• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetic impact on heat and mass transfer utilizing nonofluid in an annulus between a superellipse obstacle and a cavity with periodic side-wall temperature and concentration

    2021-11-13 05:36:08AbdelraheemAlyandNouraAlsedais
    Communications in Theoretical Physics 2021年11期

    Abdelraheem M Alyand Noura Alsedais

    1 Department of Mathematics,King Khalid University,Abha 62529,Saudi Arabia

    2 Department of Mathematics,F(xiàn)aculty of Science,South Valley University,Qena 83523,Egypt

    3Department of Mathematical Sciences,College of Science,Princess Nourah Bint Abdulrahman University,Riyadh,Saudi Arabia

    Abstract The magnetic impacts upon the transport of heat and mass of an electrically conducting nanofluid within an annulus among an inner rhombus with convex and outer cavity with periodic temperature/concentration profiles on its left wall are assessed by the ISPH method.The right wall has Tc andCc ,flat walls are adiabatic,and the temperature and concentration of the left wall are altered sinusoidally with time.The features of the heat and mass transfer and fluid flow through an annulus are assessed across a wide scale of Hartmann number Ha,Soret numberSr,oscillation amplitude A,Dufour number Du,nanoparticles parameterφ,oscillation frequency f,Rayleigh number Ra,and radius of a superellipsea at Lewis numberLe= 20,magnetic field’s angleγ = 45° ,Prandtl numberPr= 6.2,a superellipse coefficient n= 3 /2,and buoyancy parameter N= 1.The results reveal that the velocity’s maximum reduces by70.93% as Ha boosts from 0 to 50,and by 66.24%as coefficienta boosts from0.1 to0.4.Whilst the velocity’s maximum augments by 83.04% asSr increases from 0.6 to 2 plus a decrease in Du from 1 to 0.03.The oscillation amplitude A,and frequency f are significantly affecting the nanofluid speed,and heat and mass transfer inside an annulus.Increasing the parameters A and f is augmenting the values of mean Nusselt number Nu and mean Sherwood number Sh.Increasing the radius of a superellipsea enhances the values of and

    Keywords: Dufour number,ISPH method,nanofluid,Soret number,rhombus,magnetic field

    Nomenclature

    Greek symbols

    Subscripts

    1.Introduction

    The research of the magnetic impacts has received a lot of consideration in engineering due to its wide range of uses for instance polymer and metallurgical industries,where hydromagnetic practices are employed.Lo[1]studied the magnetic impacts on a buoyancy-driven flow in an enclosure.Oztop et al [2] investigated the MHD natural convection from two semi-circular heaters inside an enclosure.The magnetic field is employed in controlling heat and fluid flow.Knowledge of the magnetic influences on the heat transfer process and flow actions inside enclosures occupied by electrically conducting fluids has become increasingly important [3—10].Recently,fluid dynamics researchers have shown a strong interest in the development of natural/mixed convection in nanofluid-filled cavities owing to their applications in various disciplines.Sherement and Pop [11] utilized the Buongiorno model to examine the natural convection in a porous cavity occupied by a nanofluid.In a heated closed rectangular enclosure,Alina and Lorenzini[12]studied the thermal behavior of ZnO-water nanofluid.Using the Lattice Boltzmann Method,Nemati et al[13] and Zhou and Yan [14] investigated natural convection through MHD flow in a cavity.The magnetic field is found to minimize cavity circulation.Mehmood et al[15]examine the magnetic impacts and thermal radiation on mixed convection of a nanofluid in a square porous cavity.More studies can be found in [16—27].

    There are a considerable number of studies that consider natural convection in different cavities including the inserted bodies.Natural convection caused by a hot inner circular cylinder inside a cold outer enclosure is calculated numerically by Kim et al[28].Sheikholeslami et al[29]investigated natural convection in a circular cavity including a sinusoidal cylinder.Jabbar et al[30]investigated natural convection in a sinusoidal enclosure having a circular cylinder.Aly [31]examined the double-diffusion in a porous enclosure contained nanofluid over two circular cylinders.Pop et al [32]studied the transmission of thermo-gravitational convection in a differentially heated chamber involving an adiabatic solid body.Sheremet et al [33] studied the thermo-gravitational of Al2O3—SiO2/H2O in a porous space holding a heat-conducting body.Bhattacharyya et al [34] examined heat and mass transport in a porous channel under the influences of Dufour,Soret,and inclined magnetic field.Kumar et al[35]explained the impacts of magnetite nanofluid over a rotating disk with considering chemical reaction and magnetic field.Shanker et al [36] checked partial velocity slip on MHD convective flow over a stretching surface.The topic of the nonuniform temperature profiles is occurring in several industrial applications,for instance,solar energy collection,building thermal isolations,energy storage,and cooling of electronic elements[37—42].

    The periodic changes in the electronic components’current are providing time changes in their surface temperature.This paper treats the magnetic influences on the heat and mass transfer of an electrically conducting nanofluid inside an annulus.The regulating equations of the continuity,momentum,energy,and mass in the dimensionless form are solved by the ISPH method.The main outcomes after studying the impacts of the relevant parameters on the nanofluid flow and lineaments of the heat and mass transfer are:

    · The increase in the Hartmann numberHa,nanoparticles parameterφ,and radius of a superellipseais slowing down the nanofluid speed in an annulus.

