• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Exact Controllability and Exact Observability of Descriptor Infinite Dimensional Systems

    2021-11-07 02:23:14ZhaoqiangGe
    IEEE/CAA Journal of Automatica Sinica 2021年12期

    Zhaoqiang Ge

    Abstract—Necessary and sufficient conditions for the exact controllability and exact observability of a descriptor infinite dimensional system are obtained in the sense of distributional solution.These general results are used to examine the exact controllability and exact observability of the Dzektser equation in the theory of seepage and the exact controllability of wave equation.

    I.INTRODUCTION

    DESCRIPTOR infinite dimensional system is an important aspect of research for control theory (e.g.,[1]–[15]).It appears in the study of temperature distribution in a composite heat conductor,voltage distribution in electromagnetically coupled superconductive circuits,signal propagation in a system of electrical cables (e.g.,[11]–[14]).There is an essential distinction between descriptor and ordinary infinite dimensional systems (e.g.,[2],[13]–[17]).Under disturbance,not only descriptor infinite dimensional systems lose stability,but also great changes take place in their structure,such as leading to impulsive behavior.

    One of the most important problems for the study of descriptor infinite dimensional systems is controllability.Many important results for the controllability of infinite dimensional systems have been obtained (e.g.,[16,Ch.4],[17,Ch.11]).At the same time,many results have been obtained on the controllability of descriptor finite dimensional systems (e.g.,[18],[19],[20,Ch.2],[21,Ch.4]).But the results for the controllability of descriptor infinite dimensional systems are very little.The approximate controllability,exact controllability,and exact null controllability for descriptor infinite systems were studied in [8],[10],[22]–[25],respectively,in the sense of mild solution.The results show that the controllability of descriptor infinite dimensional systems is quite different from ordinary infinite dimensional systems.For example,in the case of infinite dimensional systems,exact controllability is a dual of exact observability.However,according to the direct extensions of the corresponding concepts of ordinary infinite dimensional systems,exact controllability is not necessarily the dual of the exact observability to descriptor infinite dimensional systems in the sense of mild solution.For a descriptor infinite dimensional system,impulse behavior may exist at initial time(e.g.,[2]) which may reduce system performance and even damage the system.In addition,due to the needs of some optimal control problems,the controllability of such systems must be studied.Therefore,we have to deal with the controllability of descriptor infinite dimensional systems in the sense of distributional solution.

    In [7],we have discussed the approximate controllability and approximate observability of a class of descriptor infinite dimensional systems in the sense of distributional solution.On the basis of [7],in this paper,the exact controllability and exact observability of a class of descriptor infinite dimensional systems are studied in the sense of distributional solution.Some necessary and sufficient conditions are obtained and dual principle is proved to be true for these two concepts.These general results are used to examine the exact controllability and exact observability of the Dzektser equation in the theory of seepage and the exact controllability of wave equation.Compared with the approximate controllability and the approximate observability,the conditions for the exact controllability and the exact observability are stronger.The research methods of the relevant conclusions are totally different from the approximate controllability and the approximate observability,which need to be solved by new methods.

    The descriptor infinite dimensional system

    is an abstract form of various partial differential equations and systems,whereL∈L(H1,H2),M∈CD(H1,H2),K∈L(H3,H2),ξ(t) and ζ(t) are state vector and control vector,respectively.Such system generally appears in temperature distribution in a composite heat conductor,voltage distribution in electromagnetically coupled superconductive circuits,signal propagation in a system of electrical cables,motion of ground waters with a free surface,diffusive-convective system with limited manipulating variables,physically meaningful constraints,etc.(see,e.g.,[2],[11]–[14],[26]–[28]).

    For convenience of discussion,the following definition is introduced.In the sense of this definition,we will clearly see the essential difference between descriptor and ordinary infinite dimensional systems.

    Definition 1:Descriptor infinite dimensional system (1) is called the regular descriptor infinite dimensional system with orderh(positive integer) if there exist Hilbert spacesH21,H22andF∈L(H2,H21×H22),G∈L(H21×H22,H1),whereFandGare bijective,such that

    Under these circumstances,operatorsFandGtransfer descriptor infinite dimensional system (1) into the following decoupled descriptor infinite dimensional system on Hilbert spaceH21×H22

    From [14,pp.135–138],we obtain that if,Mis a strong(L,q)-radial operator in (1),then descriptor infinite dimensional system (1) is regular descriptor infinite dimensional system with finite orderh,andh≤q+1.

    For convenience,here we recall the definitions of (L,q)-radial and strongly (L,q)-radial operators,respectively.

