantum cryptography [6],quantum computation [7],etc.However,because almost every quantum system is noisy,how the noise affects the quantum system and whether entanglement survives under the noise is important for robust and reliable quantum information processing.It thus becomes one of the basic problems of quantum entanglement theory to check whether a quantum state is entangled or not.Entangled quantum states could be detected and analyzed by several theoretical and experimental tools.Many researchers have contributed to various separability standards and detection methods [8—16].Notable approaches in the practical analysis of entanglement include the usage of positive but not completely positive maps[8]and entanglement witnesses [9—12].

    Conventional entanglement theory focuses on the nonlocal correlation of quantum states,and quantum channels are used as their manipulation tool.Recent works have shown that quantum channel itself could be regarded as the resource object [17—22] and the entanglement of channels has be studied under the framework of quantum resource theories[23—28].Analog to quantum states,quantum channels are also categorized into entangled and separable ones,with the amount of entanglement quantified via channel entanglement measures [23—25].Since a positive channel entanglement measure generally implies the existence of entanglement,it serves as a natural way to detect channel entanglement.However,a channel entanglement measure generally requires full information of the process,hence demanding a cost that is exponential to the system size.Because the channel has both inputs and outputs,the cost increases even quadratically faster than the one of states.Efficient state entanglement detection methods exist when exploiting the specific structure of the target resource and allowing a certain amount of failure,whether we could analogously detect channel entanglement remains open.

    Here,we address this problem by considering general approaches for detecting channel entanglement.We first review the framework of state and channel entanglement as well as the task of entanglement detection.Then we show that detecting the channel entanglement is equivalent to detecting the entanglement of the corresponding Choi state,the output state of the channel given the maximally entangled input.We give three general channel entanglement detection strategies based on conventional state entanglement detection methods—negative partial transpose(NPT)[29],the computable cross norm or realignment criterion (CCNR)criterion [30,31],and entanglement witnesses.We further extend the discussion to multipartite quantum channels and show how the stabilizer formalism[32]helps in designing entanglement witnesses for circuits consisting of CZ gates.As examples,we consider noisy CNOT and SWAP channels and show the effectiveness of the propose methods.

    2.Background

    We first review the framework of entanglement for bipartite states and channels,and the task of entanglement detection.For a system A,we denote the corresponding Hilbert space as HAand the set of state operators as D(A) .Consider a bipartite system AB,we call the stateσABseparable when it can be expressed as [33—35]

    withλi≥0,∑iλi= 1,and local statesσA,σBon quantum systems A and B,respectively.Otherwise the state is entangled.On the other hand,quantum channels are linear and completely positive and trace-preserving maps which act on quantum states [36].A quantum channel N could be written in the Kraus form [37] as

    where the Kraus operators{Ki} fulfilLet NAB∈ CPTP(AB→A′B′)be a bipartite channel,it is called separable [23,25] if it can be written as

    Suppose a quantum information task requires to prepare an entangled stateψABand the practically prepared state isρAB.The task of entanglement detection is to determine whetherρABis entangled.A general detection strategy corresponds to a function f,which distinguishes separable and entangled states.However,since the geometry of the set of separable states is complex,detecting the entanglement of an arbitrary state is a challenging task.A conventional entanglement detection strategy is to exploit a linear witness operator W such that Tr (WσAB) ≥0for all separable statesσABand it detects the entanglement ofρABwith Tr (WρAB)<0[16].Here we review three general strategies of constructing the witness operator,which will be extended to detecting entanglement of quantum channels in the next section.

    The first method is to exploit the positive but not completely positive map of transpose,or the NPT property of states.In particular,we always havewhen applying a partial transposeTAon a separable stateσAB,whereas we could have a negative partial transposed statewhenρABis entangled.In this case,we can find the eigenvector∣φ〉with a negative eigenvalue [38],i.e.withλ<0.Then,a linear witness operator can be constructed as follows [16,29]

    It is easy to verify that for any state with positive partial transpose,which include separable statesσAB,we have

    and for the entangled stateρAB,

    In practice,we may not know the density matrixρABand hence cannot get the eigenvectors with negative eigenvalues.Nevertheless,a realistic quantum protocol generally assumes an ideal pure stateψAB,and the partial transposed pure statecould be used as the witness operator.Indeed,any partial transposed pure state could serve as the witness operator,although to be able to detect the entanglement of a given state,the operator should be accordingly chosen.

