• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A mini review:application of graphene paper in thermal interface materials

    2021-11-05 15:26:00LULeDAIWenYUJinhongJIANGNanLINChengte
    新型炭材料 2021年5期

    LU Le,DAI Wen,*,YU Jin-hong,JIANG Nan,*,LIN Cheng-te,*

    (1.Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies,Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;2.Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China)

    Abstract:Accumulated heat is the primary problem that needs to be solved in current electronic products.There is an urgent need for designing innovative high-performance thermal interface materials (TIMs) with excellent heat dissipation performance.Based on the development status of TIMs,graphene paper-based TIMs that are ultrathin thickness and have high through-plane thermal conductivity show great potential.From this perspective,we introduce four types of graphene paper (including graphene/polymer composite papers,graphene/metal composite papers,graphene/ceramic composite paper,and graphene/carbon composite paper) and vertically aligned graphene paper as TIMs.Based on the applications of these TIMs,their advantages and limitations are discussed.Finally further research prospects are proposed to promote the practical applications of graphene paper-based TIMs.

    Key words:Thermal interface materials;Graphene paper;Thermal conductive interlayers

    1 Introduction

    Currently,solving the problem of heat accumulation is the primary task for achieving electronic products with good performance and long lifetimes,because electronics have become more intelligent,miniaturized and integrated[1,2].In an actual thermal management system (Fig.1(a)),there are micro gaps between the heater and heat sink due to mechanical processing and other reasons,which seriously affects heat conduction[3,4].Using flexible TIMs with high through-plane thermal conductivity to fill these micro gaps can effectively remove the heat generated by the heating element (Fig.1(b))[5–7].Compared with other TIMs,the thermal pads have the advantages of no pump-out effect and convenient replacement.Commercial thermal pads with a thermal conductivity of 1–5 W m?1K?1are made of thermally conductive filler in a polymer matrix,but the high degree of cross-linking of the polymer results in thick bond line thickness[8,9].However,with the upgrading of electronic equipment,the accompanying ultrahigh power density has exceeded the processing capacity of traditional commercial TIMs[6].

    Fig.1 (a) Schematic diagram of a typical ball grid array electronic package (b) Schematic diagram of a TIM filling the air gap between the heater and mating interface of the heat sink.Reprinted with permission from:(a,b)Reference[3],Copyright 2018,MDPI.

    In recent years,graphene paper prepared by stacking graphene nanosheets (3 500–5 300 W m?1K?1)with ultrahigh intrinsic thermal conductivity has been widely used as an efficient heat sink for portable devices[10–12].Many researchers have turned their attention to the development of graphene paper.Meanwhile,the thermal resistance of the corresponding graphene/metal interface is determined by the electron-phonon coupling effect,which is one of the main problems in the study of thermal boundary conductance[11–14].Graphene papers as TIMs can be used to connect to a metal heat sink to achieve direct contact between the horizontal graphene and metal.Based on the ultra-high in-plane thermal conductivity of graphene paper,the ease of large-scale preparation and low production costs,the possibility for the practical application TIMs in academic circles and industry is rising[15–18].From this perspective,we focus on 4 graphene papers (including graphene/polymer,graphene/metal,graphene/ceramic,and graphene/carbon composite paper) and vertically aligned graphene paper as TIMs,then review their development.Additionally,we discuss their advantages and limitations.We hope to provide some assistance for the further development of graphene paper-based TIMs.

    2 Hybrid graphene paper

    The graphene/graphene oxide (GO) nanosheets exfoliated by chemical or thermal treatment receive different interactions (such as van der Waals (vdW)forces and hydrogen bonds)[19],and can be spontaneously or passively arranged to form a well-oriented layer structure.Based on this,many different assembly processes have been developed to produce graphene paper,such as electrospinning[20],vacuum filtration[21–23],wet spinning[24],inkjet printing[25],dip coating[26]and spin coating[27].After the graphene papers were annealed by high temperature,the defects of graphene are healed and their crystallinity were improved[28].The graphene papers have the high heat transfer at the in-plane direction.However,the phonon transport barrier across the vdW interface between the graphene layers leads to the extremely low through-plane thermal conductivity of the graphene paper (0.1–3.4 W m?1K?1)[18,28,29].Moreover,during the compression process,due to the rearrangement of the graphene orientation,the vertical thermal conductivity of the graphene paper is further reduced[13].To date,various thermally conductive interlayers materials,such as carbon materials (CNTs,carbon fibres,graphene,etc.),ceramic particles,metals and polymer chains,have emerged to make graphene-based paper with improved through-plane thermal conductivity and using vertically aligned graphene paper as TIMs is the research focus.

