• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Propulsive Performance of a 3D Flapping Foil with Ground Wall Effect

    2021-11-03 14:01:40,
    船舶力學 2021年10期

    ,

    (State Key Laboratory of Hydrodynamics,China Ship Scientific Research Center,Wuxi 214082,China)

    Abstract:The ground wall effect on the propulsive performance of a flapping foil was numerically investigated by using overlapping grid method at a moderate high Reynolds number of 1.0×104.The numerical results show that both the fluid dynamics and flow structures of the flapping foil are tremendously affected by the ground wall.When the hydrofoil is arranged close to the ground wall,a distinct thrust enhancement(at high St number)and a lift reinforcement can be acquired,compared with the case without ground wall.Moreover,a crescent vortex loop was observed as the result of mutual interaction between the flapping foil and the ground wall.

    Key words:flapping foil;ground wall effect;overlapping grid;propulsive performance;vortex structure

    0 Introduction

    Flapping foils are a kind of foils undertaking pitching motion with respect to the spanwise axis and heaving motion along vertical direction synchronously and there often exists a phase lag between these two motions[1-2].According to Pedro’s work[3],the phase lag is often set as 90°with consideration of producing larger thrust.There is a wide range of applications for flapping foils and the most popular one is in bionic propulsion.Compared with the conventional fixed-wing air vehicle or propeller-based underwater vehicle,the shining merits of a flapping foil serving as the propulsive unit are low-noise and good maneuverability[4].The development of micro air vehicles and small unmanned underwater vehicles has led to a growing interest in the mechanism of flapping foils.Numerous studies concerning flapping foils’propulsive performance have been conducted by scholars and researchers from both home and abroad and their studying point includes analyzing the forces and flow structures of a single flapping foil or several ones[5-6],examining the role of aspect ratio of flapping foils[7-8],researching the function of body’s flexibility in flapping foil-based motions[9-10]and investigating the propulsive performance of flapping foils under steady or unsteady flows[11],etc..

    The researches focus mainly on the hydrodynamic performance of flapping foils in an unbounded flow field,failing to take the ground wall effect into account.However,in the real natural world,whether they are birds,insects or fishes,their fins and the tails are connected with their bodies[12].Besides that,it often happens that the fishes or birds move next to the ground wall and the existence of ground wall will surely produce subtle effects upon their motion characteristics.Therefore,the study into the wall effect upon flapping foil’s propulsive performance shall be much helpful in providing physical insight into the mechanism hidden in those high efficiency creatures.

    However,current existing studies concerning the ground wall effect on flapping foils are very limited.The pioneering work was conducted by Moryossef and Levy[13]who numerically simulated a two-dimensional airfoil undergoing vertically oscillating motion near the ground.Similar work was also conducted by Gao and Lu[14]and the difference was their physical model altering from NACA foil to elliptical foil.Later on,Wu et al[15]conducted numerical simulation upon ground wall effect by using the developed immersed boundary-lattice Boltzman method at a low Reynolds number of 150 and their study concentrated on the effect of the distance between the flapping foil and the ground wall on flapping foil’s propulsive performance.Truong et al[16]measured the force behaviors and investigated the flow patterns of a single flapping foil of beetle during take-off in their experiments.Recently,Amin et al[17]experimentally investigated the wall effect on the forces exerted by the fluid on a propulsive foil.

    The above works focus mainly on two-dimensional flapping foil.However,there exist significant differences in both hydrodynamic behavior and flow structure between them.Apart from that,the numerical simulation mentioned above were conducted at relative low Reynolds numbers in consideration of computation cost while the typical Reynolds number in the real world lies in the range of 104-106,which is far greater than the one studied in their work.According to Asharf and Deng’s work[18-19],the Reynolds number plays a vital role in a flapping foil’s propulsive performance.

    In this article,an overlapping grid method is adopted to investigate the ground wall effect upon flapping foils’propulsive performance atRe=1.0×104.A three-dimensional NACA0012 hydrofoil executing combined motion of harmonic heaving and pitching motion is selected in this study.After specifying the Reynolds number and the phase lag between heaving and pitching as well as the motion amplitudes,including the heaving amplitude and pitching amplitude,the effects of vertical distance between the center of hydrofoil and the ground wall and the motion frequency of the flapping foil are investigated.According to the numerical results obtained,the ground wall effect on flapping foil’s hydrodynamic forces and flow structures is investigated.