    The second method is based on a Schimidt decomposition [39] of the density operator,namely the computable CCNR.Specifically,denote the set of Hermitian operators on H as L ( H) ,which is a linear space with inner productfor anyV1,V2∈L ( H).Then for any density matrixρAB∈ D (HAB) ?L (HAB),the Schmidt decomposition ofρABis

    whereλk≥0,andare orthonormal bases in L ( HA) and L ( HB) ,respectively.Then we can construct the witness as follows [30,31]

    It is easy to verify that for any separable statewe have

    Therefore,the stateρABis entangled whenever Tr[ρABW]<0.Again,the witness operator W could be constructed from any state,for example based on the ideal pure stateψAB.

    In the third method,we construct the witness operator W based on any observable O as

    where

    Since Tr[σABO] ≤α,we have Tr[WσAB] ≥0for all separable states.In practice,we could chooseO=ψABand the witness operator can effectively detect entanglement with white noise.

    Given the witness operator,a practical scheme is to decompose the operator into local observables.This is particularly important for detecting multipartite entanglement because it is hard to measure a general multipartite observable.Efficient witnesses have been constructed for several typical classes of states including the W state and general graph states.In the next section,we show how similar strategies could be extended to efficient channel entanglement detection.

    3.Channel entanglement detection

    3.1.Bipartite channels

    Since a quantum channel has both inputs and outputs,we first map a channel to a quantum state.In particular,consider a bipartite channel NABthat maps AB toA′B′,we consider the maximally entangled input state ΦAA?ΦBBwithand d being the dimension of each subsystem [23—25].The output state

    is called the Choi state which is a one-to-one map between states and channels.The entanglement of the biparitite channel can be now reformulated via the entanglement of the Choi state.

    Lemma 1.A bipartite channel NABis entangled if the Choi stateis entangled.

    Similar results have been discussed in several works[23—25]and we refer to appendix for the proof.Based on such a connection,we can now study the entanglement of channels via its Choi state.Focusing on entanglement detection,our task now becomes to find an observable W,such thatfor all separable channels N.Following the above results for quantum states,we can similarly introduces three types of witness operators for Choi states of channels.

    We will shortly show that we can realize the witness with quantum games consisting of proper input states,measurements,and payoffs.Next,we extend the discussion to the multipartite scenario.

    3.2.Multipartite channel entanglement

    We consider the entanglement of multipartite channels[40,41].Consider a channelΘnthat maps n systems{1 ,2,… ,n}to n systems{1 ′ ,2′,… ,n′},it is fully separable when

    Based on the Choi state of the channel

    we can similarly relate the entanglement ofΘnto the entanglement of

    Lemma 2.A multipartite channelΘnis(genuinely)entangled if the Choi state(genuinely) entangled.

    Therefore,we could use techniques of detecting multipartite entanglement to detect channel entanglement.While the three entanglement detection methods work similarly for multipartite channels,how to make the detection to be efficient is in general a challenging task for multipartite channels.

    3.3.Entanglement detection via quantum games

    In the above discussion,the entanglement witness is constructed and applied with respect to the Choi state of the channel.While we could get the Choi state by inputting a maximally entangled state,we need to double the system size,making its implementation hard.Here,we show a different yet equivalent entanglement detection way via quantum games [43—46].

    A quantum gameG is defined by the tuple G=({αij} ,{ρi} ,{Oj}),whereρiare input states,{Oj}is a positive observable valued measures at the output,andαij∈R are the real coefficients which define the particular game.The performance in the gameG enabled by a channel N is quantified by the payoff function

    Consider the bipartite channel NABas an example,we haveaccording to the Choi—Jamiolkowski isomorphism.Then we have

    where the W operator is

    Therefore,for any witness operator W,we can decompose it as above and it corresponds to a quantum game[43].Suppose the quantum game with a witness operator W is G(W) ,then we can show that for any separable channel NABwe have

    In practice,we can equivalently realize the witness via a quantum game.Instead of witnessing the entanglement of the Choi state,we can apply the channel to a set of input states,measure the output,and linearly combine the measurement outcomes.The game payoff function plays a similar role of detecting channel entanglement.

    4.Example

    Now we show entanglement detection for several typical channels.We also note the following fact that local unitary operations before and after the channel does not change the entanglement.

    Therefore,any entanglement witness for a channel N works similarly to other channels V? N ? U that are equivalent to N under local unitary operations U andV.

    4.1.Bipartite channels

    We first consider bipartite channels,specifically,the CNOT and SWAP gate under local depolarizing noise,as shown in figure 1.In particular the CNOT and SWAP gates are unitary

    Figure 1.The CNOT or SWAP gate with local depolarizing noise.Given maximally entangled input states ΦA A = ∣Φ〉〈Φ∣AA and ΦB B = ∣Φ 〉〈Φ∣BB,the output state corresponds to the Choi state of the noise channel.The task is to detect the entanglement of the output state between the bipartition betweenAA′ and B′ B.

    and the local depolarizing noise is

    The noisy CNOT/SWAP channel is

    where U is eitherUCNOTorUSWAP.Here we explicitly show the three entanglement witnesses for the CNOT gate and the result works analogy for the SWAP gate.