    2.1 Graphene/polymer composite paper

    In many studies,graphene/GO and polymers were mixed to prepare graphene/polymer composite papers to enhance their mechanical properties.Inspired by the layered structure of natural nacre,natural rubber as a flexible matrix is compounded with graphene nanosheets (Fig.2(a)),and this paper exhibits excellent flexibility[30].In another study,a graphene-based TIM hybrid paper was fabricated by a coating or slot die-coating method (Fig.2(b))[31].A poly (vinyl butyral-co-vinyl alcohol-co-vinyl acetate)(P(VBcoVA-co-VAc)) copolymer was used as an adhesion layer to attach to the surface of graphene nanosheets.However,the two methods did not show any appreciable increase in the through-plane conductivity.This unsatisfactory progress is mainly attributed to the strong interfacial phonon scattering of the polymer and graphene leading.Polydopamine and graphene oxide have good interfacial interactions.As shown in Fig.2(c),Wang et al.[32]fabricated graphene composite paper based on asymmetrically polydopamine-functionalized Janus graphene oxide scaffolds via the bidirectional freeze-casting method,improving the high through-plane thermal conductivity of the paper from 0.20 to 0.78 W m?1K?1.Surprisingly,the paper exhibits electrical insulation properties (>1014Ω cm).In addition,some studies have confirmed that modification of cellulose nanofibers can enhance the through-plane thermal conductivity by forming a"bridge" between graphene nanosheets.Chen et al.[33]produced a flexible graphene/cellulose nanofiber (CNFG) composite paper by simple vacuum-assisted filtration.The through-plane thermal conductivity of the CNFG composite paper loaded with 50 wt% graphene reached 5 W m?1K?1and slightly changed after thousands of bending cycles.Due to the difficulty of graphene dispersion in a polymer matrix and the low thermal conductivity of the polymer,the throughplane thermal conductivity of the graphene/polymer composite paper is lower than that of commercial TIMs (~5–10 W m?1K?1),leading to insufficient heat transfer requirements in practical applications.As the poor conductors of heat,polymers are not suitable thermal conductive interlayers,but a small amount can be added to enhance the strength of graphene papers.

    Fig.2 Manufacturing method and corresponding structure of the polymer to improve the through-plane thermal conductivity of graphene paper:(a)natural rubber,(b) P(VBcoVA-co-VAc),and (c) polydopamine.Reprinted with permission from:(a) Reference[30],Copyright 2019,American Chemical Society;(b) Reference[31],Copyright 2019,Elsevier;and (c) Reference[33],Copyright 2018,Royal Society of Chemistry.

    2.2 Graphene/metal composite paper

    In recent years,using metal particles with high thermal conductivity as a thermally conductive interlayer has been considered a promising solution to solve the low through-plane thermal conductivity of graphene paper.Xiang et al.[33]first synthesized monodisperse Au nanoparticles on the surface of exfoliated graphene nanosheets.The authors found that adjacent the graphene nanosheets were electrically connected but thermally disconnected by the Au nanoparticles.They believed that electrons could tunnel at the Au/graphene nanosheets interfaces,whereas phonons were scattered across this interface.Huang et al.[34]achieved Ag+ion-intercalated GO paper by evaporating GO/AgNO3aqueous aerosols.Then the paper was reduced by sodium borohydride ethanol solution.The composite paper afforded a throughplane thermal conductivity of 3.3 W m?1K?1(25 μm)which was higher than that of graphene paper(2.4 W m?1K?1(25 μm)).Although Au/Ag nanoparticles can bridge the gap between graphene layers,the heat cannot transfer efficiently.As shown in Fig.3(a),Li et al.[35]prepared Ag nanowires (AgNWs)-decorated reduced graphene oxide (rGO/AgNWs)fillers by growing AgNWs in the space between graphene nanosheets.The through-plane thermal conductivity of the paper (2.6 W m?1K?1) was 260%more than pure graphene.Lee et al.[36]obtained the starfish surface-like graphene-Cu particles via spray coating (Fig.3(b)).The copper particles between the layers are in contact with each other to form an effective heat conduction network,which increases the through-plane thermal conductivity of the composite material by 520%.Although metal materials have ultrahigh thermal conductivity,the interaction between metal and graphene is relatively weak,and the Kapitza impedance is relatively large,resulting in composite papers with a limited through-plane thermal conductivity.Metals that have good interaction with carbon materials and high thermal conductivity are the focus of the next research,such as Ni.

    Fig.3 (a) Schematic of the fabrication procedure of rGO/AgNWs-PVDF nanocomposites,(b) Schematic of the manufacturing process of graphene-Cu/CFRC.Reprinted with permission from:(a) Reference[35],Copyright 2020,American Chemical Society and (b) Reference[36],Copyright 2019,Elsevier.