    1 Numerical modelling and validation

    1.1 Kinematics

    As mentioned above,the physical model selected in this paper is a three-dimensional NACA0012 hydrofoil undergoing combined motion of heaving motionh(t)along theYdirection and pitching motionθ(t)with respect toZaxis with the same motion frequency,as shown in Fig.1.HereXprepresents the distance alongXdirection between the leading edge of the hydrofoil andZaxis and its value is set asXp=C/4,BandCare the span length and chord length of the hydrofoil,takingCas the characteristic length and its value is set as 0.1 m,the aspect ratio can be calculated asRA=B/C,the currentRAvalue is set as 2.0 with consideration of larger thrust force to be produced[20].

    Fig.1 Physical model of flapping foil

    The perspective view of flow over a flapping foil with ground wall effect is shown in Fig.2 and the combined heaving-pitching motion can be expressed as

    Fig.2 Perspective view of flow over a flapping foil with ground wall effect

    whererepresents the vertical distance between the center of foil and ground wall,h0is the mean distance,hmis the heaving amplitude,θmis the pitching amplitude,θ0is the mean pitching degree,ψis the phase difference between heaving and pitching motion,andfis the motion frequency.Since the main focus of this study is to investigate ground wall effect of the flapping foil,other parameters except for the flapping frequency are set constant asψ=90°,hm=0.25C,θ0=0° andθm=30°.Based on the free stream velocityU∞,heaving amplitudehmand the dimensionless frequency,Strouhal number can be defined asSt=2hmf/U∞.

    1.2 Numerical method and validation

    Considering that the position of the foil is not in a static state,the hydrofoil’s flapping motion can be attributed to typical moving boundary issue.The conventional method to solve this tricky problem is to adopt absolute reference frame coupling with the dynamic mesh or sliding mesh technique,which requires much computation resource and the computation is extremely time-consuming[21].The overlapping grid method is now well developed to handle the moving boundary problem,which involves two sets of grids,the background grid and overlapping grid.The former grid remains static and merely the overlapping grid undertakes the corresponding motion.The information exchange is realized through the interface between these two sets of grids.The difficulty in grid generation is reduced and the relative motion among the grids is free.Thus,an overlapping grid can conveniently simulate the foil flapping problem under different conditions,and each move does not need to regenerate a grid.A detailed description of the numerical method can be found in Bank’s work[22-23].Apparently,the latter method is feasible and stable,and is therefore utilized in the current study together with the User Defined Function(UDF)feature of the commercial software ANSYS FLUENT.

    A sufficiently large 3D cuboid computation domain,setting as the background grid,is presented in Fig.3(a).The whole region is constructed using structured mesh and the domain size,takingh0=Cas example,is(x,y,z)=(15C,5C,10C).Fig.3(b)demonstrates the overlapping domain,which is also set as cuboid-like shape and the domain size is(x,y,z)=(1.5C,0.5C,2.5C),just a little larger than the hydrofoil model with the purpose of minimizing the number of grids to the best extent.As for the grid size of the background domain,a non-uniform mesh is adopted,the rotational domain,located at the center of the background domain with the size of(x,y,z)=(3C,1.5C,3.0C),which is fine and uniform with the same spacing of 0.01C,and the other grid size along three directions shows a linear growth with the growing ratio 1.08.The grid size of the overlapping domain is uniform with the same grid size of 0.01Cwith the purpose of convenient and efficient information exchange between these two sets of domains.The total grid number reaches 1.5 million.

    Fig.3 Sketch of computation domain

    The grid independence test results are presented in Tab.1,showing 8 numerical simulation results,including four sets of grids with different grid number and two differentStnumbers,whereCT-MeanandCL-Meanrepresent the time-averaged thrust force coefficient and lift force coefficient respectively,and the corresponding expressions can be seen in Eq.(2),whereFTandFLrepresent the thrust force and lift force experienced by the flapping foil correspondingly,Tis a complete time period,t0is random motion moment.Other parameters are set as,h0=C,U∞=0.1 m/s,time stepΔt=0.001 s.It can be easily seen from Tab.1 that the third set of mesh with a total of 1 200 000 nodes is fine enough to achieve an accurate result and is therefore chosen in the following simulation.

    Tab.1 Grid independence test results

    In order to further testify the accuracy of the numerical method employed in the study,the thrust force coefficient with different pitching amplitudes are also presented in Fig.4,and good agreement with the results in Ref.[24]is shown in the figure.Corresponding parameters are set asf=1.0 Hz,hm=0.30C,ψ=90°.