    An operatorMis called (L,q)-radial if

    In addition,from [14,pp.119–138],we see that many descriptor infinite dimensional systems are regular.Infinite dimensional subsystem (2) is a classical infinite dimensional system in control theory.The properties of descriptor system(3) determine the peculiarities of descriptor infinite dimensional system (1).For example,it is known that controls from the classCh?1([0,+∞),H3) must be used to solve descriptor system (3) in the weak sense (e.g.,[25]).This paper investigates the exact controllability of descriptor infinite dimensional system (1) under some additional hypotheses,or,equivalently,of descriptor infinite dimensional system (2)–(3)and corresponding exact observability.In Section II,the definition of exact controllability of descriptor infinite dimensional system (2)–(3) is introduced.Some necessary and sufficient conditions concerning the exact controllability of descriptor infinite dimensional system (2)–(3) are given by operator theory.In Section III,the concept of exact observability of descriptor infinite dimensional system (2)–(3)is introduced.Some necessary and sufficient conditions concerning this concept are obtained by operator theory.The dual principle of exact controllability and exact observability of the descriptor infinite dimensional system (2)–(3) are given by operator theory in Section IV.In Section V,the general results obtained are used to examine the exact controllability and exact observability of the Dzektser equation in the theory of seepage and the exact controllability of wave equation.Finally,in the last section we summarize our results.

    Here we give several auxiliary results.The exact controllability is invariant under system equivalence.Note that every regular descriptor infinite dimensional system is equivalent to descriptor infinite dimensional system (2)–(3),without loss of generality,in the following,we assume that descriptor infinite dimensional system (1) is of the form(2)–(3).

    Theorem 1 [2]:Suppose that descriptor infinite dimensional system (2)–(3) is the standard form of a regular descriptor infinite dimensional system with orderh,ζ ∈Ch?1([0,+∞),H3),and there exist constantsc>0,d>0 such that

    where exp(Vt) denotes the strongly continuous semigroup generated byV,

    where δ(t) is the Dirac function,δ(k)(t) is thek-th derivative of δ(t).For more details of Dirac function,see [29].

    It is well known that a mild solution ξ1(t) of infinite dimensional system (2) is expressible forξ10∈H2,ζ∈L2((0,τ),H3)by the formula

    where the integral is understood in the sense of Bochner ([16,pp.104]).

    Note that the first line of the matrix in (4),which gives a solution of descriptor infinite dimensional system (2)–(3),is a mild solution of infinite dimensional system (2),while the second line,which is a sum overi,is a distributional solution of descriptor system (3),and

    Remark 1:The significant feature of solution (4) of descriptor infinite dimensional system (2)–(3) is that it contains the impulse terms driven by both the initial value of the state ξ and the initial values of the control vector ζ as well as its derivatives even if ζ is sufficiently smooth.For ordinary infinite dimensional systems,this is not possible.

    Remark 2:There are strict differences between the mild solution [25]and the distributional solution of system (2)–(3).The main difference is in the expression ofξ2(t).For ξ2(0)∈H22,ζ ∈Ch?1([0,τ],H3),regard the function

    as a mild solution of (3).It follows from this that (3) is solvable in the sense of mild solution if and only if the compatibility condition between the right-hand side and the initial data

    is satisfied.Therefore,the mild solution of (3) is continuous on [0,τ],while the distributional solution of (3) is discontinuous on [0,τ].

    The following is discussed in the sense of distributional solution.

    Definition 2:A numberb∈Cis called theL-eigenvalue of the operatorMif there exists a vector ξ ≠0 such thatbLξ=Mξ.Such a vector ξis called theL-eigenvector of the operatorMcorresponding to theL-eigenvaluebof the operatorM.

    It is easily verified that theL-eigenvectors of the operatorMcorresponding to sameL-eigenvalue of the operatorMform a subspace ofH1.

    II.EXACT CONTROLLABILITY

    Consider the descriptor infinite dimensional system described by (2)–(3).The extension of the concept of exact controllability from infinite dimensional systems to descriptor infinite dimensional systems is as follows.

    Definition 3:Descriptor infinite dimensional system (2)–(3)is called exactly controllable on [0,τ](for some finite τ>0)if,for any state ξτ∈H21×H22and any initial state ξ0∈H21×H22,there exists a control ζ ∈Ch?1([0,τ],H3) such that the solution ξ(t)∈H21×H22of the descriptor infinite dimensional system (2)–(3) satisfies ξ(τ)=ξτ.

    Our purpose here is to establish necessary and sufficient conditions for the exact controllability of descriptor infinite dimensional system (2)–(3) with bounded operatorsK1andK2.

    As for the exact controllability of infinite dimensional system (2),we have the following results.

    Theorem 2 [16,pp.148]:Infinite dimensional subsystem (2)is exactly controllable on [0,τ]if and only if the following condition holds for somecτ>0 and for all ξ∈H21:

    According to Theorem 2,we obtain the following theorem.

    Theorem 3:Infinite dimensional subsystem (2) is exactly controllable on [0,τ]if and only if the following condition holds for somecτ>0 and for all ξ∈H21:

    g(t)=th(t?τ)h

    where .In this case

    has bounded inverse.

    Proof:Sufficiency.Since,by (8),we have that

    Therefore (7) is true.By Theorem 2,system (2) is exactly controllable on [0,τ].