    2.3 Graphene/ceramic composite paper

    Compared with expensive gold and silver,many ceramic materials also have good thermal conductivity,such as BN (300–600 W m?1K?1)[37,38],SiC (80–300 W m?1K?1)[39],and Al2O3(30 W m?1K?1)[40,41].Wang et al.[42]used polydopamine to modify SiC nanowires to enhance the dispersibility of SiC nanowires and improve the interface interaction with graphene oxide.However,the resultant composite paper presented through-plane thermal conductivity of 0.3 W m?1K?1by introducing 80 wt% SiC nanowires and polydopamine.Dai et al.[13]pointed out that the weak interfacial heat conduction between them was based on weak vdW interactions.As shown in Fig.4(a),they used silicon oxide nanoparticles to modify graphene,and then grew silicon carbide nanowires by high-frequency heat treatment at 1 400 °C to prepare silicon carbide/graphene hybrid paper.The graphene/SiC interface was linked by covalent C-Si bonds.Based on the results of nonequilibrium molecular dynamics simulation,the thermal conductivity of the interface between the graphene/SiC nanowires connected by covalent C-Si bonds was higher than that of the vdW interaction by 1 order of magnitude.Compared to pristine paper,the through-plane thermal conductivity of the hybrid graphene paper increased by 2.2 times.Under 75 psi compression,the through-plane thermal conductivity of the hybrid graphene could be further increased to 17.6 W m?1K?1.Improvement in the efficiency of heat transfer can be achieved not only by enhancing interfacial interactions,but also by reducing the filler/filler interface.The single-layer particle structure can make full use of the intrinsic thermal conductivity of the filler and minimize the filler/filler interface.Graphene nanosheets are not simply arranged horizontally,but are partially arranged in a vertical direction.The flexible paper exhibits a high through-plane thermal conductivity(9.09 W m?1K?1) (Fig.4(b))[43].However,high through-plane thermal conductivity is only one of the necessary factors as an excellent TIMs and deformability is also a basic feature.Thus,this single-layer particle structure inherently limits its application as a TIM.In general,covalent bonding of ceramics and graphene can greatly reduce the thermal interface resistance and increase the through-plane thermal conductivity.It has become a potential method for the application of paper-like thermal interface materials.

    Fig.4 (a) Schematic of the fabrication process and photograph of silicon carbide/graphene hybrid paper,(b) Morphology and through-plane thermal conductivity of graphene hybrid paper with different thermally conductive structures.Reprinted with permission from:(a) Reference[13],Copyright 2019,American Chemical Society and (b) Reference[43],Copyright 2020,Elsevier.

    2.4 Graphene/carbon composite paper

    Enhancing the interaction between graphene nanosheets has become a key issue for breaking through the through-plane thermal conductivity of graphene paper.Compared with other materials,carbon materials have a better interaction with graphene.Nan et al.[44]fabricated hybrid graphene paper by embedding nanodiamond particles into graphene oxide functionalized by cationic poly(diallyldimethylammonium chloride),improving the through-plane thermal conductivity of the paper from 0.36 to 0.48 W m?1K?1.Some studies fabricated reduced graphene oxide/multiwalled carbon nanotubes (CNTs)hybrid paper via vacuum filtration,but the methods did not show any appreciable increase in the throughplane thermal conductivity.Kong et al.[45]deposited GO into the precursor followed by carbonization,but the through-plane thermal conductivity was only 0.4 W m?1K?1.Zou et al.[46]used small organic molecules with benzene rings (such as 1-pyrenemethanol) to modify graphene nanosheets followed by carbonization with improved through-plane thermal conductivity.As shown in Fig.5(a),Meng et al.[47]reported a hybrid graphene paper with added cellulose nanocrystals.After high-temperature annealing,the cellulose nanocrystal phase was carbonized into nanorods.The through-plane thermal conductivity of paper was improved from 3.9 to 4.6 W m?1K?1.Carbon nanorods effectively connected the boundaries and gaps between graphene sheets.Georgios et al.[48]designed a pillared-graphene network structure model(Fig.5(b)) that used CNTs to connect the graphene sheets.The high axial thermal conductivity of this unique graphene–CNT structure resulted from the replacement of noncovalent interactions with covalent bonding.Jiang et al.[49]inserted metal catalyst particles between graphene nanosheets and annealed them toin-situgrow carbon nanorings (Fig.5(c)).The through-plane thermal conductivity of the hybrid paper was increased by 3 times,reaching 5.8 W m?1K?1.Optimizing the structure and arrangement between graphene sheets to make proper use of their anisotropy can significantly enhance the through-plane thermal conductivity of graphene paper.Gao et al.[50]reported the assembly behavior of graphene with different sizes based on rapid suction filtration.Graphene sheets with large lateral dimensions tend to stack horizontally,and graphene sheets with small dimensions are more random.As shown in Fig.5(d),Gao et al.prepared graphene paper by quickly filtering a mixed solution of large and small graphene nanosheets.After graphitization,the thermal conductivity of the graphene paper improved from 6.3 W m?1K?1to 12.6 W m?1K?1.Compared with polymers,metals and ceramics,carbon materials (especially graphene) have more advantages as thermally conductive interlayers.However,due to the limitation of the existing technology,there is less heat transfer medium in the vertical direction,and there is still a lot of room for the through-plane thermal conductivity.

    Fig.5 (a) Schematic assembly of the hierarchical chiral architecture of the graphene-based composite film,(b) Pillared-graphene-CNTs network structure model,(c) Molecular structure of the optimized junction of carbon nanorings and graphene sheets,(d) Schematic illustrating the fabrication process of hierarchically structured graphene paper.Reprinted with permission from:(a) Reference[47],Copyright 2018,American Chemical Society;(b) Reference[48],Copyright 2008,American Chemical Society;(c) Reference[49],Copyright 2018,American Chemical Society and(d) Reference[50],Copyright 2021,Elsevier.