    Fig.4 Comparison of thrust force coefficient with results of Ref.[24]

    2 Simulation results

    After validatation of the numerical method employed in this article,the ground wall effect on the propulsive performance of the flapping foil is analyzed in this chapter.The mean distanceh0/Cis set as 0.3,0.6,0.8,1.0 and 1.5 respectively and theStnumber is selected as 0.1,0.25 and 0.5 at each specified distance.

    2.1 Hydrodynamic performance due to ground wall effect

    The force behaviors of the flapping foil due to ground wall effect are presented in Fig.5.The mean value of the drag force coefficient and lift force coefficient at different vertical distances andStnumbers are shown in Fig.5(a)and Fig.5(b)respectively.To make a comparison,the force behaviors of a flapping foil with no ground wall effect is also presented and the corresponding result can be seen in Fig.5(c)and Fig.5(d).

    Fig.5 Force behaviors of flapping foil with ground wall effect

    As can be seen from Fig.5,the existence of ground wall produces much influence on the flapping foil’s force behaviors to a different extent under several ground wall distances.With the increase of the ground wall distance,the ground wall effect reduces gradually and when the ground wall distance exceeds 1.5C(as seen in Fig.5(c)and(d)),the influence is too tiny to be observed,thus we may roughly assume that the ground wall effect disappears ath0=1.5C.

    As for the mean value of drag force coefficient(CD-Mean),there exists little difference among several ground wall distances at lowStnumbers(St=0.10),and the corresponding value ofCD-Meanhovers around zero.With the increase of theStnumber(St=0.25),the value ofCD-Meanowes a negative value,meaning that a positive thrust force is produced and the smaller the ground wall distance is,the higher the thrust force will be.That phenomenon is more obvious under a higherStnumber(St=0.50)and the value ofCD-Meanincreases by 48.5% with the ground wall distance reducing from 1.5Cto 0.3C.Similarly,the mean value of the lift force coefficient(CL-Mean)also shows a corresponding growth when the ground wall distance alters from 1.5Cto 0.3Cunder differentStnumbers and the higher theStnumber is,the faster theCL-Meanincreases.In view of this,it can be concluded that the existence of ground wall helps enhance the thrust force generated by the flapping foil and improve the lift force experienced by the flapping foil.

    To further explore the difference of the flapping foil’s force behavior under different ground wall distances,the time histories of the drag force and lift force coefficients in single motion period under five ground wall distances and three typicalStnumbers are presented in Fig.6.

    Fig.6 Time history of force coefficients in single motion period

    As seen from Fig.(6),there exist two peaks ofCDin single motion period and the changing period ofCDis half of the motion period.As forCL,a single peak emerges and that changing period ofCLcoincides with the flapping foil’s motion period under different ground wall distances andStnumbers.This is in good consistence with that of the flapping foil in an unbounded flow.As forSt=0.10,with the ground wall distance’s decrease,the peaks and crests ofCDandCLshow a corresponding growth and the growing amplitudes are approximately equal,thus the mean value ofCDandCLshows little difference among various ground wall distances.When it comes to a higherStnumber(St=0.25),the peaks ofCDunder smaller ground wall distances show a smaller growth while the crests ofCDpresent an obvious increase,resulting in an obvious growth ofCD-Mean.As forCL,that situation has turned into the opposite side.The peaks ofCLshow much growth while the crests do not change much,making theCL-Meanpresent an evident growth with the ground wall distance altering from 1.5Cto 0.3C.The situation is quite obvious with the highestStnumber(St=0.50).

    2.2 Vortex structures due to ground wall effect

    Apart from the hydrodynamic performance,the vortex structures would also be affected as a result of ground wall effect.As shown in Fig.7,vortex structures at the rear part of the flapping foil withSt=0.50 under four typical ground wall distances are illustrated in three different perspectives(t=3.0T).Considering that there exists little difference in force behaviors of the flapping foil when the ground wall distance alters fromh0=∞toh0=1.5C(shown in Fig.5(c)and(d)),we roughly take the vortex structures ath0=1.5Cto approximate the corresponding flow patterns out of ground wall effect.