    · The values ofandare augmenting as nanoparticles parameterφ,Rayleigh numberRa,amplitudeA,and frequencyfare increasing.

    · IncreasingSrwith minimizingDuis improving the strength of the concentration distributions in an annulus,and accordinglyis strongly decreasing.

    2.Mathematical analysis

    Figure 1 describes the preliminary geometry and its particles model.In an outer cavity,the horizontal walls are presumed to be adiabatic,right wall is held atTcandCc,and the left wall is altered with sinusoidal temperature/concentration in a time.

    Figure 1.Geometry of the problem.

    The equation of the superellipse is:

    wheren,aandbare positive numbers,and their values are taken asn= 3 /2,anda=bis varied throughout the computations.Hence,the superellipse shape is taken as a rhombus with convex corners.The flow assumptions are:

    · The Boussinesq approximation is utilized,in which density variations are ignored except via the gravity term.

    · The inclined magnetic field (B0) used with an incline angleγalongx-yaxis with ignoring the viscous dissipation and Joule heating impacts.

    · One phase model is employed for nanofluid modeling.

    · The fluid flow is laminar,incompressible,and transitional.

    The governing equations are [43,44]:

    The dimensionless quantities:

    After substitute equation(7)in(2)—(6),the dimensionless equations are:

    2.1.Dimensionless boundary conditions

    Cavity’s right‐wall,and an inner blockageU=0,

    V= 0,θ= 0 = Φ,

    Mean Sherwood number:

    Mean Nusselt number:

    2.2.Nanofluid thermophysical properties

    In this study,the water is a base fluid and copper (Cu) is the nanoparticles.The physical attributes of the copper and H2O are shown in table 1.

    The density,specific heat,and thermal conductivity of a nanofluid [47—50],are:

    Table 1.Physical attributes of copper (Cu) and H2O [45,46].

    The Brinkman model for effective dynamic viscosity of a nanofluid [51]:

    Electrical conductivity of a nanofluid:

    3.ISPH formulation

    The ISPH method employs a quintic kernel functionW:

    whereq=rij/h.The description off(ri) in SPH estimation:

    The renormalization factorξi[43,44,52] is:

    The first derivative is:

    3.1.Solving steps

    The projection method [53] is employed in the ISPH method as:

    The projected velocities are:

    Pressure Poisson equation:

    The updated velocities are:

    The thermal and concentration equations are:

    The positions are:

    The shifting technique is:

    3.2.Validation of the ISPH method

    The comparison between numerical and experimental results from Paroncini and Corvaro [54] and the ISPH results are introduced in figure 2.The comparison showed the agreement of the ISPH results compared to the experimental and numerical results [54].Further,there are numerous validation examinations during the earlier studies of the ISPH method[43,44,52,55].

    Figure 2.Isotherms of the numerical and experimental results of [54] and the ISPH results.

    4.Results and discussion

    Results are processed for a large scale of parameters.The frequency and amplitude of the temperature/concentration are varied over(5≤f≤100) and (0.5 ≤A≤2) ,respectively.Hartmann number,nanoparticles parameter,Soret number,Rayleigh number,Dufour number,and radius of a superellipseaare varied as (0 ≤Ha≤50) ,(0≤φ≤0.05),(0.6 ≤Sr≤2),(103≤Ra≤105),(0.03 ≤Du≤1) ,and(0.03 ≤a≤1) ,respectively.All over the computations,buoyancy parameter isN=1,magnetic field’s angle isγ= 45° ,Lewis numberLe=20,a superellipse coefficientn=3 / 2,and Prandtl numberPr=6.2.

    Figure 3 shows the influences of nanoparticle’s parameterφon a nanofluid velocity,and deployments of temperature and concentration in an annulus atγ= 45° ,N=1,n=3 /2,a=0.35,Ra=104,A= 0.5,f=5,Sr=1,Du=0.12,andHa=10.For addition of the nanoparticles,the first remark is a decline in the velocity’s maximum by 17.49% asφgets from 0 until 0.05.Physically,adding nanoparticles serves an extra effective viscosity of a nanofluid.The second remark is that an extra value ofφdeclines the temperature and enhances the concentration within an annulus between a cavity and an inner superellipse.Figure 4 shows the reliance ofandon the time and nanoparticle’s parameters atγ= 45° ,N=1,n= 3 /2,a=0.35,Ra=104,A= 0.5,f=5,Sr= 1,Du=0.12,andHa=10.It is noted that a significant enhancement is existing in the values ofandfor higher nanoparticle’s parameterφ.

    Figure 3.The influences of nanoparticle’s parameterφ on nanofluid velocity,and deployments of temperature and concentration at γ = 45° ,N = 1,n =3 /2,a = 0.35,Ra =10 4,A = 0.5,f =5,Sr = 1,Du =0.12,andHa =10.

    Figure 4.The values of and below the influences of the nanoparticle’s parameter at γ = 45° ,N = 1,n =3 /2,a = 0.35,Ra =10 4,A = 0.5,f =5,Sr = 1,Du =0.12,andHa =10.