    2.5 Vertically aligned graphene paper as TIMs

    Apart from the incorporation with thermal conductive interlayers,the graphene papers can also be used as TIMs by“rotating-reassembling”.In 2011,Wong et al.[51]reported a TIM via stacking graphene papers (Fig.6(a)).There was an indium coating on the surface,the through-plane thermal conductivity of the obtained sample was 75.5 W m?1K?1and the contact thermal resistance (Rcontact) is 5.1 K mm2W?1.As shown in Fig.6(b),Zhang et al.[52]reported a composite material was made by rolling graphene papers into vertically arranged graphene sheets,and then infiltrating PDMS into them.The through-plane thermal conductivity of the composite reached 614.85 W m?1K?1.However,the high density leads to its inferior deformability and high compression strength (6.506 MPa),constraining its application as a TIM.Tan et al.[7]constructed a loosely packed and vertically aligned graphene framework to solve the problem in Fig.6(c).The sample was prepared by rolling up graphene papers with porous polymer foam attached and attaching nano-gold foil on both sides of the sample.Exhibiting a through-plane thermal conductivity of 276 W m?1K?1,theRcontactis 41 K mm2W?1.Dai et al.[4]proposed a method for manipulating the stack structure of traditional graphene paper through a machining process (Fig.6(d)).The graphene monolith with vertically aligned graphene sheets and horizontal graphene layers has a through-plane thermal conductivity of 143 W m?1K?1,theRcontactof 5.8 K mm2W?1and a low compressive modulus of 0.87 MPa.Due to most of vertically aligned graphene sheets,these samples have good through-plane thermal conductivities,and the soft indium,gold foils and horizontal graphene layers coating on the sides can reduce theRcontact.However,limited by the existing processing technology,the thickness of the vertically aligned graphene paper is~0.2–3 mm which would increase the total thermal resistance.The optimization of high through-plane thermal conductivity and low total thermal resistance is still a huge challenge.

    Fig.6 (a) Schematic illustrating the assembly of vertically aligned graphene monolith via“rotating-reassembling”as-prepared graphene paper,(b) Schematic of the fabrication procedure of the vertically aligned graphene paper/PDMS composite,(c) Schematic illustrating the fabrication process of vertically aligned graphene framework,(d) Schematic illustrating the structural change of the graphene based on the proposed method.Reprinted with permission from:(a) Reference[51],Copyright 2011,American Chemical Society;(b) Reference[52],Copyright 2016,Elsevier;(c) Reference[7],Copyright 2021,Elsevier and (d) Reference[4],Copyright 2019,American Chemical Society.

    3 Conclusion and perspectives

    This review mainly covers the latest developments in the graphene-based papers and discusses the feasibility from the perspective of TIMs applications.The interfacial thermal conductance by covalent bonding is higher than vdW interactions,so ceramics and carbon materials show greater potential as thermal conductive interlayers.In addition,compared with other thermal conductive interlayers,carbon materials have higher high temperature resistance and higher thermal conductivity,showing greater potential to improve the through-plane thermal conductivity of graphene paper.Optimizing the structure and arrangement of low-dimensional carbon materials and hightemperature thermal reduction are the key to breaking the through-plane thermal conductivity of graphene paper-based TIMs.By constructing an ideal heat transfer structure,the through-plane thermal conductivity of the graphene-based papers can reach a satisfactory value.The through-plane thermal conductivities of recently reported graphene papers is summarized in Table 1.However,there are still some issues to consider when developing the most advanced TIM.More attention should be paid to its thermal interface resistance instead of just increasing the through-plane thermal conductivities.Surface functionalization or surface treatment of micro/nano structures can be used to adjust the interface to reduce theRcontact.Explore the influence of the compression deformation ability of the graphene paper-based TIMs on its actual use.Due to the poor binding force of the crystalline sp2bond,the sample is easy to break and fall off after compression.The fallen toner may cause a short circuit and affect the use of precision equipment The electrical insulation,long-term stability,flame retardancy and long-term stability of TIMs are worth considering in practical applications.

    Table 1 The summary of through-plane thermal conductivity with reported graphene-based papers prepared using various methods.

    Acknowledgements

    The authors are grateful for the financial support by the National Key R&D Program of China(2017YFB0406000),the Project of the Chinese Academy of Sciences (XDC07030100,XDA220 20602,KFZD-SW-409,ZDKYYQ20200001,and ZDRW-CN-2019-3),CAS Youth Innovation Promotion Association (2020301),Science and Technology Major Project of Ningbo (2018B10046 and 2016S1002),the Natural Science Foundation of Ningbo (2017A610010),Foundation of State Key Laboratory of Solid lubrication (LSL-1912),National Key Laboratory of Science and Technology on Advanced Composites in Special Environments(6142905192806),KC Wong Education Foundation(GJTD-2019-13),China Postdoctoral Science Foundation (2020M681965),and the 3315 Program of Ningbo.