    The Choi state of the CNOT gate is

    and the density matrix is

    The three witness operators could then be constructed accordingly.Consider the eigenvector with a negative eigenvalue ofthe witness operators of the first method isWCNOT,1= ∣φ〉〈φ∣TAA′with

    Given the witness operator,we can now construct the quantum game by decomposing the witness in the Pauli basis.In particular,we have the quantum games forWCNOT,1andWCNOT,2as shown in tables 1 and 2,respectively.We note that interestingly,even though the two witness operatorsWCNOT,2andWCNOT,3are constructed differently,we do haveWCNOT,2= 2*WCNOT,3.We note that in the quantum games forWCNOT,1andWCNOT,2,we used Pauli matrix as input states for simplicity,which is not exactly correct.Nevertheless,we can solve the problem by decomposing each Pauli matrix as a linear combination of pure states.Furthermore,there may exist better decomposition of the witness operator when we consider general input states and measurements [44,47].

    Table 1.Quantum game with WCNOT,1 for the noisy CNOT gate.

    Table 2.Quantum game with WCNOT,2 for the noisy CNOT gate.

    For the SWAP gate,its Choi state is

    and the density matrix is

    The three witness operators could then be constructed accordingly.Consider the eigenvector with a negative eigenvalue of,the witness operators of the first method is

    Interestingly,for the second and third method,we again have the same witness (with different but irrelevant normalization factor).In particular,we haveWSWAP,2=6WSWAP,3withWe also convert the witness into quantum games.In particular,we have the quantum games forWSWAP,1andWSWAP,2as shown in table 3 and 4,respectively.

    Table 3.Quantum game with WSWAP,1 for the noisy SWAP gate.

    Table 4.Quantum game with WSWAP,2 for the noisy SWAP gate.

    Consider a noisy CNOT and SWAP gate with different noise ratio,we show the three entanglement witness values in figure 2.Since the second and third methods give basically the same witness,we have normalized the witness value.For the noisy CNOT gate,the second and the third methods outperform the first method,whereas for the noisy SWAP gate,have the same effect under normalization.

    Figure 2.Entanglement witness values for the noisy CNOT and SWAP gates as a function of the noise parameter p.Since the witnesses have different normalization,we only plot different witness values under normalization.In particular,for the noisy CNOT gate,the second and third witnesses have the same value after proper normalization.For the noisy SWAP gate,they all have the same value after normalization.

    4.2.Multipartite channels

    Up to now,we have studied the effectiveness of the proposed detection methods and compare their performance for several typical bipiartite channels.Here we consider the entanglement of multipartite quantum channels,and use stabilizer witness to detect multipartite channels consisting of noisy CZ gates[48].We consider a special circuit with two CZ gates in figure 3(a)and the results could be similarly generalized to larger circuits with more CZ gates.Using lemma 3,the Choi state ΦAA1BB1CC1of the circuit could be mapped to a graph state∣GCZ〉(see figure 3(b))with white noise on local system[49].Therefore,we can use stabilizer witness to detect the entanglement of the graph state∣GCZ〉 to study the entanglement of the noisy CZ multipartite channel [50].The elements of the stabilizer for

    Figure 3.(a)An example quantum circuit consisting of two CZ gates with local depolarizing noise.The Choi state of (a) is equivalent to(b) the graph state∣G C Z 〉up to local unitary rotation.

    graph state∣GCZ〉 are products of the operators

    Then,we can consider the following stabilizer witness

    for the graph state to detect the genuine entanglement of the channel.We can similarly convert the witness into a quantum game according to section 3.3.In particular,we apply the Hadamard gate on qubit2,4,6 and map the Pauli measurements on qubit1,3,5 as input states.The entanglement of the noisy CZ multipartite channel is shown in figure 4.We can clearly observe the existence of genuine entanglement wheneverp< 0.2.We note that the method could be extended to quantum circuits consisting of multiple CZ gates.In the general case,we can similarly construct the stabilizer witness.

    Figure 4.Stabilizer witness valueas a function about the noise parameter p.

    5.Conclusion

    In this work,we have studied entanglement detection of quantum channels.By relating the channel entanglement to the entanglement of the corresponding Choi state,we exploit state entanglement detection methods for witnessing channel entanglement.Using the language of quantum games,we can further convert the witness operator as a quantum game of the channel.Based on the general result,we proposed three methods to construct witnesses that allow to detect entanglement of bipartite channels and compare their performance for noisy CNOT and SWAP channels.From these results,the three methods could become convenient tools for routine performance detection of bipartite quantum channels.We also introduced the definition of mulitipartite channel entanglement,noting that Choi state of quantum channels with CZ gates correspond to graph states.We can then use graph state witnesses to detect multipartite circuits consisting of CZ gates.