    Necessity.Assume (7).If (8) is false,then for any positive integerm,there exists ξm∈H21and ‖ξm‖H21=1,such that

    Sinceg2(t) is an increasing function,whent∈[0,τ/2]andg2(t)is a decreasing function,whent∈[τ/2,τ],we have thatg2(t)≥(1/m)1/2[(1/m)1/(4h)?τ]2h,

    By (9),we get that

    From (7),we obtain that

    Asm→+∞,we have that 0 ≥τ2h cτ>0.This contradiction indicates that (8) is true.By [16,Example A.4.2],the inverseis bounded.

    As for the exact controllability of descriptor system (3),we have the following theorem.

    Theorem 4:Descriptor system (3) is exactly controllable on[0,τ]if and only if

    Proof:Necessity.Exact controllability of descriptor system(3) on [0,τ]implies that for any state ξ2τ∈H22and any initial state ξ20∈H22,there exists a control ζ ∈Ch?1([0,τ],H3) such that the solution given by (6) satisfies ξ2(τ)=ξ2τ.Therefore(10) is true.

    Sufficiency.Since (10) holds,for any state ξ2τ∈H22and any initial state ξ20∈H22,there existai∈H3,i=0,1,...,h?1,such that.By(6),it follows that,for anyt>0,the corresponding solution is determined only by the value ζ(i)(t),i=0,1,...,h?1.Therefore if a controlζ(t)satisfies

    Now,we discuss the exact controllability of descriptor infinite dimensional system (2)–(3).

    Theorem 5:Descriptor infinite dimensional system (2)–(3)is exactly controllable on [0,τ]if and only if both infinite dimensional system (2) and descriptor system (3) are exactly controllable on [0,τ].

    Proof:The necessity is obvious.We only need to prove the sufficiency.Assume ξ10,ξ1τ∈H21and ξ20,ξ2τ∈H22.We have to find ζ∈Ch?1([0,τ],H3) such that

    Thus,(12)is true.Therefore descriptor infinite dimensional system (2)–(3)is exactly controllable on [0,τ].

    III.EXACT OBSERVABILITY

    In this section,we introduce the dual concept-exact observability.Exact observability is concerned with the ability to reconstruct the state from the system output.Therefore,different from Section II,in this section,the descriptor infinite dimensional system to be considered is following form:

    whereF1andF2are bounded linear operators fromH21andH22to Hilbert spaceH4,respectively.The two subsystems of(15) are assumed to be

    Definition 4 [16,pp.154]:1) Infinite dimensional subsystem(16) is called exactly observable on [0,τ](for some finite τ>0) if the initial condition ξ1(0) can be uniquely and continuously determined from the output data η1(t) inL2((0,τ),H4).

    2) Descriptor subsystem (17) is called exactly observable on[0,τ](for some finite τ>0) if

    3) Descriptor infinite dimensional system (15) is called exactly observable on [0,τ](for some finite τ>0) if both infinite dimensional system (16) and descriptor system (17)are exactly observable on [0,τ].

    Clearly,Definition 4 reduces to the exact observability in infinite dimensional system theory when the descriptor infinite dimensional system (15) is an infinite dimensional system.By Definition 4,we can obtain the following theorem.

    Theorem 6:Let infinite dimensional system (16) and descriptor system (17) be two subsystems of the regular descriptor infinite dimensional system (15).

    4) ([16,Corollary 4.1.14]) Infinite dimensional subsystem(16) is exactly observable on [0,τ]if and only if the following c∫ondition holds for somecτ>0 and for all ξ ∈H21:.

    5) If descriptor subsystem (17) is exactly observable on[0,τ],then the initial state ξ2(0) can be uniquely determined from the output data η2(t),t∈[0,τ].

    6) If descriptor infinite dimensional system (15) is exactly observable on [0,τ],then the initial state ξ(0) can be uniquely determined from the output data η(t),t∈[0,τ].

    Proof:Proof of conclusion 5).According to (4),we have

    From the linear independencies ofδ(i?1)(t)(i=1,2,...,h?1),we obtain that

    if and only ifF2Piξ2(0)=0(i=0,1,2,...,h?1).According to[16,Theorem A.3.61]and (18),we have

    Therefore ξ2(0)=0.

    Proof of conclusion 6).From (4),we obtain that

    By forms of η1(t)and η2(t),we have that η(t)≡0,t∈[0,τ]if and only if η1(t)≡0and η2(t)≡0,t∈[0,τ].Therefore,by proofs of conclusions 4) and 5) of the theorem,ifF1eVtξ1(0)=0 on[0,τ]and (18) is true,thenξ1(0)=0 and ξ2(0)=0,respectively.Hence,the third conclusion holds.

    IV.THE DUAL PRINCIPLE

    In this section,we deal with the dual principle for regular descriptor infinite dimensional system.Let us first introduce the dual system of a regular descriptor infinite dimensional system in the form of

    The two subsystems of descriptor infinite dimensional system (19) are

    Definition 5:The following descriptor infinite dimensional system

    is called the dual system of descriptor infinite dimensional system (19).

    If descriptor infinite dimensional system (22) is the dual system of descriptor infinite dimensional system (19),then the two subsystems of descriptor infinite dimensional system (22)

    are the dual systems of infinite dimensional system (20) and descriptor system (21),respectively.