    国产极品粉嫩免费观看在线| 亚洲成国产人片在线观看| 久久久精品国产亚洲av高清涩受| 久久午夜亚洲精品久久| 久久久国产精品麻豆| 久久精品影院6| 欧美黄色片欧美黄色片| 亚洲,欧美精品.| 亚洲,欧美精品.| 91成年电影在线观看| 国产精品二区激情视频| 午夜久久久在线观看| 亚洲男人的天堂狠狠| 亚洲国产中文字幕在线视频| 亚洲第一电影网av| 国产成人av激情在线播放| 人人妻人人看人人澡| 日韩国内少妇激情av| 日韩欧美国产一区二区入口| 亚洲av日韩精品久久久久久密| 老鸭窝网址在线观看| 女警被强在线播放| 91在线观看av| 精华霜和精华液先用哪个| 免费看美女性在线毛片视频| 精品日产1卡2卡| 不卡av一区二区三区| 国产野战对白在线观看| 亚洲欧美一区二区三区黑人| 国产成人啪精品午夜网站| 两性午夜刺激爽爽歪歪视频在线观看 | 成人18禁高潮啪啪吃奶动态图| 国产伦一二天堂av在线观看| 午夜影院日韩av| 黄色视频,在线免费观看| 久9热在线精品视频| 最近最新中文字幕大全电影3 | 欧美+亚洲+日韩+国产| 亚洲熟妇中文字幕五十中出| 亚洲精品美女久久av网站| 亚洲人成77777在线视频| 亚洲狠狠婷婷综合久久图片| 18禁美女被吸乳视频| 一边摸一边抽搐一进一小说| 中出人妻视频一区二区| 亚洲av成人一区二区三| 少妇熟女aⅴ在线视频| 神马国产精品三级电影在线观看 | 成人手机av| 国产又黄又爽又无遮挡在线| 在线观看66精品国产| 一a级毛片在线观看| 日日干狠狠操夜夜爽| 老司机午夜福利在线观看视频| 色播在线永久视频| 成人三级黄色视频| 视频在线观看一区二区三区| 色尼玛亚洲综合影院| 国产精品免费视频内射| 亚洲国产欧洲综合997久久, | 久久久久久人人人人人| 亚洲狠狠婷婷综合久久图片| 老司机福利观看| 亚洲自偷自拍图片 自拍| 亚洲欧美日韩无卡精品| 亚洲精华国产精华精| 国产成人啪精品午夜网站| 色婷婷久久久亚洲欧美| 亚洲专区国产一区二区| 99久久久亚洲精品蜜臀av| 免费看a级黄色片| 亚洲欧美日韩无卡精品| 日韩中文字幕欧美一区二区| 久久久久久人人人人人| 午夜福利18| 国产黄a三级三级三级人| 黄色视频,在线免费观看| 两性夫妻黄色片| 欧美一级毛片孕妇| 精品第一国产精品| 中文字幕高清在线视频| 亚洲国产精品合色在线| 国产一级毛片七仙女欲春2 | 成人手机av| 免费看日本二区| 老司机深夜福利视频在线观看| 精品电影一区二区在线| 亚洲狠狠婷婷综合久久图片| √禁漫天堂资源中文www| 精品福利观看| 哪里可以看免费的av片| 精品无人区乱码1区二区| 一区二区三区国产精品乱码| 国产真人三级小视频在线观看| 久久中文字幕一级| 亚洲第一电影网av| 日韩免费av在线播放| 老汉色av国产亚洲站长工具| 18禁美女被吸乳视频| 久9热在线精品视频| 在线播放国产精品三级| 欧美精品亚洲一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 一边摸一边抽搐一进一小说| 国产97色在线日韩免费| 日本熟妇午夜| 国产蜜桃级精品一区二区三区| 满18在线观看网站| 久久人妻av系列| 日韩欧美 国产精品| 久久久久久大精品| 色尼玛亚洲综合影院| 日韩中文字幕欧美一区二区| 嫩草影院精品99| 久久久久国产一级毛片高清牌| 无限看片的www在线观看| av在线播放免费不卡| 国产精品av久久久久免费| 麻豆国产av国片精品| 久久久久久久午夜电影| 18禁美女被吸乳视频| 女人被狂操c到高潮| 午夜日韩欧美国产| 国产一级毛片七仙女欲春2 | cao死你这个sao货| 国产av又大| 欧美大码av| 免费在线观看视频国产中文字幕亚洲| 精品国产亚洲在线| 国产精品,欧美在线| 免费搜索国产男女视频| 国产成人一区二区三区免费视频网站| 国产久久久一区二区三区| 国产精品一区二区免费欧美| 久久久久久久久中文| 欧美日韩精品网址| 人人妻人人澡欧美一区二区| 免费看美女性在线毛片视频| 91大片在线观看| 亚洲精品国产区一区二| 国产精品自产拍在线观看55亚洲| 熟女少妇亚洲综合色aaa.