    Acknowledgments

    We are grateful to Jinzhao Sun for helpful discussions.This work is supported by the National Natural Science Foundation of China under Grant Nos.62 072 119 and 61 672 007,and Guangdong Basic and Applied Basic Research Foundation under Grant No.2020A1515011180.

    Appendix A.Proof of lemma 1

    Here we prove that a bipartite channel is separable if its Choi state is separable.First,let N ∈ CPTP (A0B0→A1B1) be a bipartite channel.If N is separable,it can be expressed as

    Lemma 4.For a bipartite channel N ∈ CPTP (A0B0→A1B1) ,its Choi state is separable if N is a separable channel.

    Proof.If a bipartite channel N ∈ CPTP (A0B0→A1B1) is separable.Then,we have

    So Choi state of the bipartite channel N is separable.□

    If Choi state ΦAA1BB1of a bipartite channel N is separable,it can be expressed as

    we assume thatandare pure states.Hence

    Lemma 5.For a given bipartite channel N ∈ CPTP (A0B0→A1B1) .N is separable if its Choi state is separable.

    Proof.We first assume that the input state is a product state,i.e.ρAB=ρA?ρB.According to the Choi—Jamiolkowski isomorphism,we have

    For a general input state,we can always decompose it as a linear combination of product states (possibly with negative coefficients).Together with the linearity of the above equation,it is not hard to see that it also hold for any bipartite quantum state.□

    Appendix B.Sketch proof of lemma 2

    The proof of lemma 2 follows naturally with the help lemma 1.First,we show that a separable multipartite channel is equivalent to a separable Choi state.In this case,we divide the parties into two partitions and regard the system as a bipartite one.Then we can exploit lemma 1 to prove the equivalence.The equivalence for genuine entanglement follow naturally.