    The following dual principle reveals the relation between the exact controllability (exact observability) of descriptor infinite dimensional system (19) and the exact observability(exact controllability) of its dual descriptor infinite dimensional system (22).

    Theorem 7:Descriptor infinite dimensional system (19) is exactly controllable (exactly observable) on [0,τ]if and only if its dual descriptor infinite dimensional system (22) is exactly observable (exactly controllable) on [0,τ].

    Proof:It follows from the Theorems 2,4–6 and Definition 4 that the following equivalence relations hold: The descriptor infinite dimensional system (19) is exactly controllable on[0,τ]if and only if

    if and only if the infinite dimensional subsystem (23) and descriptor subsystem (24) are exactly observable on [0,τ]if and only if the descriptor infinite dimensional system (22) is exactly observableon [0,τ].

    V.ILLUSTRATIVE EXAMPLES

    In this section,we discuss the exact controllability and exact observability of the Dzektser equation in the theory of seepage and the exact controllability of wave equation.

    Example 1:Exact controllability and exact observability of the Dzektser equation.

    Consider the Dzektser equation describing the evolution of the free surface of seepage liquid (see,e.g.,[26]),

    Then,L∈L(H1,H2),M∈CD(H1,H2) and Dzektser equation(25)–(27) can be reduced to the following descriptor infinite dimensional system

    We can check that sin(ix)is theL-eigenvector of the operatorMcorresponding toL-eigenvalue?i2(1+i2/(i2?1))of the operatorM(i=2,3,...);

    the regular standard form of descriptor infinite dimensional system (28)–(29) is

    P=0 in (32),K1ζ=a1ζandK2ζ=a2ζ.

    First of all we discuss the exact controllability of descriptor infinite dimensional system (30)–(33).

    SinceH22=ran[K2],by Theorem 4,descriptor subsystem(32) is exactly controllable on [0,τ]for any τ>0.It is obviously that the semigroup associated with infinite dimensional system (30) is given by

    Since exp(Vt)=exp(V?t),the condition for exact controllability of infinite dimensional system (30) is the existence of acτ>0,such that

    It is obviously that nocτsatisfying (34) will ever exist.Consequently,infinite dimensional subsystem (30) is never exactly controllable on [0,τ]for any τ>0.By Theorem 5,descriptor infinite dimensional system (30)–(33),i.e.,Dzektser equation (25)–(26) is not exactly controllable on[0,τ]for any τ>0.

    Now we discuss the exact observability of descriptor infinite dimensional system (30)–(33).

    Remark 3:According to the definitions of exact controllability and approximate controllability [7]of system(1),we obtain that if system (1) is exactly controllable,then it is approximate controllable.From [7],we have that Dzektser equation in the theory of seepage is approximately controllable.Example 1 shows that it is not exactly controllable.It implies that exact controllability and approximate controllability are totally different.

    Example 2:Exact controllability of wave equation.

    Consider the wave equation with a distributed controlu(·,t)∈L2((0,1),R)

    Then,the following operatorA0onL2((0,1),R) is selfadjoint,positive,and boundedly invertible (see [16,Example A.4.26]):

    A proof similar to [16,Example 4.1.8],by Theorem 5,we can obtain that wave equation is exactly controllable.

    Remark 4:In reference [22],a class of exact null controllability is introduced,and it is proved that the necessary condition for the solution of the optimal control problem of a class of descriptor infinite dimensional systems is the exact null controllability of the system.It can be seen from [30]that the study of infinite time state regulation generally requires that the system be exactly controllable or exactly null controllable ([25],which is different from the exact null controllability in [22]).Therefore,different optimal control problems have different controllability requirements for the system.

    VI.CONCLUSIONS

    We have defined exact controllability,exact observability and proved corresponding necessary and sufficient conditions for descriptor infinite dimensional systems.The obtained results are very important and convenient for studying the exact controllabilities and exact observabilities of descriptor infinite dimensional systems.Two examples have been given to illustrate the effectivenesses of Theorems 5 and 6.For a specific descriptor infinite dimensional system,appropriate controllability can be defined according to the needs of various optimal control problems.