    The sequences of the velocity,temperature,and concentration contours are plotted at various Hartmann numberHaatγ= 45° ,N= 1,n=3 /2,a= 0.35,Ra=104,A= 0.5,f=5,Sr= 1,Du=0.12,andφ= 0.06 are shown in figure 5.Physically,the extra Lorentz forces of a magnetic field are produced at a higher Hartmann number.As a result,the velocity’s maximum reduces by 70.93%according to an increase inHafrom 0 to 50.In figures 5(b)—(c),there is a little reduction in the temperature and concentration contours within an annulus as the Hartmann number increases.Further,figure 6 presents the dependence ofandon the Hartmann number atγ= 45° ,N= 1,n=3 /2,a= 0.35,Ra=104,A=0.5,f=5,Sr= 1,Du=0.12,andφ= 0.06.It is clear that an increment on the Hartmann number reduces the values ofandwhich highlighting the Lorentz forces’controls on the convection flow.

    Figure 5.The influences of the Hartmann number on nanofluid velocity,and deployments of temperature and concentration at γ = 45° ,N=1,n = 3 /2,a =0.35,Ra =10 4,A = 0.5,f =5,Sr = 1,Du =0.12,andφ = 0.06.

    Figure 6.The values of and below the influences of the Hartmann number at γ = 45° ,N = 1,n =3 /2,a = 0.35,Ra =10 4,A = 0.5,f =5,Sr = 1,Du =0.12,andφ = 0.06.

    Figure 7.The influences of coefficient a for a superellipse on nanofluid velocity,and deployments of temperature and concentration at γ = 45° ,N = 1,n =3 /2,Ha = 10,Ra =10 4,A = 0.5,f =5,Sr = 1,Du =0.12,andφ = 0.06.

    Figure 7 introduces the impacts of a superellipse radiusaon the nanofluid velocity,and deployments of temperature and concentration in an annulus atγ= 45° ,N=1,n=3 /2,Ha= 10,Ra=104,A= 0.5,f=5,Sr=1,Du=0.12,andφ= 0.06.As the lengthacontrols the radius of an inner superellipse-blockage,an increment inafrom0.1 to0.4,the velocity’s maximum lessens by 66.24% and the temperature and concentration contours are reducing within an annulus.Physically,the inner superellipse represents a blockage for the convection flow,and consequently,as the area of a superellipse increase by an increment ina,the nanofluid movement and the deployments of the temperature and concentration are shrinking within the area between a cavity and an inner blockage.The impacts of the radius of a superellipseaon the values ofandare shown in figure 8.It is noted that an expansion in the radiusaaugments the values ofand.

    Figure 8.The values of and below the influences of the radius of a superellipse a at γ = 45° ,N = 1,n =3 /2,Ha = 10,Ra =10 4,A = 0.5,f =5,Sr = 1,Du =0.12,andφ = 0.06.

    Figures 9 and 10 show the impacts of combination values of the Soret—Dufour parameters(Sr and Du)on the nanofluid velocity,and deployments of temperature and concentration in an annulus as well asandatγ= 45° ,N=1,n= 3 /2,a=0.35,Ha= 10,Ra=104,A= 0.5,f=5,andφ= 0.06.In figure 9(a),the velocity’s maximum increases by 83.04% asSrincreases from 0.6 to 2 with a decrease inDufrom 1 to 0.03.In figures 9(b)—(c),according to an increase inSr(or a decrease inDu),there are slight changes in the temperature and a clear decrease in the concentration within an annulus.In figure 10,is slightly enhanced andis strongly decreased asSrincreases with a decrease inDu.Physically,Soret number is a mass alter of a temperature difference and Dufour number is a heat alter from the concentration difference.The combinations ofSrandDucan be found are referred in [31,56,57].

    Figure 9.The influences of the Soret and Dufour parameters on nanofluid velocity,and deployments of temperature and concentration at γ = 45° ,N = 1,n =3 /2,a = 0.35,Ha =10,Ra = 10 4,A = 0.5,f =5,andφ = 0.06.

    Figure 10.The values of and below the influences of Soret and Dufour numbers at γ = 45° ,N=1,n =3 /2,a = 0.35,Ha =10,Ra =10 4,A = 0.5,f =5,andφ = 0.06.

    Figures 11 and 12 show the influences of the Rayleigh numberRaon the nanofluid velocity,and deployments of temperature and concentration in an annulus as well asandatγ= 45° ,N= 1,n=3 /2,a= 0.35,Ha=10,A= 0.5,f=5,Sr= 1,Du=0.12,andφ= 0.06.In figure 11,asRapowers,the intensity of the velocity field boosts clearly and the temperature and concentration are improved from almost straight lines to the parallel lines across an annulus over a superellipse blockage.In figure 12,an increment inRaprovides a clear increment in the values ofand.Physically,increasingRapowers the buoyancy force which accelerates the nanofluid movements and enhances the heat/mass transport within an annulus.

    Figure 11.The influences of Ra on nanofluid velocity,and deployments of temperature and concentration at γ = 45° ,N=1,n = 3 /2,a =0.35,Ha =10,A = 0.5,f =5,Sr = 1,Du =0.12,andφ = 0.06.