    最近手机中文字幕大全| 亚洲欧美日韩另类电影网站| 中文乱码字字幕精品一区二区三区| 成年人午夜在线观看视频| 18禁观看日本| 国产午夜精品一二区理论片| 久久女婷五月综合色啪小说| 一级,二级,三级黄色视频| 亚洲精品自拍成人| 亚洲美女视频黄频| svipshipincom国产片| 亚洲精品av麻豆狂野| 国产 精品1| 国产精品久久久久久精品古装| 免费少妇av软件| 五月开心婷婷网| 国产精品久久久久久人妻精品电影 | 黄片无遮挡物在线观看| 精品久久蜜臀av无| 啦啦啦中文免费视频观看日本| 老司机影院成人| 韩国高清视频一区二区三区| 久久婷婷青草| 免费观看人在逋| 午夜av观看不卡| 日本猛色少妇xxxxx猛交久久| 久久国产亚洲av麻豆专区| 成年人午夜在线观看视频| 免费看av在线观看网站| 成人午夜精彩视频在线观看| 狠狠婷婷综合久久久久久88av| 国产熟女午夜一区二区三区| 日本色播在线视频| 欧美日韩亚洲国产一区二区在线观看 | 久久性视频一级片| 亚洲av男天堂| 午夜福利视频精品| 老汉色∧v一级毛片| 一区二区日韩欧美中文字幕| 叶爱在线成人免费视频播放| 看非洲黑人一级黄片| 别揉我奶头~嗯~啊~动态视频 | 成人亚洲精品一区在线观看| 18在线观看网站| xxx大片免费视频| 久久韩国三级中文字幕| 超碰97精品在线观看| 午夜福利乱码中文字幕| 国产伦人伦偷精品视频| 日韩一卡2卡3卡4卡2021年| 国产av国产精品国产| 99热全是精品| 午夜福利一区二区在线看| 中文字幕人妻丝袜制服| 精品久久久久久电影网| 丁香六月欧美| 亚洲av综合色区一区| 中文字幕制服av| 国产精品久久久人人做人人爽| 亚洲第一区二区三区不卡| 午夜老司机福利片| 9色porny在线观看| 秋霞在线观看毛片| 国产午夜精品一二区理论片| 午夜福利网站1000一区二区三区| 精品久久蜜臀av无| 2021少妇久久久久久久久久久| 丝瓜视频免费看黄片| 亚洲久久久国产精品| 亚洲一区二区三区欧美精品| 国产成人啪精品午夜网站| 夜夜骑夜夜射夜夜干| 九九爱精品视频在线观看| 99国产精品免费福利视频| 麻豆av在线久日| 成人三级做爰电影| 高清欧美精品videossex| 国产精品久久久久久久久免| 男女床上黄色一级片免费看| 18在线观看网站| 欧美另类一区| 最近2019中文字幕mv第一页| 成年动漫av网址| 天堂中文最新版在线下载| 日韩一卡2卡3卡4卡2021年| 热re99久久国产66热| 国产精品久久久久久精品古装| 久久国产精品男人的天堂亚洲| 精品亚洲乱码少妇综合久久| 亚洲av电影在线进入| 精品国产乱码久久久久久小说| 人人澡人人妻人| 侵犯人妻中文字幕一二三四区| 精品国产一区二区三区四区第35| 成年美女黄网站色视频大全免费| 成人国产av品久久久| 亚洲第一青青草原| 成年美女黄网站色视频大全免费| 自拍欧美九色日韩亚洲蝌蚪91| 日韩欧美精品免费久久| 男女午夜视频在线观看| 伦理电影大哥的女人| 成人黄色视频免费在线看| 亚洲国产精品一区三区| 久久久久精品性色| 一区福利在线观看| 日韩人妻精品一区2区三区| 大片电影免费在线观看免费| 亚洲一区中文字幕在线| 丁香六月天网| 亚洲第一区二区三区不卡| 狂野欧美激情性xxxx| 国语对白做爰xxxⅹ性视频网站| 韩国精品一区二区三区| 99re6热这里在线精品视频| 如日韩欧美国产精品一区二区三区| 久久久久人妻精品一区果冻| 国产 精品1| 九九爱精品视频在线观看| 色94色欧美一区二区| 欧美日韩视频精品一区| 精品一区二区三区av网在线观看 | 国产av码专区亚洲av| 国产欧美日韩综合在线一区二区| 少妇猛男粗大的猛烈进出视频| 亚洲国产成人一精品久久久| 性高湖久久久久久久久免费观看| 一区二区av电影网| 99九九在线精品视频| 精品亚洲成国产av| 51午夜福利影视在线观看| 久久久久视频综合| 色播在线永久视频| 久久久国产欧美日韩av| 国产成人精品久久久久久| 成年女人毛片免费观看观看9 | 亚洲熟女毛片儿| 精品人妻在线不人妻| av.在线天堂| 亚洲精品乱久久久久久| 中文字幕高清在线视频| 极品少妇高潮喷水抽搐| 黄频高清免费视频| 熟女少妇亚洲综合色aaa.| 伦理电影免费视频| 亚洲欧美激情在线| 免费在线观看完整版高清| 青草久久国产| 丁香六月欧美| 精品人妻一区二区三区麻豆| 欧美xxⅹ黑人| 亚洲欧洲精品一区二区精品久久久 | 精品一区二区三卡| 免费高清在线观看视频在线观看| www.