    Fig.7 Vortex structures at rear part of flapping foil at different perspectives(St=0.50)

    As can be seen in Fig.7(a),two complete vortex loops emerge at the rear part of the flapping foil and the vortex loop moves toward the center line of the flapping foil.The vortex length along the flow direction is similar to that of the flapping foil while the span length of the vortex loop shows a gradual decrease and that phenomenon is similar to that of the flapping foil in an unbounded flow,as reported in Ref.[25].With the ground wall distance’s decrease(shown in Fig.7(b)),the vortex structures show a distinct difference.Instead of approaching to the center line,the vortex shows a gradual deviation from the center line for the sake of the ground wall distance’s existence and the span length of the vortex loop is slightly longer than that of the flapping foil while the vortex length along the flow direction remains unchanged.Besides that,it can be also found in the side perspective that the vortex loop at the lower part has been compressed to be oblate as a result of the ground wall’s constraint.As the ground wall distance keeps decreasing(0.6Cand 0.3C),the vortex loops substantially deviate from the center line with the chord length,and the span length of the vortex loop presents a corresponding increase,finally forming a shape of a crescent.Similarly,the vortex loop at the lower part has been compressed more severely.Consequently,there is an obvious angle between the ground and the center line of the vortex street,that phenomenon is similar to what was reported in Cheng and Luo’s work[26].

    3 Conclusions

    The propulsive performance of a three-dimensional flapping foil is numerically investigated in this paper with consideration of ground wall effect.To carry out the simulation,the overlapping grid method is adopted in conjunction with the User Defined Function(UDF)feature of the commercial finite-volume code ANSYS FLUENT,and the Reynolds number is chosen as 1.0×104,which is extremely close to that in real nature.After specifying the motion amplitudes and phase lag,we concentrate on the investigation of the distance between the ground wall and the flapping foil together with the motion frequency.Here we briefly summarize the results reached above.

    (1)The force behaviors of flapping foils,including drag force and lift force,are tremendously affected by the ground wall.When foils are placed in close proximity to the ground wall,a distinct thrust enhancement(at a highStnumber)and a lift reinforcement can be acquired,compared with the case without ground wall effect.

    (2)The vortex structure at the rear part of a flapping foil is also strongly influenced by the ground wall.With the decrease of the ground wall distance,the vortex loop starts to deviate from the center line of the flapping foil and the corresponding span length shows an obvious growth,finally forming a shape of a crescent.