    Figure 12.The values of and below the influences of the Ra at γ = 45° ,N=1,n = 3 /2,a =0.35,Ha =10,A = 0.5,f =5,Sr = 1,Du =0.12,andφ = 0.06.

    Figures 13—15 present the influences of the amplitudeAand frequencyfof the temperature and concentration oscillation on the nanofluid velocity,temperature and concentration within an annulus atγ= 45° ,N= 1,n=3 /2,a=0.35,Ha=10,Ra=104,Sr= 1,Du=0.12,andφ=0.06.In figure 13,it is remarked that as an amplitudeAraises from 0.5 to 2,the velocity’s maximum increases by 66.23%atf=5,whilst it decreases by 42% atf=50,and by 68.18%atf=100.In figures 14 and 15,it is observed that atf=5,the intensity of the temperature and concentration within an annulus is boosting extremely asAincreases from 0.5 to 2,whilst atf=50 or 100,the intensity of the temperature and concentration is decreasing asAincreases from 0.5 to 2.The fluctuations of the results are relevant to the definition of a sine wave for the periodic boundary condition of temperature and concentration in a left wall.Figure 16 shows a 3D-plot ofandbelow the influences of the amplitude and frequency of the temperature and concentration oscillation atγ= 45° ,N= 1,n=3 /2,a= 0.35,Ha=10,Ra=104,Sr=1,Du=0.12,andφ= 0.06.The values ofandare increasing as both of amplitudeAand frequencyfare increasing and it has seen whenf=50 andA=2,the highest values ofandare obtained.

    Figure 13.The influences of the amplitude and frequency of the temperature and concentration oscillation on the velocity field at γ = 45° ,N=1,n = 3 /2,a =0.35,Ha =10,Ra =10 4,Sr = 1,Du =0.12,andφ = 0.06.

    Figure 14.The influences of the amplitude and frequency of the temperature and concentration oscillation on the temperature at γ = 45° ,N = 1,n = 3 /2,a = 0.35,Ha =10,Ra = 10 4,Sr = 1,Du =0.12,andφ = 0.06.

    Figure 15.The influences of the amplitude and frequency of the temperature and concentration oscillation on the concentration at γ = 45° ,N = 1,n =3 /2,a = 0.35,Ha =10,Ra =10 4,Sr = 1,Du =0.12,andφ = 0.06.

    Figure 16.3D-plot of and below the influences of the amplitude and frequency of the temperature and concentration oscillation at γ = 45° ,N=1,n = 3 /2,a =0.35,Ha =10,Ra =10 4,Sr = 1,Du =0.12,andφ = 0.06.

    5.Conclusion

    The transport of heat and mass of an oscillating concentration and temperature in the left-side of an annulus between an inner rhombus with convex corners and an outer cavity is numerically investigated.The annulus is occupied by a nanofluid and is influenced by a magnetic field,thermo-diffusion,and diffusion-thermo.The implications of the pertinent parameters like oscillation amplitude,oscillation frequency,Hartmann number,nanoparticles parameter,Soret number,Rayleigh number,Dufour number,and radius of a superellipseaon the nanofluid flow and features of the heat and mass transmission have been discussed.It is remarked that the velocity’s maximum reduces by70.93%asHaraises from 0 to 50,by 66.24% as a radius of a superellipseaexpands from0.1 to0.4.AsAraises from 0.5 to 2,the velocity’s maximum declines by42% atf= 50,and by 68.18%atf= 100.Whilst the velocity’s maximum boosts by 66.23%atf= 5 asAincreases from 0.5 to 2,and by 83.04%asSrboosts from 0.6 to 2 with a decrease inDufrom 1 to 0.03.As an oscillation amplitudeAincreases from 0.5 to 2,the strength of the temperature and concentration is extremely boosting at an oscillation frequencyf=5,and decreasing atf=50 or 100.The values ofandare increasing as amplitudeAand frequencyfare increasing.The highest values ofandare obtained atf=50 andA=2.BoostingSrwith lower inDu,leads to the followings: the temperature distributions have little changes,the strength of the concentration distributions is augmented,is slightly enhanced,andis strongly decreased.

    Acknowledgments

    The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University,Abha,Saudi Arabia,for funding this work through the Research Group Project under Grant Number(RGP.2/144/42).This research was funded by the Deanship of Scientific Research at Princess Nourah Bint Abdulrahman University through the Fast-track Research Funding Program.