熟女人妻精品国产| 日韩中文字幕欧美一区二区 | 91国产中文字幕| 9色porny在线观看| 丝瓜视频免费看黄片| 99国产综合亚洲精品| 成人国产av品久久久| 母亲3免费完整高清在线观看| 亚洲欧洲日产国产| 黄网站色视频无遮挡免费观看| 亚洲,欧美精品.| 91aial.com中文字幕在线观看| 日韩成人av中文字幕在线观看| 18禁观看日本| 中文字幕另类日韩欧美亚洲嫩草| 午夜激情久久久久久久| 精品少妇一区二区三区视频日本电影 | 亚洲一区二区三区欧美精品| 国产97色在线日韩免费| 老司机亚洲免费影院| 在线观看人妻少妇| 母亲3免费完整高清在线观看| 国产亚洲最大av| 亚洲五月色婷婷综合| 热99久久久久精品小说推荐| 欧美人与性动交α欧美精品济南到| 久久97久久精品| 黑人巨大精品欧美一区二区蜜桃| 久久人妻熟女aⅴ| 国产激情久久老熟女| 在线免费观看不下载黄p国产| 成年动漫av网址| 一区二区三区精品91| 国产成人av激情在线播放| 久久久久久久大尺度免费视频| 天天添夜夜摸| 久久久精品94久久精品| 国产成人欧美| 黑丝袜美女国产一区| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品免费视频内射| 捣出白浆h1v1| 国产成人免费观看mmmm| 最近2019中文字幕mv第一页| 大香蕉久久网| 欧美日韩亚洲国产一区二区在线观看 | 超碰成人久久| kizo精华| 大话2 男鬼变身卡| 亚洲综合色网址| 亚洲五月色婷婷综合| 成年人免费黄色播放视频| 视频区图区小说| 免费日韩欧美在线观看| 尾随美女入室| 免费在线观看黄色视频的| 咕卡用的链子| 久久毛片免费看一区二区三区| 国产熟女午夜一区二区三区| 免费日韩欧美在线观看| 精品少妇黑人巨大在线播放| 久久久久视频综合| 婷婷色av中文字幕| 中文字幕另类日韩欧美亚洲嫩草| 青春草亚洲视频在线观看| 久久久久久人人人人人| 亚洲欧美一区二区三区黑人| 亚洲欧洲精品一区二区精品久久久 | 国产精品香港三级国产av潘金莲 | 欧美精品av麻豆av| 老司机靠b影院| 国产男女超爽视频在线观看| 午夜激情久久久久久久| 女的被弄到高潮叫床怎么办| 日韩熟女老妇一区二区性免费视频| 在线观看三级黄色| 老汉色∧v一级毛片| 你懂的网址亚洲精品在线观看| 精品一区在线观看国产| 自线自在国产av| 永久免费av网站大全| 欧美精品av麻豆av| 三上悠亚av全集在线观看| 尾随美女入室| 中文字幕色久视频| 亚洲熟女毛片儿| 国产高清不卡午夜福利| 国产精品欧美亚洲77777| 亚洲精品国产区一区二| 肉色欧美久久久久久久蜜桃| 男女高潮啪啪啪动态图| 亚洲美女搞黄在线观看| 天天躁夜夜躁狠狠久久av| 久久精品久久精品一区二区三区| 在线观看人妻少妇| 日本色播在线视频| 一边摸一边抽搐一进一出视频| 国产成人一区二区在线| 国产成人欧美在线观看 | 久久亚洲国产成人精品v| 亚洲伊人久久精品综合| 黄色视频在线播放观看不卡| 午夜福利在线免费观看网站| 成人国语在线视频| 飞空精品影院首页| a级毛片在线看网站| 久久97久久精品| 精品国产一区二区三区四区第35| 日本一区二区免费在线视频| 97人妻天天添夜夜摸| 国产一区二区三区综合在线观看| av网站在线播放免费| 国产精品蜜桃在线观看| 麻豆av在线久日| 亚洲婷婷狠狠爱综合网| 18禁国产床啪视频网站| 国产精品亚洲av一区麻豆 | 男的添女的下面高潮视频| 欧美日韩视频高清一区二区三区二| av线在线观看网站| 天天躁夜夜躁狠狠久久av| 中文字幕高清在线视频| 赤兔流量卡办理| 美女主播在线视频| 9热在线视频观看99| 看十八女毛片水多多多| 亚洲国产中文字幕在线视频| 亚洲图色成人| 免费人妻精品一区二区三区视频| 国产精品久久久久成人av| 中文字幕人妻丝袜一区二区 | 宅男免费午夜| 爱豆传媒免费全集在线观看| 国产无遮挡羞羞视频在线观看| 欧美激情高清一区二区三区 | 夫妻性生交免费视频一级片| 青春草亚洲视频在线观看| 午夜福利视频在线观看免费| 一级,二级,三级黄色视频| 精品国产国语对白av| 久久久欧美国产精品| 国产精品秋霞免费鲁丝片| 国产精品免费视频内射| 精品免费久久久久久久清纯 | 欧美成人精品欧美一级黄| 亚洲av欧美aⅴ国产| 卡戴珊不雅视频在线播放| 国产精品国产av在线观看| 日韩制服骚丝袜av| 九色亚洲精品在线播放| 精品国产露脸久久av麻豆| 精品一区在线观看国产| 一边摸一边做爽爽视频免费| 久久人妻熟女aⅴ| 