    精品一区二区三卡| 夜夜爽夜夜爽视频| 午夜视频国产福利| 国产一区二区三区av在线| 一本大道久久a久久精品| 精品人妻在线不人妻| 青春草亚洲视频在线观看| 精品国产露脸久久av麻豆| 国产日韩欧美亚洲二区| 毛片一级片免费看久久久久| 看十八女毛片水多多多| 两个人看的免费小视频| 亚洲精品aⅴ在线观看| 亚洲一码二码三码区别大吗| 91国产中文字幕| 亚洲av.av天堂| 国产成人免费观看mmmm| 国产精品国产三级专区第一集| 欧美激情极品国产一区二区三区 | 新久久久久国产一级毛片| 国产精品国产三级国产专区5o| 99久久综合免费| 国产高清国产精品国产三级| 成人国产av品久久久| 午夜福利乱码中文字幕| 丰满饥渴人妻一区二区三| 曰老女人黄片| 久久久久网色| 卡戴珊不雅视频在线播放| √禁漫天堂资源中文www| 欧美精品一区二区免费开放| 亚洲精品视频女| 男女免费视频国产| 成人亚洲精品一区在线观看| 深夜精品福利| 国产精品人妻久久久久久| 亚洲图色成人| 国产精品99久久99久久久不卡 | 成年人午夜在线观看视频| 亚洲欧洲日产国产| 18在线观看网站| 久久亚洲国产成人精品v| 婷婷成人精品国产| 一区二区三区四区激情视频| 美女国产视频在线观看| 天天操日日干夜夜撸| 99国产综合亚洲精品| 久久久久久久久久久免费av| 老司机影院毛片| 99视频精品全部免费 在线| 欧美最新免费一区二区三区| 亚洲成色77777| 国产探花极品一区二区| 看免费成人av毛片| 黑丝袜美女国产一区| 国产一区二区三区综合在线观看 | 国产麻豆69| 七月丁香在线播放| 国产一区二区在线观看av| 欧美日韩视频精品一区| 国产精品一国产av| 如日韩欧美国产精品一区二区三区| 欧美精品一区二区免费开放| 欧美精品一区二区免费开放| 精品国产乱码久久久久久小说| av福利片在线| 久久久久精品久久久久真实原创| 草草在线视频免费看| 久久精品国产自在天天线| 伊人亚洲综合成人网| 蜜桃在线观看..| 精品99又大又爽又粗少妇毛片| 久久国内精品自在自线图片| 视频中文字幕在线观看| av片东京热男人的天堂| 亚洲欧美一区二区三区黑人 | 在线亚洲精品国产二区图片欧美| 久久ye,这里只有精品| 一本—道久久a久久精品蜜桃钙片| 国产精品无大码| 亚洲精品日韩在线中文字幕| 成人免费观看视频高清| 午夜视频国产福利| 亚洲av在线观看美女高潮| 国产精品国产三级国产专区5o| 精品久久久精品久久久| 中文字幕最新亚洲高清| 一级片'在线观看视频| 午夜久久久在线观看| 亚洲国产欧美在线一区| 亚洲av中文av极速乱| 成人毛片a级毛片在线播放| 久久精品人人爽人人爽视色| 久热这里只有精品99| 国产爽快片一区二区三区| 内地一区二区视频在线| 高清毛片免费看| 久久精品国产a三级三级三级| 国产精品久久久久久久久免| 欧美xxxx性猛交bbbb| 三级国产精品片| 在线免费观看不下载黄p国产| 男人爽女人下面视频在线观看| 亚洲精品日本国产第一区| 老司机亚洲免费影院| 国产精品女同一区二区软件| 九色成人免费人妻av| 亚洲精品色激情综合| av福利片在线| 国产黄频视频在线观看| av网站免费在线观看视频| 美女脱内裤让男人舔精品视频| 熟女av电影| 日韩精品免费视频一区二区三区 | 香蕉精品网在线| 久久久久精品性色| 9191精品国产免费久久| av在线播放精品| 欧美精品av麻豆av| 我的女老师完整版在线观看| 一级,二级,三级黄色视频| 人人妻人人澡人人爽人人夜夜| 午夜免费男女啪啪视频观看| 新久久久久国产一级毛片| 老司机亚洲免费影院| 日日爽夜夜爽网站| 九色成人免费人妻av| 一区二区av电影网| 只有这里有精品99| 在线天堂最新版资源| 一二三四在线观看免费中文在 | 人妻人人澡人人爽人人| 国产精品欧美亚洲77777| 色婷婷av一区二区三区视频| 亚洲美女黄色视频免费看| 满18在线观看网站| 五月开心婷婷网| 国产毛片在线视频| 成年女人在线观看亚洲视频| 免费黄频网站在线观看国产| 国产精品一二三区在线看| 老司机影院成人| 国产精品久久久久成人av| √禁漫天堂资源中文www| 成人黄色视频免费在线看| 精品久久久久久电影网| 国产精品三级大全| 日本爱情动作片www.