    ORCID iDs

    黑人巨大精品欧美一区二区蜜桃| 国产精品无大码| 一边亲一边摸免费视频| 亚洲精品国产av成人精品| 婷婷色av中文字幕| 亚洲精品一二三| 电影成人av| 在线观看三级黄色| 不卡av一区二区三区| 伊人久久国产一区二区| 九草在线视频观看| 国产精品国产三级专区第一集| 国产精品三级大全| 久久精品夜色国产| 亚洲,欧美精品.| 亚洲欧美一区二区三区黑人 | 美女国产高潮福利片在线看| 在线观看人妻少妇| 国产精品久久久av美女十八| av在线app专区| 亚洲精品国产av成人精品| 国产av码专区亚洲av| 国产有黄有色有爽视频| av免费观看日本| 久久久精品94久久精品| 午夜日韩欧美国产| 久久精品夜色国产| av在线app专区| 亚洲,欧美精品.| 亚洲欧美一区二区三区黑人 | av在线播放精品| www日本在线高清视频| 我要看黄色一级片免费的| 在线 av 中文字幕| 少妇人妻精品综合一区二区| 亚洲av在线观看美女高潮| 精品一区二区三卡| 精品视频人人做人人爽| 国产精品不卡视频一区二区| 国产色婷婷99| 国产一区有黄有色的免费视频| 国产精品香港三级国产av潘金莲 | 丝袜美足系列| 高清欧美精品videossex| 亚洲欧美清纯卡通| 国产片特级美女逼逼视频| 亚洲欧美一区二区三区国产| 婷婷成人精品国产| 欧美黄色片欧美黄色片| 国产精品成人在线| 在线观看国产h片| 一二三四在线观看免费中文在| 精品视频人人做人人爽| 亚洲人成电影观看| 成人18禁高潮啪啪吃奶动态图| 国产黄色视频一区二区在线观看| 欧美激情 高清一区二区三区| 亚洲av中文av极速乱| www.熟女人妻精品国产| 欧美精品亚洲一区二区| 久久av网站| 日韩人妻精品一区2区三区| 高清av免费在线| 老司机亚洲免费影院| 午夜影院在线不卡| a级毛片在线看网站| 777米奇影视久久| 女人精品久久久久毛片| www.自偷自拍.com| 91精品伊人久久大香线蕉| 亚洲精品久久午夜乱码| 观看美女的网站| 中文字幕av电影在线播放| 亚洲婷婷狠狠爱综合网| 热99国产精品久久久久久7| 国产精品免费视频内射| 亚洲三区欧美一区| 久久久久久人人人人人| 丝瓜视频免费看黄片| 涩涩av久久男人的天堂| 99久久精品国产国产毛片| 亚洲欧美日韩另类电影网站| 新久久久久国产一级毛片| 成人午夜精彩视频在线观看| 老司机影院毛片| 亚洲人成电影观看| 国产男女内射视频| 国产亚洲一区二区精品| 国产成人精品在线电影| 国产一区二区在线观看av| 9191精品国产免费久久| 在线观看免费视频网站a站| 国产福利在线免费观看视频| 午夜久久久在线观看| 亚洲欧美精品综合一区二区三区 | 男女免费视频国产| 制服人妻中文乱码| 三上悠亚av全集在线观看| 岛国毛片在线播放| av又黄又爽大尺度在线免费看| 超碰成人久久| 国产午夜精品一二区理论片| 女人被躁到高潮嗷嗷叫费观| 亚洲成色77777| 久久久久精品久久久久真实原创| 一本久久精品| 亚洲精品久久成人aⅴ小说| 美女大奶头黄色视频| 亚洲精品国产色婷婷电影| 日韩一区二区三区影片| 久久女婷五月综合色啪小说| 熟女少妇亚洲综合色aaa.| 下体分泌物呈黄色| 国产精品不卡视频一区二区| 这个男人来自地球电影免费观看 | 日韩一区二区三区影片| 免费高清在线观看日韩| 亚洲国产av新网站| videossex国产| 欧美精品高潮呻吟av久久| 免费观看av网站的网址| 丰满迷人的少妇在线观看| 啦啦啦啦在线视频资源| 亚洲久久久国产精品| 少妇被粗大猛烈的视频| 热99国产精品久久久久久7| 一区二区日韩欧美中文字幕| 欧美亚洲 丝袜 人妻 在线| 综合色丁香网| 久久精品国产鲁丝片午夜精品| 亚洲在久久综合| 中文字幕人妻熟女乱码| 亚洲一区中文字幕在线| 捣出白浆h1v1| 国产精品无大码| 亚洲成人手机| 久久狼人影院| 婷婷色麻豆天堂久久| www.