国产99久久九九免费精品| 午夜福利视频在线观看免费| 欧美人与性动交α欧美精品济南到| 欧美日韩av久久| 五月开心婷婷网| 多毛熟女@视频| videos熟女内射| 国产成人精品久久二区二区91 | a级片在线免费高清观看视频| 国产极品粉嫩免费观看在线| 一边摸一边做爽爽视频免费| 欧美精品一区二区大全| 毛片一级片免费看久久久久| 国产一区二区三区综合在线观看| 成人18禁高潮啪啪吃奶动态图| 午夜福利视频在线观看免费| 亚洲美女黄色视频免费看| 老司机亚洲免费影院| 精品少妇黑人巨大在线播放| 男女边吃奶边做爰视频| 老熟女久久久| 国产欧美日韩综合在线一区二区| 亚洲精品中文字幕在线视频| 一级,二级,三级黄色视频| 日韩免费高清中文字幕av| 久久久精品免费免费高清| 欧美日韩一级在线毛片| 婷婷成人精品国产| 久久精品亚洲av国产电影网| 97精品久久久久久久久久精品| 国产有黄有色有爽视频| 91精品伊人久久大香线蕉| 国产午夜精品一二区理论片| 又粗又硬又长又爽又黄的视频| 乱人伦中国视频| 波多野结衣一区麻豆| 国产在视频线精品| 久久久久久久久久久免费av| 亚洲精品av麻豆狂野| a级片在线免费高清观看视频| 又大又爽又粗| 免费在线观看视频国产中文字幕亚洲 | 黄色视频在线播放观看不卡| 最近最新中文字幕大全免费视频 | 丝瓜视频免费看黄片| 欧美最新免费一区二区三区| 久久97久久精品| 亚洲第一青青草原| 中文字幕最新亚洲高清| 国产av一区二区精品久久| 国产97色在线日韩免费| 精品人妻一区二区三区麻豆| 菩萨蛮人人尽说江南好唐韦庄| 九色亚洲精品在线播放| 久久久久久久久久久久大奶| 亚洲国产精品成人久久小说| 男女下面插进去视频免费观看| 色播在线永久视频| 久久精品人人爽人人爽视色| 日日爽夜夜爽网站| 亚洲精华国产精华液的使用体验| 国产片内射在线| 在线观看一区二区三区激情| 国产精品秋霞免费鲁丝片| 国产精品久久久久久久久免| 男人操女人黄网站| 久久久精品区二区三区| 婷婷色麻豆天堂久久| 精品一区二区三区av网在线观看 | 狂野欧美激情性xxxx| 精品亚洲乱码少妇综合久久| 亚洲国产av影院在线观看| 18禁动态无遮挡网站| 欧美精品一区二区免费开放| 啦啦啦啦在线视频资源| 男女边摸边吃奶| 国产片特级美女逼逼视频| 欧美日韩一区二区视频在线观看视频在线| 波多野结衣一区麻豆| 水蜜桃什么品种好| 日韩人妻精品一区2区三区| av电影中文网址| 女人久久www免费人成看片| 欧美日韩视频高清一区二区三区二| 国产不卡av网站在线观看| 大片电影免费在线观看免费| 美女中出高潮动态图| 十分钟在线观看高清视频www| 亚洲图色成人| 国产成人91sexporn| 三上悠亚av全集在线观看| 日本色播在线视频| 亚洲国产欧美日韩在线播放| 成人手机av| 国产精品一区二区精品视频观看| 日韩一本色道免费dvd| 美女国产高潮福利片在线看| 国产福利在线免费观看视频| 欧美国产精品va在线观看不卡| 一级毛片黄色毛片免费观看视频| 咕卡用的链子| 狠狠婷婷综合久久久久久88av| 天天躁日日躁夜夜躁夜夜| 黑丝袜美女国产一区| av卡一久久| videosex国产| 午夜91福利影院| 黑丝袜美女国产一区| 国产精品99久久99久久久不卡 | 亚洲伊人久久精品综合| 韩国精品一区二区三区| 午夜老司机福利片| 女人高潮潮喷娇喘18禁视频| 99九九在线精品视频| 国产一区二区激情短视频 | 久久热在线av| 久久久欧美国产精品| 久久久久精品国产欧美久久久 | 一二三四在线观看免费中文在| 肉色欧美久久久久久久蜜桃| netflix在线观看网站| 一区二区日韩欧美中文字幕| 激情五月婷婷亚洲| 久久狼人影院| 亚洲精品乱久久久久久| 亚洲国产看品久久| 一级片'在线观看视频| 亚洲国产毛片av蜜桃av| 少妇的丰满在线观看| 精品亚洲成a人片在线观看| 亚洲伊人久久精品综合| 亚洲国产毛片av蜜桃av| 熟女少妇亚洲综合色aaa.