在线观看| 亚洲色图综合在线观看| xxxhd国产人妻xxx| 国产1区2区3区精品| 久久 成人 亚洲| 久久精品国产综合久久久 | 国产在线一区二区三区精| 高清毛片免费看| 老熟女久久久| 三上悠亚av全集在线观看| 人妻系列 视频| 美女国产高潮福利片在线看| 在现免费观看毛片| 国产精品熟女久久久久浪| 欧美国产精品va在线观看不卡| 国产在视频线精品| 亚洲欧美日韩另类电影网站| 亚洲五月色婷婷综合| 热99国产精品久久久久久7| 9191精品国产免费久久| av国产精品久久久久影院| 国产精品女同一区二区软件| 色哟哟·www| 日韩av免费高清视频| 一级片'在线观看视频| 精品一区二区免费观看| 少妇的丰满在线观看| 菩萨蛮人人尽说江南好唐韦庄| 91aial.com中文字幕在线观看| 亚洲欧美精品自产自拍| 久久国产精品大桥未久av| 久久精品国产亚洲av涩爱| 日韩视频在线欧美| 丝袜喷水一区| 国产在线一区二区三区精| 亚洲人与动物交配视频| 男人爽女人下面视频在线观看| 国产成人a∨麻豆精品| 国产日韩一区二区三区精品不卡| 色吧在线观看| 亚洲美女视频黄频| 69精品国产乱码久久久| 婷婷色麻豆天堂久久| 大香蕉久久成人网| 两性夫妻黄色片 | 亚洲欧美成人综合另类久久久| 亚洲熟女精品中文字幕| 日韩不卡一区二区三区视频在线| 欧美人与性动交α欧美精品济南到 | 欧美成人午夜免费资源| 超碰97精品在线观看| 亚洲五月色婷婷综合| 国产精品一区www在线观看| 一区二区三区乱码不卡18| 亚洲精品av麻豆狂野| 亚洲欧洲精品一区二区精品久久久 | 深夜精品福利| 久久狼人影院| 精品国产一区二区三区四区第35| 国产精品蜜桃在线观看| 亚洲av综合色区一区| 少妇熟女欧美另类| 欧美成人午夜精品| 在线观看www视频免费| 在线免费观看不下载黄p国产| 最近的中文字幕免费完整| 丝袜脚勾引网站| 国产黄色视频一区二区在线观看| a 毛片基地| 51国产日韩欧美| 下体分泌物呈黄色| 亚洲精品国产av成人精品| 日本黄大片高清| 亚洲性久久影院| 久久毛片免费看一区二区三区| 久久精品熟女亚洲av麻豆精品| 国产一区有黄有色的免费视频| 97在线人人人人妻| 新久久久久国产一级毛片| 自线自在国产av| 狠狠精品人妻久久久久久综合| 热re99久久精品国产66热6| 亚洲人与动物交配视频| 一二三四在线观看免费中文在 | 亚洲精品456在线播放app| 婷婷成人精品国产| 亚洲国产成人一精品久久久| 韩国精品一区二区三区 | 视频在线观看一区二区三区| av播播在线观看一区| 欧美bdsm另类| 99热网站在线观看| 日韩三级伦理在线观看| 日韩三级伦理在线观看| 九色成人免费人妻av| 欧美精品av麻豆av| 国产av国产精品国产| 亚洲欧美日韩另类电影网站| 一个人免费看片子| 亚洲伊人色综图| 在线观看一区二区三区激情| 亚洲精品久久成人aⅴ小说| 一区二区日韩欧美中文字幕 | 99国产精品免费福利视频| 亚洲人成77777在线视频| 日本免费在线观看一区| 美女大奶头黄色视频| 亚洲色图 男人天堂 中文字幕 | 精品久久国产蜜桃| 人人澡人人妻人| 欧美日韩国产mv在线观看视频| 精品亚洲乱码少妇综合久久| 亚洲成人av在线免费| 亚洲一码二码三码区别大吗| av在线观看视频网站免费| 国产极品粉嫩免费观看在线| 各种免费的搞黄视频| 97在线视频观看| 日韩成人av中文字幕在线观看| 黄色毛片三级朝国网站| 人妻人人澡人人爽人人| 久久久久国产精品人妻一区二区| 国产成人欧美| 纯流量卡能插随身wifi吗| 老女人水多毛片| 赤兔流量卡办理| kizo精华| 久久久久国产网址| h视频一区二区三区| 蜜桃在线观看..| 不卡视频在线观看欧美| 巨乳人妻的诱惑在线观看| av在线老鸭窝| 国产黄色视频一区二区在线观看| 亚洲欧美一区二区三区国产| 亚洲精品中文字幕在线视频| 国产乱人偷精品视频| 久久婷婷青草| 精品人妻熟女毛片av久久网站| 欧美日韩综合久久久久久| 男女免费视频国产| 日产精品乱码卡一卡2卡三| 视频区图区小说| 国产男女内射视频| 观看美女的网站| 国产精品久久久久成人av| 亚洲精品第二区| 日日啪夜夜爽| 亚洲精品一二三| 久久精品人人爽人人爽视色| 亚洲欧美一区二区三区黑人 | 国产免费现黄频在线看| 久久99一区二区三区| 成人黄色视频免费在线看| 亚洲一级一片aⅴ在线观看| 中文字幕最新亚洲高清| 好男人视频免费观看在线| 建设人人有责人人尽责人人享有的| 精品亚洲成a人片在线观看| 