熟女人妻精品国产| 韩国精品一区二区三区| 久久免费观看电影| 人人妻人人添人人爽欧美一区卜| 一个人免费看片子| 成人手机av| 一二三四中文在线观看免费高清| 美女午夜性视频免费| 1024视频免费在线观看| 99九九在线精品视频| 国产免费又黄又爽又色| av免费观看日本| 午夜福利影视在线免费观看| 久久精品国产a三级三级三级| 国产成人精品久久久久久| 高清av免费在线| 人妻系列 视频| 精品少妇黑人巨大在线播放| 久久久久久伊人网av| 国产精品熟女久久久久浪| 久热这里只有精品99| 18在线观看网站| 国产精品女同一区二区软件| 十八禁高潮呻吟视频| 国产福利在线免费观看视频| 中文字幕av电影在线播放| 国产精品麻豆人妻色哟哟久久| 成人毛片a级毛片在线播放| 中文字幕最新亚洲高清| 男人舔女人的私密视频| 日韩av在线免费看完整版不卡| 在线观看美女被高潮喷水网站| 天天躁夜夜躁狠狠躁躁| 亚洲一区二区三区欧美精品| 人妻人人澡人人爽人人| 亚洲在久久综合| 中国三级夫妇交换| 黄色 视频免费看| 色网站视频免费| 免费av中文字幕在线| 老汉色∧v一级毛片| 久久国产精品大桥未久av| 亚洲欧洲日产国产| 新久久久久国产一级毛片| 麻豆av在线久日| 国产1区2区3区精品| 久久久a久久爽久久v久久| 亚洲激情五月婷婷啪啪| 人妻人人澡人人爽人人| 欧美日本中文国产一区发布| 黑人猛操日本美女一级片| 久热久热在线精品观看| 寂寞人妻少妇视频99o| 国产精品一区二区在线不卡| 精品亚洲成国产av| 国产精品无大码| 春色校园在线视频观看| 老汉色av国产亚洲站长工具| 国产亚洲午夜精品一区二区久久| 国产日韩欧美亚洲二区| 国产精品一国产av| 亚洲国产精品成人久久小说| 亚洲av电影在线进入| 午夜久久久在线观看| 纯流量卡能插随身wifi吗| 最近最新中文字幕大全免费视频 | 视频区图区小说| 婷婷色综合大香蕉| 在线观看美女被高潮喷水网站| 秋霞在线观看毛片| 国产av一区二区精品久久| 永久网站在线| 亚洲伊人久久精品综合| 日本av手机在线免费观看| 精品少妇一区二区三区视频日本电影 | 一区二区三区精品91| 久久久精品94久久精品| 亚洲四区av| 一个人免费看片子| 日韩熟女老妇一区二区性免费视频| 街头女战士在线观看网站| www.熟女人妻精品国产| 日日啪夜夜爽| 欧美bdsm另类| 秋霞在线观看毛片| 纵有疾风起免费观看全集完整版| 精品卡一卡二卡四卡免费| 男人添女人高潮全过程视频| 国产极品粉嫩免费观看在线| 国产老妇伦熟女老妇高清| 国产伦理片在线播放av一区| 啦啦啦在线观看免费高清www| 亚洲成人一二三区av| 亚洲欧美一区二区三区黑人 | 欧美日韩综合久久久久久| 中国国产av一级| 女人高潮潮喷娇喘18禁视频| 波多野结衣一区麻豆| 久久国内精品自在自线图片| 国产精品一区二区在线观看99| 丰满乱子伦码专区| 波多野结衣av一区二区av| 波多野结衣一区麻豆| 亚洲精品日本国产第一区| 亚洲精品美女久久av网站| 大码成人一级视频| 国产深夜福利视频在线观看| 七月丁香在线播放| 亚洲精品在线美女| 91午夜精品亚洲一区二区三区| 午夜91福利影院| 亚洲成av片中文字幕在线观看 | 在线亚洲精品国产二区图片欧美| 亚洲人成电影观看| 亚洲欧美一区二区三区国产| 亚洲av日韩在线播放| 午夜福利视频精品| 中文字幕人妻丝袜一区二区 | 9热在线视频观看99| 国产在线免费精品| 精品少妇久久久久久888优播| 男人添女人高潮全过程视频| 色婷婷av一区二区三区视频| 中文字幕亚洲精品专区| 男女啪啪激烈高潮av片| 免费日韩欧美在线观看| 最近中文字幕2019免费版| 国产成人av激情在线播放| 成年动漫av网址| 精品国产一区二区久久| 午夜精品国产一区二区电影| 免费在线观看完整版高清| 日韩一本色道免费dvd| 日韩制服骚丝袜av| 亚洲情色 制服丝袜| 秋霞在线观看毛片| 日韩一区二区视频免费看| 成年美女黄网站色视频大全免费| 色吧在线观看| 天天躁夜夜躁狠狠躁躁| 欧美日韩精品成人综合77777| 国产精品免费视频内射| 久久人妻熟女aⅴ| 久久97久久精品| 亚洲精华国产精华液的使用体验| 国产精品 欧美亚洲| 精品亚洲成国产av| 久久精品久久久久久噜噜老黄| 建设人人有责人人尽责人人享有的| 男女免费视频国产| 不卡av一区二区三区| 国产成人精品在线电影| 美女福利国产在线| 看免费成人av毛片| 黄片播放在线免费| 精品一品国产午夜福利视频| 亚洲欧美成人综合另类久久久| 啦啦啦啦在线视频资源| 久久精品国产亚洲av高清一级| 国产精品人妻久久久影院| 999精品在线视频| 天天躁夜夜躁狠狠久久av| 人妻人人澡人人爽人人| 久久精品人人爽人人爽视色| av在线播放精品| 免费在线观看完整版高清| 多毛熟女@视频| 久久国产精品男人的天堂亚洲| 极品人妻少妇av视频| 黄色 视频免费看| 日本猛色少妇xxxxx猛交久久| 青春草国产在线视频| 国产成人精品久久二区二区91 | 色婷婷久久久亚洲欧美| 国产免费福利视频在线观看| 免费日韩欧美在线观看| 满18在线观看网站| 亚洲国产精品成人久久小说| 成人毛片a级毛片在线播放| 2021少妇久久久久久久久久久| 久久久久精品人妻al黑| 啦啦啦中文免费视频观看日本| 日韩在线高清观看一区二区三区| 成人影院久久| 亚洲,欧美精品.