| 女同久久另类99精品国产91| 亚洲精品美女久久av网站| xxxwww97欧美| 亚洲熟女毛片儿| 99在线人妻在线中文字幕| 在线看三级毛片| 欧美激情久久久久久爽电影| 亚洲精品美女久久久久99蜜臀| 中文字幕人妻熟女乱码| 色婷婷久久久亚洲欧美| 黄片小视频在线播放| 欧美日韩福利视频一区二区| 老司机深夜福利视频在线观看| 美女午夜性视频免费| 又大又爽又粗| 国产激情偷乱视频一区二区| 亚洲精品在线美女| 最近最新中文字幕大全电影3 | 成人手机av| av在线天堂中文字幕| 人成视频在线观看免费观看| 人人妻人人澡人人看| 中文字幕最新亚洲高清| 亚洲色图av天堂| 久久香蕉精品热| 国产高清视频在线播放一区| 在线视频色国产色| 88av欧美| 亚洲av第一区精品v没综合| 亚洲第一电影网av| 999久久久国产精品视频| 国产黄色小视频在线观看| 欧美国产日韩亚洲一区| 欧美 亚洲 国产 日韩一| 麻豆成人av在线观看| 男女午夜视频在线观看| 国产又爽黄色视频| 亚洲激情在线av| videosex国产| 1024手机看黄色片| 黄色片一级片一级黄色片| 国产精品一区二区免费欧美| 国产精品亚洲美女久久久| 色哟哟哟哟哟哟| 丰满的人妻完整版| 国产亚洲欧美98| 黑人巨大精品欧美一区二区mp4| 国产av一区二区精品久久| 日韩高清综合在线| 国产精品亚洲av一区麻豆| 久久国产精品人妻蜜桃| 怎么达到女性高潮| 可以在线观看毛片的网站| 欧美精品啪啪一区二区三区| 亚洲成人久久性| 国产真人三级小视频在线观看| 两个人免费观看高清视频| 女性生殖器流出的白浆| 久久久久九九精品影院| svipshipincom国产片| 亚洲精品中文字幕在线视频| 国产一卡二卡三卡精品| 亚洲七黄色美女视频| 午夜激情福利司机影院| 久久草成人影院| 日日夜夜操网爽| 999精品在线视频| 在线永久观看黄色视频| 亚洲,欧美精品.| 亚洲七黄色美女视频| 亚洲人成电影免费在线| 精品久久久久久久久久免费视频| 欧美国产精品va在线观看不卡| 中文亚洲av片在线观看爽| 精华霜和精华液先用哪个| 宅男免费午夜| 国产精品爽爽va在线观看网站 | 宅男免费午夜| 国产一区二区三区在线臀色熟女| 中亚洲国语对白在线视频| 夜夜夜夜夜久久久久| 亚洲在线自拍视频| 又黄又爽又免费观看的视频| 精品久久久久久,| 日韩欧美免费精品| 亚洲男人的天堂狠狠| 亚洲专区中文字幕在线| 亚洲av电影在线进入| 中文字幕精品亚洲无线码一区 | 精品国内亚洲2022精品成人| 欧美日本视频| 亚洲国产高清在线一区二区三 | 99在线人妻在线中文字幕| av超薄肉色丝袜交足视频| 国产成人欧美在线观看| 日日夜夜操网爽| 神马国产精品三级电影在线观看 | 中出人妻视频一区二区| 成人国产一区最新在线观看| 91国产中文字幕| 国产免费男女视频| 91成年电影在线观看| 国产激情久久老熟女| 久久国产精品影院| 丰满的人妻完整版| 免费女性裸体啪啪无遮挡网站| 精品久久久久久久末码| 色综合欧美亚洲国产小说| 无限看片的www在线观看| 日韩欧美国产一区二区入口| 国产午夜精品久久久久久| 美女 人体艺术 gogo| 黑人巨大精品欧美一区二区mp4| 美女高潮到喷水免费观看| 法律面前人人平等表现在哪些方面| 99久久久亚洲精品蜜臀av| 欧美黑人巨大hd| 亚洲国产日韩欧美精品在线观看 | 国产麻豆成人av免费视频| 91九色精品人成在线观看| 国产野战对白在线观看| 91av网站免费观看| 无人区码免费观看不卡| 老司机深夜福利视频在线观看| 久久国产乱子伦精品免费另类| 波多野结衣高清作品| 真人一进一出gif抽搐免费| 99热这里只有精品一区 | 啦啦啦免费观看视频1| 久久亚洲真实| 国产成人av激情在线播放| 婷婷亚洲欧美| 亚洲最大成人中文| 日韩欧美一区二区三区在线观看| 99国产精品一区二区蜜桃av| 中文在线观看免费www的网站 | 久久精品影院6| 亚洲一卡2卡3卡4卡5卡精品中文| 伦理电影免费视频| 亚洲人成网站在线播放欧美日韩| 国内揄拍国产精品人妻在线 | 中文字幕高清在线视频| 哪里可以看免费的av片| 久久午夜综合久久蜜桃| 日韩欧美一区视频在线观看| 国产单亲对白刺激| 亚洲精品一区av在线观看| 久久性视频一级片| 精品少妇一区二区三区视频日本电影| 丝袜美腿诱惑在线| 我的亚洲天堂| 欧美激情 高清一区二区三区| 亚洲成国产人片在线观看| ponron亚洲| 一本久久中文字幕| 成年版毛片免费区| 日日干狠狠操夜夜爽| 亚洲国产欧美网| 欧美黑人欧美精品刺激| 两个人看的免费小视频| 免费电影在线观看免费观看| 成熟少妇高潮喷水视频| 美女免费视频网站| 亚洲欧美激情综合另类| 国产精品久久久久久亚洲av鲁大| 99在线视频只有这里精品首页| 美女国产高潮福利片在线看| 