国产精品国产av在线观看| 亚洲精品美女久久av网站| 狠狠婷婷综合久久久久久88av| 蜜臀久久99精品久久宅男| av片东京热男人的天堂| 毛片一级片免费看久久久久| 日韩 亚洲 欧美在线| 天天躁夜夜躁狠狠躁躁| 久久毛片免费看一区二区三区| 欧美最新免费一区二区三区| 婷婷色麻豆天堂久久| 777米奇影视久久| 日日摸夜夜添夜夜爱| 在线免费观看不下载黄p国产| 在现免费观看毛片| 国产精品久久久久久精品电影小说| 激情视频va一区二区三区| 国产乱人偷精品视频| 欧美激情 高清一区二区三区| 久久国产精品大桥未久av| 2022亚洲国产成人精品| 色吧在线观看| 日本爱情动作片www.在线观看| 丝袜脚勾引网站| 熟妇人妻不卡中文字幕| h视频一区二区三区| 亚洲中文av在线| 免费人妻精品一区二区三区视频| av免费在线看不卡| 视频中文字幕在线观看| 亚洲四区av| 三上悠亚av全集在线观看| 午夜福利乱码中文字幕| 亚洲经典国产精华液单| 亚洲精品久久久久久婷婷小说| 成人18禁高潮啪啪吃奶动态图| 99热这里只有是精品在线观看| 乱码一卡2卡4卡精品| 91精品三级在线观看| 久久人妻熟女aⅴ| av福利片在线| 久久ye,这里只有精品| 午夜老司机福利剧场| 五月天丁香电影| 久久久久久久国产电影| 国产成人午夜福利电影在线观看| 亚洲第一区二区三区不卡| 69精品国产乱码久久久| av天堂久久9| 国产老妇伦熟女老妇高清| 亚洲图色成人| 国产成人一区二区在线| 国产福利在线免费观看视频| 免费播放大片免费观看视频在线观看| 多毛熟女@视频| 又黄又粗又硬又大视频| 久久久久久人妻| 尾随美女入室| a级毛片在线看网站| 99热网站在线观看| 国产成人免费无遮挡视频| 久久久精品区二区三区| 精品一区二区三卡| 亚洲成人av在线免费| 美女主播在线视频| 国产视频首页在线观看| 亚洲国产色片| 日韩制服丝袜自拍偷拍| 久久av网站| 在线看a的网站| 国产一区二区在线观看av| 久久青草综合色| 麻豆乱淫一区二区| 久久婷婷青草| 久久人妻熟女aⅴ| 一区二区av电影网| 日韩成人av中文字幕在线观看| 日韩免费高清中文字幕av| 五月天丁香电影| 亚洲国产精品国产精品| 国产一区二区激情短视频 | 日韩制服骚丝袜av| 一区二区三区乱码不卡18| 亚洲精品久久成人aⅴ小说| 亚洲精品久久久久久婷婷小说| 亚洲av电影在线观看一区二区三区| 熟女人妻精品中文字幕| 免费人成在线观看视频色| 你懂的网址亚洲精品在线观看| 国产精品欧美亚洲77777| 国产成人aa在线观看| 久久婷婷青草| 满18在线观看网站| 免费不卡的大黄色大毛片视频在线观看| 精品少妇久久久久久888优播| 建设人人有责人人尽责人人享有的| 久久av网站| 一区在线观看完整版| 亚洲,一卡二卡三卡| 亚洲国产成人一精品久久久| 人人妻人人爽人人添夜夜欢视频| 日韩av不卡免费在线播放| 高清av免费在线| 国产精品一区www在线观看| 国产日韩欧美在线精品| 美女脱内裤让男人舔精品视频| 亚洲欧美成人综合另类久久久| 毛片一级片免费看久久久久| 免费黄频网站在线观看国产| 亚洲欧美一区二区三区黑人 | 日本-黄色视频高清免费观看| 精品国产乱码久久久久久小说| 国精品久久久久久国模美| 妹子高潮喷水视频| 亚洲性久久影院| 欧美人与性动交α欧美精品济南到 | 婷婷色综合大香蕉| 国产综合精华液| 欧美亚洲日本最大视频资源| 欧美+日韩+精品| 欧美日韩精品成人综合77777| 啦啦啦中文免费视频观看日本| 女的被弄到高潮叫床怎么办| 波野结衣二区三区在线| 日韩大片免费观看网站| a级毛片黄视频| 成人午夜精彩视频在线观看| 黄片无遮挡物在线观看| 久久精品国产综合久久久 | 一区二区三区乱码不卡18| 免费黄频网站在线观看国产| 亚洲欧美精品自产自拍| 又粗又硬又长又爽又黄的视频| 五月天丁香电影| 人妻 亚洲 视频| 91国产中文字幕| 久久人人爽av亚洲精品天堂| 欧美国产精品一级二级三级| 9色porny在线观看| 欧美成人精品欧美一级黄| 亚洲性久久影院| 国产极品粉嫩免费观看在线| 午夜91福利影院| 国产高清三级在线| 成人毛片60女人毛片免费| 丰满乱子伦码专区| 99热这里只有是精品在线观看| 亚洲精品美女久久久久99蜜臀 | 久久av网站| av福利片在线| 精品久久久精品久久久| 国产日韩欧美在线精品| 亚洲一区二区三区欧美精品| 