| 男女高潮啪啪啪动态图| 日韩一区二区视频免费看| 亚洲av福利一区| 国产日韩欧美亚洲二区| 日韩一卡2卡3卡4卡2021年| 男人舔女人的私密视频| 精品国产一区二区久久| 高清在线视频一区二区三区| 日韩一卡2卡3卡4卡2021年| 久久久久久人妻| 亚洲熟女精品中文字幕| 晚上一个人看的免费电影| 青草久久国产| 黄色 视频免费看| 国产精品无大码| 久久久精品区二区三区| 男人操女人黄网站| 欧美成人午夜精品| 久久久亚洲精品成人影院| 久久久久精品性色| 日韩人妻精品一区2区三区| 亚洲欧美中文字幕日韩二区| 边亲边吃奶的免费视频| 狂野欧美激情性bbbbbb| 2022亚洲国产成人精品| 麻豆乱淫一区二区| 免费高清在线观看视频在线观看| 热re99久久精品国产66热6| 最新的欧美精品一区二区| 丝袜脚勾引网站| 在线看a的网站| 99久久精品国产国产毛片| 肉色欧美久久久久久久蜜桃| 亚洲av免费高清在线观看| 国产熟女欧美一区二区| 国产在视频线精品| 亚洲欧美精品自产自拍| 中文乱码字字幕精品一区二区三区| 日本-黄色视频高清免费观看| 午夜老司机福利剧场| 最近中文字幕2019免费版| 日韩欧美精品免费久久| 国产av码专区亚洲av| 热re99久久国产66热| 国产精品国产av在线观看| 久久人妻熟女aⅴ| 一级片免费观看大全| 免费观看性生交大片5| 国产xxxxx性猛交| 亚洲色图 男人天堂 中文字幕| 亚洲欧美一区二区三区久久| 精品一品国产午夜福利视频| 99香蕉大伊视频| 成年人午夜在线观看视频| 伦理电影大哥的女人| 美女国产视频在线观看| 亚洲精品成人av观看孕妇| 欧美最新免费一区二区三区| 黑人猛操日本美女一级片| 成人二区视频| 叶爱在线成人免费视频播放| 欧美另类一区| 亚洲精品国产av蜜桃| 久久人妻熟女aⅴ| 亚洲色图综合在线观看| 99久久人妻综合| 波野结衣二区三区在线| 亚洲成国产人片在线观看| 亚洲五月色婷婷综合| 九草在线视频观看| 免费不卡的大黄色大毛片视频在线观看| 欧美日韩av久久| 成人亚洲欧美一区二区av| av卡一久久| 欧美+日韩+精品| 又粗又硬又长又爽又黄的视频| 波多野结衣av一区二区av| 国产精品人妻久久久影院| 国产xxxxx性猛交| 日本猛色少妇xxxxx猛交久久| 一区二区日韩欧美中文字幕| 精品第一国产精品| 欧美激情极品国产一区二区三区| 9191精品国产免费久久| 国产免费福利视频在线观看| 一级a爱视频在线免费观看| 久久久亚洲精品成人影院| 亚洲五月色婷婷综合| 亚洲av国产av综合av卡| 妹子高潮喷水视频| 26uuu在线亚洲综合色| 人妻少妇偷人精品九色| 国产黄频视频在线观看| 999久久久国产精品视频| 国产麻豆69| 久久久a久久爽久久v久久| 亚洲av福利一区| 一区二区日韩欧美中文字幕| 国产精品女同一区二区软件| 看免费成人av毛片| 美国免费a级毛片| 免费女性裸体啪啪无遮挡网站| 色婷婷久久久亚洲欧美| 午夜日本视频在线| 如何舔出高潮| 极品人妻少妇av视频| 波多野结衣av一区二区av| 欧美日韩亚洲国产一区二区在线观看 | 日韩中字成人| 十八禁高潮呻吟视频| 国产精品人妻久久久影院| 久久久a久久爽久久v久久| av福利片在线| 精品国产超薄肉色丝袜足j| av视频免费观看在线观看| 亚洲,欧美,日韩| av片东京热男人的天堂| a级毛片黄视频| 黄色配什么色好看| 多毛熟女@视频| 亚洲欧美色中文字幕在线| 亚洲欧洲国产日韩| 一区二区三区激情视频| a级毛片在线看网站| 成年人午夜在线观看视频| 欧美日韩综合久久久久久| 久久 成人 亚洲| 在线精品无人区一区二区三| 成人漫画全彩无遮挡| 美女福利国产在线| 久久毛片免费看一区二区三区| 可以免费在线观看a视频的电影网站 | 人人妻人人澡人人看| 精品亚洲乱码少妇综合久久| 大码成人一级视频| 另类亚洲欧美激情| 亚洲精品av麻豆狂野| 