午夜福利免费观看在线| 男男h啪啪无遮挡| 男女床上黄色一级片免费看| 黄片播放在线免费| 亚洲精品色激情综合| 国内久久婷婷六月综合欲色啪| 最好的美女福利视频网| 国产视频内射| 午夜免费成人在线视频| 日韩一卡2卡3卡4卡2021年| 欧美亚洲日本最大视频资源| 制服诱惑二区| 国产一级毛片七仙女欲春2 | 久久婷婷成人综合色麻豆| 欧美成人一区二区免费高清观看 | 欧洲精品卡2卡3卡4卡5卡区| av欧美777| 国产v大片淫在线免费观看| 精品少妇一区二区三区视频日本电影| 啦啦啦免费观看视频1| 又大又爽又粗| 啦啦啦韩国在线观看视频| 色哟哟哟哟哟哟| 日本免费a在线| 色尼玛亚洲综合影院| 动漫黄色视频在线观看| 视频区欧美日本亚洲| 欧美中文日本在线观看视频| 亚洲专区国产一区二区| 亚洲精品粉嫩美女一区| 狂野欧美激情性xxxx| 日韩欧美国产一区二区入口| 国产日本99.免费观看| 男人舔奶头视频| 麻豆成人午夜福利视频| 天天躁夜夜躁狠狠躁躁| 欧美日韩一级在线毛片| 欧美日韩精品网址| 黄色视频,在线免费观看| 久久久久久久久中文| 波多野结衣av一区二区av| 亚洲欧美一区二区三区黑人| 九色国产91popny在线| 人人妻人人澡欧美一区二区| 一边摸一边抽搐一进一小说| 国产激情偷乱视频一区二区| www日本黄色视频网| 国产色视频综合| 精品国产国语对白av| 欧美激情 高清一区二区三区| 熟女少妇亚洲综合色aaa.| 精华霜和精华液先用哪个| 狂野欧美激情性xxxx| 亚洲国产精品999在线| 成人国语在线视频| 日韩 欧美 亚洲 中文字幕| 精品日产1卡2卡| 日韩 欧美 亚洲 中文字幕| 精品午夜福利视频在线观看一区| 久久国产精品男人的天堂亚洲| 97超级碰碰碰精品色视频在线观看| 亚洲成人久久性| av福利片在线| 亚洲精品在线观看二区| 亚洲成国产人片在线观看| 欧美av亚洲av综合av国产av| 99久久综合精品五月天人人| 国内揄拍国产精品人妻在线 | 亚洲精品国产区一区二| 亚洲一卡2卡3卡4卡5卡精品中文| 每晚都被弄得嗷嗷叫到高潮| 三级毛片av免费| 久久欧美精品欧美久久欧美| 免费在线观看成人毛片| 丁香欧美五月| 色尼玛亚洲综合影院| 国产精品久久久久久精品电影 | АⅤ资源中文在线天堂| 麻豆一二三区av精品| 露出奶头的视频| 精品国产国语对白av| 国产精品自产拍在线观看55亚洲| 搡老熟女国产l中国老女人| 免费观看人在逋| 欧美国产精品va在线观看不卡| 中文字幕另类日韩欧美亚洲嫩草| 久久精品亚洲精品国产色婷小说| 国产亚洲精品久久久久5区| 天天一区二区日本电影三级| 久久天躁狠狠躁夜夜2o2o| 久久香蕉精品热| 欧美成狂野欧美在线观看| 每晚都被弄得嗷嗷叫到高潮| 精品无人区乱码1区二区| 女人高潮潮喷娇喘18禁视频| 精品欧美一区二区三区在线| 丰满的人妻完整版| 精品国产乱子伦一区二区三区| 亚洲成av片中文字幕在线观看| 久久午夜综合久久蜜桃| 哪里可以看免费的av片| 久久精品国产综合久久久| 免费女性裸体啪啪无遮挡网站| 久久精品亚洲精品国产色婷小说| 国产黄色小视频在线观看| 成人国产综合亚洲| 嫁个100分男人电影在线观看| 国产亚洲精品久久久久久毛片| 久久精品成人免费网站| 999精品在线视频| 操出白浆在线播放| 精品久久久久久,| 欧美另类亚洲清纯唯美| 在线免费观看的www视频| 一级毛片女人18水好多| 听说在线观看完整版免费高清| 中文资源天堂在线| 免费搜索国产男女视频| 国产午夜福利久久久久久| 中文字幕人妻熟女乱码| 最好的美女福利视频网| 亚洲国产中文字幕在线视频| 亚洲男人天堂网一区| 日日爽夜夜爽网站| 日本免费a在线| 精品福利观看| 好男人在线观看高清免费视频 | 成年女人毛片免费观看观看9| 美女大奶头视频| 欧洲精品卡2卡3卡4卡5卡区| www.999成人在线观看| 人人妻人人看人人澡| 美国免费a级毛片| 亚洲男人天堂网一区| 午夜久久久久精精品| 国产一区在线观看成人免费| 亚洲色图 男人天堂 中文字幕| 国产成+人综合+亚洲专区| 可以免费在线观看a视频的电影网站| 在线观看www视频免费| 国产高清有码在线观看视频 | 国产成人av教育| 久久精品91蜜桃| 最近最新免费中文字幕在线| 日本熟妇午夜| 欧美日韩亚洲综合一区二区三区_| 精品一区二区三区av网在线观看| avwww免费| 亚洲第一欧美日韩一区二区三区| 久久精品夜夜夜夜夜久久蜜豆 | 特大巨黑吊av在线直播 | 1024手机看黄色片| 女同久久另类99精品国产91| 大型av网站在线播放| 无限看片的www在线观看| 亚洲无线在线观看| 我的亚洲天堂| 丰满的人妻完整版| 欧美日韩亚洲国产一区二区在线观看| 黄色 视频免费看| 日韩大码丰满熟妇| 欧美日韩精品网址| 亚洲aⅴ乱码一区二区在线播放 | 亚洲最大成人中文| 国产黄色小视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲aⅴ乱码一区二区在线播放 | 欧美黄色片欧美黄色片| 亚洲av片天天在线观看| 老鸭窝网址在线观看| 欧美亚洲日本最大视频资源| 欧美黄色淫秽网站| 91麻豆精品激情在线观看国产| 我的亚洲天堂| 香蕉丝袜av| 又紧又爽又黄一区二区| 国产成人一区二区三区免费视频网站| 国产精品久久久av美女十八| 久久国产精品人妻蜜桃| 成在线人永久免费视频| 少妇 在线观看| 成人手机av| 色哟哟哟哟哟哟| 在线观看免费午夜福利视频| 日韩免费av在线播放| 亚洲成av人片免费观看| 亚洲成人免费电影在线观看| 99riav亚洲国产免费| 久久香蕉精品热| www.www免费av| 熟女电影av网| 91国产中文字幕| 波多野结衣高清无吗| www.精华液| 国产黄a三级三级三级人| 日本熟妇午夜| 1024手机看黄色片| 啦啦啦免费观看视频1| 亚洲在线自拍视频| 免费女性裸体啪啪无遮挡网站| 国产乱人伦免费视频| 中文字幕人妻熟女乱码| 中文字幕人成人乱码亚洲影| 免费在线观看日本一区| 亚洲av熟女| 老司机靠b影院| 精品欧美一区二区三区在线| 亚洲精品美女久久久久99蜜臀| 国产亚洲精品综合一区在线观看 | 精品久久久久久成人av| 欧美激情极品国产一区二区三区| 又黄又粗又硬又大视频| 国产色视频综合| 亚洲自拍偷在线| 久久国产精品人妻蜜桃| 精品国产乱码久久久久久男人| 亚洲欧美精品综合一区二区三区| 别揉我奶头~嗯~啊~动态视频| 久久人人精品亚洲av| 最近最新中文字幕大全电影3 | 免费在线观看黄色视频的| 老司机靠b影院| 中文字幕人妻熟女乱码| 天天躁夜夜躁狠狠躁躁| 亚洲人成伊人成综合网2020| 人人妻人人澡欧美一区二区| 国产成人欧美在线观看| 久久国产精品男人的天堂亚洲| 国产精品亚洲av一区麻豆| 国产不卡一卡二| 国产激情欧美一区二区| 男女视频在线观看网站免费 | 女生性感内裤真人,穿戴方法视频| 又黄又粗又硬又大视频| 制服诱惑二区| 国产又色又爽无遮挡免费看| 免费一级毛片在线播放高清视频| 亚洲一码二码三码区别大吗| 国产爱豆传媒在线观看 | 精品福利观看| 久久久精品国产亚洲av高清涩受| 一区福利在线观看| 男男h啪啪无遮挡| 免费看十八禁软件| 久久人人精品亚洲av| 91老司机精品| 国产成人精品无人区| ponron亚洲| 国产精品永久免费网站| 99国产综合亚洲精品| 亚洲精品在线美女| 成熟少妇高潮喷水视频| 欧美日韩中文字幕国产精品一区二区三区| netflix在线观看网站| 性色av乱码一区二区三区2| 精品福利观看| a在线观看视频网站| 免费在线观看影片大全网站| 热99re8久久精品国产| 亚洲自拍偷在线| 亚洲男人的天堂狠狠| 日韩欧美一区二区三区在线观看| 亚洲欧洲精品一区二区精品久久久| 亚洲第一青青草原| 国产精品电影一区二区三区| 亚洲狠狠婷婷综合久久图片| 中文资源天堂在线| 一夜夜www| 手机成人av网站| 中亚洲国语对白在线视频| 熟女电影av网| 真人一进一出gif抽搐免费| 男人舔奶头视频| 免费看日本二区| 亚洲片人在线观看| 黑人欧美特级aaaaaa片| 琪琪午夜伦伦电影理论片6080| 一级毛片高清免费大全| 一夜夜www| 日本成人三级电影网站| 一本一本综合久久| 婷婷精品国产亚洲av在线| 成人三级做爰电影| 亚洲第一青青草原| 一区二区三区国产精品乱码| 18禁美女被吸乳视频| 国产视频一区二区在线看| 国产真实乱freesex| 无遮挡黄片免费观看| 99热这里只有精品一区 | 一边摸一边抽搐一进一小说| 精品一区二区三区视频在线观看免费| 欧美成狂野欧美在线观看| 欧美又色又爽又黄视频| 欧美日韩亚洲国产一区二区在线观看| 男女做爰动态图高潮gif福利片| 高清在线国产一区| 国产午夜精品久久久久久| 在线观看舔阴道视频| 亚洲五月天丁香| 国产精品综合久久久久久久免费| 亚洲成人久久爱视频| 搡老岳熟女国产| 久久久久久久久免费视频了| 亚洲无线在线观看| 欧美日韩精品网址|