| avwww免费| 一边亲一边摸免费视频| 日韩av在线免费看完整版不卡| 大片免费播放器 马上看| 80岁老熟妇乱子伦牲交| 欧美xxⅹ黑人| 欧美亚洲 丝袜 人妻 在线| 国产成人a∨麻豆精品| 亚洲av成人不卡在线观看播放网 | videos熟女内射| 看非洲黑人一级黄片| 欧美成人午夜精品| 男女下面插进去视频免费观看| 久久精品国产综合久久久| 国产不卡av网站在线观看| 日日撸夜夜添| 久久久久久久大尺度免费视频| 国产黄色免费在线视频| 久久久久网色| 男女之事视频高清在线观看 | 亚洲伊人久久精品综合| 午夜精品国产一区二区电影| 亚洲色图 男人天堂 中文字幕| 日韩一区二区三区影片| 日韩一本色道免费dvd| 亚洲国产欧美网| 成年人免费黄色播放视频| 久久人人爽av亚洲精品天堂| 欧美变态另类bdsm刘玥| 少妇的丰满在线观看| 18禁观看日本| 观看av在线不卡| 国产精品一区二区精品视频观看| 丝袜美腿诱惑在线| 国产99久久九九免费精品| 亚洲视频免费观看视频| 国产男人的电影天堂91| 九九爱精品视频在线观看| 一区二区三区精品91| 美女国产高潮福利片在线看| 午夜福利在线免费观看网站| 欧美久久黑人一区二区| 日本91视频免费播放| 久久精品久久久久久噜噜老黄| 青春草国产在线视频| 亚洲国产精品一区二区三区在线| 中文字幕av电影在线播放| a级片在线免费高清观看视频| 亚洲综合色网址| 91成人精品电影| 日韩精品有码人妻一区| 久久久久国产一级毛片高清牌| 国产激情久久老熟女| 无遮挡黄片免费观看| 少妇被粗大猛烈的视频| 亚洲欧美日韩另类电影网站| 人体艺术视频欧美日本| 91精品国产国语对白视频| 久久久久精品人妻al黑| 制服人妻中文乱码| 精品亚洲乱码少妇综合久久| 国产成人精品在线电影| 青青草视频在线视频观看| 秋霞伦理黄片| 国产激情久久老熟女| 精品亚洲成国产av| 免费不卡黄色视频| 亚洲美女搞黄在线观看| 91aial.com中文字幕在线观看| 激情视频va一区二区三区| 亚洲国产欧美一区二区综合| 9191精品国产免费久久| 午夜免费男女啪啪视频观看| 国产亚洲午夜精品一区二区久久| 亚洲欧美清纯卡通| 精品少妇内射三级| 啦啦啦在线免费观看视频4| 免费黄色在线免费观看| 欧美人与善性xxx| 国产激情久久老熟女| 一个人免费看片子| 精品国产乱码久久久久久男人| 日日摸夜夜添夜夜爱| 男人添女人高潮全过程视频| 免费不卡黄色视频| av线在线观看网站| 久久久久精品久久久久真实原创| 亚洲精品国产av成人精品| 看十八女毛片水多多多| 午夜91福利影院| 亚洲国产精品成人久久小说| 精品视频人人做人人爽| 中文字幕人妻熟女乱码| 婷婷色综合www| 男女床上黄色一级片免费看| 777米奇影视久久| 丁香六月天网| 日本一区二区免费在线视频| 丝袜在线中文字幕| 国产黄频视频在线观看| 女性被躁到高潮视频| 亚洲欧美精品综合一区二区三区| 九九爱精品视频在线观看| 99精品久久久久人妻精品| 婷婷成人精品国产| 亚洲熟女精品中文字幕| 国产黄色视频一区二区在线观看| 精品视频人人做人人爽| 国产不卡av网站在线观看| 国产精品人妻久久久影院| 精品亚洲乱码少妇综合久久| 亚洲欧美成人综合另类久久久| 亚洲五月色婷婷综合| 欧美亚洲 丝袜 人妻 在线| 久久精品久久久久久久性| 91国产中文字幕| 在线免费观看不下载黄p国产| 亚洲精品日韩在线中文字幕| 亚洲欧美中文字幕日韩二区| 在线看a的网站| 国产精品久久久久成人av| 男女下面插进去视频免费观看| 最近手机中文字幕大全| 亚洲av日韩在线播放| 曰老女人黄片| 国产精品久久久久久人妻精品电影 | 99精品久久久久人妻精品| 久久精品国产综合久久久| 久久毛片免费看一区二区三区| 国产高清国产精品国产三级| 久久天堂一区二区三区四区| 精品第一国产精品| 捣出白浆h1v1| 男男h啪啪无遮挡| 女人久久www免费人成看片| 9191精品国产免费久久| 人体艺术视频欧美日本| 老司机深夜福利视频在线观看 | 国产乱来视频区| 免费观看av网站的网址| 一级毛片我不卡| 在线天堂中文资源库| 9色porny在线观看| 欧美人与善性xxx| 黑人欧美特级aaaaaa片| 人人妻人人爽人人添夜夜欢视频| 一级毛片电影观看| 国产精品香港三级国产av潘金莲 | 成年女人毛片免费观看观看9 | 亚洲av福利一区| 免费黄网站久久成人精品| 国产精品秋霞免费鲁丝片| videos熟女内射| 色吧在线观看| 中文字幕亚洲精品专区| 亚洲国产av新网站| 亚洲av成人不卡在线观看播放网 | 欧美日韩av久久| 亚洲欧美一区二区三区黑人| 亚洲国产欧美网| 看十八女毛片水多多多| av天堂久久9| 9热在线视频观看99| 国产成人精品久久二区二区91 | 青春草视频在线免费观看| 亚洲人成电影观看| 亚洲精品国产av成人精品| 精品国产乱码久久久久久男人| 精品卡一卡二卡四卡免费| 性高湖久久久久久久久免费观看| 亚洲,一卡二卡三卡| 人妻一区二区av| 国产成人av激情在线播放| 久久久久精品人妻al黑|