人体艺术视频欧美日本| 人妻少妇偷人精品九色| 一区在线观看完整版| 99久久人妻综合| 爱豆传媒免费全集在线观看| 考比视频在线观看| 日日摸夜夜添夜夜爱| 叶爱在线成人免费视频播放| 国产精品99久久99久久久不卡 | 成人漫画全彩无遮挡| www.av在线官网国产| 欧美日韩国产mv在线观看视频| 欧美日韩一区二区视频在线观看视频在线| 国产精品免费视频内射| 久久精品国产自在天天线| 久久久a久久爽久久v久久| 欧美少妇被猛烈插入视频| 高清视频免费观看一区二区| 精品卡一卡二卡四卡免费| 永久免费av网站大全| 三级国产精品片| av福利片在线| 国产色婷婷99| 综合色丁香网| 中文字幕人妻丝袜制服| 一边摸一边做爽爽视频免费| 26uuu在线亚洲综合色| 丝袜喷水一区| 成人18禁高潮啪啪吃奶动态图| 国产精品.久久久| 我要看黄色一级片免费的| 亚洲精品自拍成人| 天天躁夜夜躁狠狠躁躁| 熟女少妇亚洲综合色aaa.| 亚洲成av片中文字幕在线观看 | 亚洲在久久综合| 天天躁日日躁夜夜躁夜夜| 欧美最新免费一区二区三区| 久久韩国三级中文字幕| 日韩熟女老妇一区二区性免费视频| 中文字幕av电影在线播放| 亚洲,欧美,日韩| 久久久精品94久久精品| 国产日韩欧美在线精品| 亚洲伊人久久精品综合| 日韩制服丝袜自拍偷拍| 哪个播放器可以免费观看大片| 一边摸一边做爽爽视频免费| 最近最新中文字幕大全免费视频 | 黑丝袜美女国产一区| xxxhd国产人妻xxx| 成人午夜精彩视频在线观看| 99热网站在线观看| 十八禁高潮呻吟视频| 搡女人真爽免费视频火全软件| 男人舔女人的私密视频| 成人国产麻豆网| 999久久久国产精品视频| 人人妻人人澡人人看| 久久久久久久国产电影| 26uuu在线亚洲综合色| 亚洲国产成人一精品久久久| 欧美日韩一级在线毛片| 999久久久国产精品视频| av福利片在线| 亚洲精品国产av蜜桃| 26uuu在线亚洲综合色| 熟妇人妻不卡中文字幕| 亚洲美女视频黄频| 亚洲国产精品国产精品| 十分钟在线观看高清视频www| 在线观看人妻少妇| 精品午夜福利在线看| 久久国产精品男人的天堂亚洲| 欧美日韩亚洲国产一区二区在线观看 | 国产精品一区二区在线观看99| 亚洲国产精品成人久久小说| 精品国产乱码久久久久久小说| 久久久国产欧美日韩av| 黄片播放在线免费| 日本-黄色视频高清免费观看| 99热全是精品| 99久久中文字幕三级久久日本| 亚洲精品一二三| 咕卡用的链子| 国产精品成人在线| 少妇精品久久久久久久| 久久综合国产亚洲精品| 永久网站在线| 国产精品久久久久久久久免| 又粗又硬又长又爽又黄的视频| 亚洲国产日韩一区二区| a 毛片基地| 日韩精品有码人妻一区| 亚洲精品久久成人aⅴ小说| 少妇猛男粗大的猛烈进出视频| 伊人亚洲综合成人网| www.自偷自拍.com| 久久ye,这里只有精品| 成人亚洲欧美一区二区av| 亚洲三区欧美一区| 日韩三级伦理在线观看| 捣出白浆h1v1| 黄色视频在线播放观看不卡| 最新中文字幕久久久久| 午夜福利乱码中文字幕| 好男人视频免费观看在线| freevideosex欧美| 亚洲精品一区蜜桃| 两个人看的免费小视频| 国产免费福利视频在线观看| 国产成人欧美| 国产成人精品婷婷| 久久精品人人爽人人爽视色| 久久人人爽人人片av| av免费在线看不卡| 十八禁网站网址无遮挡| 国产 精品1| 国产一区二区在线观看av| 尾随美女入室| 国产老妇伦熟女老妇高清| 日韩精品有码人妻一区| 热99久久久久精品小说推荐| av卡一久久| 欧美xxⅹ黑人| 韩国av在线不卡| 一区在线观看完整版| 十八禁高潮呻吟视频| 日韩av免费高清视频| 人妻 亚洲 视频| 成人漫画全彩无遮挡| 久久精品国产亚洲av涩爱| 少妇猛男粗大的猛烈进出视频| 久久久国产精品麻豆| 精品国产国语对白av| 精品国产一区二区三区久久久樱花| 我要看黄色一级片免费的| 母亲3免费完整高清在线观看 | 波多野结衣av一区二区av| 色哟哟·www| 亚洲,欧美精品.| 美女福利国产在线| 午夜福利在线观看免费完整高清在| a 毛片基地| 男人操女人黄网站| 在线观看人妻少妇| 男女边吃奶边做爰视频| 精品少妇黑人巨大在线播放| 久久午夜福利片| 欧美精品人与动牲交sv欧美| 成人二区视频| 性少妇av在线| 成人午夜精彩视频在线观看| 久久97久久精品| 免费观看av网站的网址|