9色porny在线观看| 久久人人97超碰香蕉20202| 人体艺术视频欧美日本| 欧美精品国产亚洲| 国产日韩欧美视频二区| 亚洲国产日韩一区二区| 精品一区二区免费观看| 久久久久网色| 久久久久久久久久成人| 菩萨蛮人人尽说江南好唐韦庄| 美女国产高潮福利片在线看| 18禁国产床啪视频网站| 欧美人与性动交α欧美精品济南到 | 久久久久精品性色| 国产探花极品一区二区| 国产国语露脸激情在线看| 亚洲国产色片| 国产探花极品一区二区| 精品一区二区免费观看| 欧美精品亚洲一区二区| 久久久久精品人妻al黑| 国产黄色免费在线视频| 十分钟在线观看高清视频www| 欧美日韩视频高清一区二区三区二| 大香蕉97超碰在线| 午夜精品国产一区二区电影| 熟女av电影| 免费女性裸体啪啪无遮挡网站| 日韩中字成人| 成人影院久久| 在现免费观看毛片| 国产欧美日韩一区二区三区在线| 久久这里有精品视频免费| 色网站视频免费| 少妇被粗大猛烈的视频| 一级a做视频免费观看| 丰满少妇做爰视频| 蜜桃国产av成人99| 亚洲欧美色中文字幕在线| 精品酒店卫生间| 亚洲精品视频女| 亚洲精品色激情综合| 天堂8中文在线网| 国产片特级美女逼逼视频| 97在线人人人人妻| 免费看光身美女| 久久99精品国语久久久| 亚洲综合色网址| 美国免费a级毛片| 高清毛片免费看| 亚洲性久久影院| 国产极品粉嫩免费观看在线| 欧美国产精品va在线观看不卡| 国产毛片在线视频| 一级毛片 在线播放| 亚洲人与动物交配视频| 90打野战视频偷拍视频| 亚洲精品乱久久久久久| 久久人人爽人人片av| 九九在线视频观看精品| 中国国产av一级| 日本91视频免费播放| 中文欧美无线码| 一本久久精品| 熟女av电影| 国产精品国产三级国产av玫瑰| 熟妇人妻不卡中文字幕| 欧美bdsm另类| 人妻系列 视频| 日韩av在线免费看完整版不卡| 国产精品嫩草影院av在线观看| 伊人亚洲综合成人网| 亚洲欧美中文字幕日韩二区| 男的添女的下面高潮视频| 老司机亚洲免费影院| 永久网站在线| 国产精品久久久久成人av| 99国产综合亚洲精品| 男男h啪啪无遮挡| 国产欧美亚洲国产| 成人影院久久| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 婷婷色av中文字幕| 欧美精品人与动牲交sv欧美| 曰老女人黄片| 你懂的网址亚洲精品在线观看| 亚洲情色 制服丝袜| 伊人久久国产一区二区| 亚洲熟女精品中文字幕| 9热在线视频观看99| 插逼视频在线观看| 成人漫画全彩无遮挡| 日韩一区二区视频免费看| 九色成人免费人妻av| 青春草视频在线免费观看| 精品午夜福利在线看| 午夜福利视频在线观看免费| 精品午夜福利在线看| 精品国产一区二区三区四区第35| 亚洲av日韩在线播放| 美女xxoo啪啪120秒动态图| 午夜福利,免费看| 亚洲情色 制服丝袜| 午夜福利,免费看| 国国产精品蜜臀av免费| av黄色大香蕉| av免费观看日本| 亚洲精品国产av蜜桃| 91aial.com中文字幕在线观看| 婷婷成人精品国产| 波多野结衣一区麻豆| 午夜精品国产一区二区电影| 26uuu在线亚洲综合色| 亚洲人与动物交配视频| 91在线精品国自产拍蜜月| 国产精品不卡视频一区二区| 免费观看无遮挡的男女| 亚洲经典国产精华液单| 欧美 亚洲 国产 日韩一| 久久久亚洲精品成人影院| 国产精品嫩草影院av在线观看| 成年美女黄网站色视频大全免费| 日本欧美国产在线视频| 午夜福利网站1000一区二区三区| 国产 精品1| 欧美人与善性xxx| 久久午夜综合久久蜜桃| 人人妻人人爽人人添夜夜欢视频| 中文字幕人妻熟女乱码| 久久精品国产亚洲av天美| 少妇人妻久久综合中文| 91成人精品电影| 99热网站在线观看| 搡老乐熟女国产| 国产xxxxx性猛交| 多毛熟女@视频| 亚洲,欧美,日韩| 日日爽夜夜爽网站| 夫妻性生交免费视频一级片| 日日摸夜夜添夜夜爱| kizo精华| 视频中文字幕在线观看| 亚洲经典国产精华液单| 精品一区二区三区视频在线| 91国产中文字幕| 晚上一个人看的免费电影| 婷婷色综合大香蕉| 精品人妻一区二区三区麻豆| 日韩av免费高清视频| 欧美 日韩 精品 国产| 国产麻豆69| 免费少妇av软件| 亚洲精品国产色婷婷电影| 少妇高潮的动态图| 9191精品国产免费久久| 国产av码专区亚洲av|