    女同久久另类99精品国产91| 成人三级黄色视频| 婷婷丁香在线五月| 国内少妇人妻偷人精品xxx网站 | 别揉我奶头~嗯~啊~动态视频| 曰老女人黄片| aaaaa片日本免费| 欧美性猛交黑人性爽| 欧美激情久久久久久爽电影| 久久中文字幕一级| 伊人久久大香线蕉亚洲五| 亚洲人成网站高清观看| 免费观看的影片在线观看| 搡老岳熟女国产| 欧美色视频一区免费| 两个人的视频大全免费| 欧美日韩亚洲国产一区二区在线观看| 九九久久精品国产亚洲av麻豆 | a级毛片a级免费在线| 久久久久久久久中文| 亚洲av成人av| 99国产精品一区二区三区| 少妇的丰满在线观看| 亚洲激情在线av| 桃色一区二区三区在线观看| 国产精品,欧美在线| 一级黄色大片毛片| 91av网站免费观看| 国产伦一二天堂av在线观看| 亚洲一区高清亚洲精品| 国产亚洲精品一区二区www| 在线免费观看不下载黄p国产 | 99国产极品粉嫩在线观看| 欧美乱色亚洲激情| 亚洲在线自拍视频| 精品久久久久久成人av| 亚洲人与动物交配视频| 性色av乱码一区二区三区2| 丰满人妻一区二区三区视频av | 国产精品99久久久久久久久| 日本在线视频免费播放| 成人av在线播放网站| 露出奶头的视频| 香蕉av资源在线| 国产不卡一卡二| 此物有八面人人有两片| 可以在线观看毛片的网站| 免费在线观看成人毛片| 搡老妇女老女人老熟妇| 亚洲狠狠婷婷综合久久图片| 黄片小视频在线播放| 好男人电影高清在线观看| 小说图片视频综合网站| 国产精品野战在线观看| 久久久久性生活片| a在线观看视频网站| 国产黄色小视频在线观看| 草草在线视频免费看| 欧美+亚洲+日韩+国产| 精品一区二区三区视频在线观看免费| 老汉色∧v一级毛片| 国产aⅴ精品一区二区三区波| 在线观看日韩欧美| 一夜夜www| 欧美黄色片欧美黄色片| 国产野战对白在线观看| 亚洲av五月六月丁香网| 人人妻人人看人人澡| av片东京热男人的天堂| 十八禁人妻一区二区| 国产精品女同一区二区软件 | 色在线成人网| 欧美+亚洲+日韩+国产| 婷婷亚洲欧美| 久久久久久久久免费视频了| 老司机福利观看| aaaaa片日本免费| 国产乱人伦免费视频| 特大巨黑吊av在线直播| 麻豆成人午夜福利视频| 午夜精品在线福利| 最近最新中文字幕大全免费视频| 五月玫瑰六月丁香| 18禁国产床啪视频网站| 亚洲自拍偷在线| 全区人妻精品视频| 日日夜夜操网爽| 国产又黄又爽又无遮挡在线| 日韩欧美国产在线观看| 精品国产乱子伦一区二区三区| 日韩有码中文字幕| 久久久久九九精品影院| 久久精品91无色码中文字幕| 国内毛片毛片毛片毛片毛片| 国产午夜精品久久久久久| 国产高清视频在线观看网站| 热99在线观看视频| 人人妻,人人澡人人爽秒播| 老熟妇仑乱视频hdxx| 国产高潮美女av| 中文亚洲av片在线观看爽| 日韩精品中文字幕看吧| 亚洲av中文字字幕乱码综合| 亚洲天堂国产精品一区在线| 欧美国产日韩亚洲一区| 国产单亲对白刺激| 欧美xxxx黑人xx丫x性爽| 欧美性猛交黑人性爽| 天堂√8在线中文| 久久久久久久久久黄片| 亚洲精品美女久久av网站| 婷婷六月久久综合丁香| 国产精品久久久av美女十八| 精品一区二区三区视频在线观看免费| 国产精品99久久99久久久不卡| 国产精品亚洲美女久久久| 国产1区2区3区精品| 香蕉久久夜色| 老熟妇乱子伦视频在线观看| 亚洲专区国产一区二区| 国产激情偷乱视频一区二区| 99热这里只有精品一区 | 欧美3d第一页| 精品一区二区三区四区五区乱码| 欧美成狂野欧美在线观看| 岛国在线免费视频观看| 国产蜜桃级精品一区二区三区| 日韩欧美精品v在线| 国产野战对白在线观看| 97碰自拍视频| av福利片在线观看| 中文资源天堂在线| 天堂影院成人在线观看| 国产av一区在线观看免费| 午夜福利成人在线免费观看| 99久久精品国产亚洲精品| 国产美女午夜福利| 国产成人aa在线观看| 亚洲色图 男人天堂 中文字幕| 久久久国产成人免费| 别揉我奶头~嗯~啊~动态视频| 18禁裸乳无遮挡免费网站照片| 欧美激情在线99| 偷拍熟女少妇极品色| 国产精品精品国产色婷婷| 九九热线精品视视频播放| 叶爱在线成人免费视频播放| 观看美女的网站| 国产一区二区激情短视频| 九九热线精品视视频播放| 成年女人永久免费观看视频| 精品国产乱码久久久久久男人| 天天躁日日操中文字幕| 最近最新免费中文字幕在线| 日韩欧美免费精品| 国产成人精品无人区| 男人的好看免费观看在线视频| 国产精品 国内视频| 在线永久观看黄色视频| 美女免费视频网站| 久久这里只有精品中国| 色噜噜av男人的天堂激情| 最新中文字幕久久久久 | 视频区欧美日本亚洲| 舔av片在线| 日本a在线网址| 天天躁日日操中文字幕| 国产亚洲精品久久久com| 1024手机看黄色片| 午夜激情欧美在线| 蜜桃久久精品国产亚洲av| 真实男女啪啪啪动态图| 熟妇人妻久久中文字幕3abv| 国产av麻豆久久久久久久| 日韩大尺度精品在线看网址| 日日夜夜操网爽| 免费看光身美女| 九九在线视频观看精品| 国产一级毛片七仙女欲春2| 91九色精品人成在线观看| 99久久99久久久精品蜜桃| 可以在线观看毛片的网站| 亚洲欧美日韩东京热| 久久香蕉精品热| 身体一侧抽搐| 色哟哟哟哟哟哟| 91字幕亚洲| 午夜福利在线在线| 美女午夜性视频免费| 国产欧美日韩一区二区三| 国产精品久久久人人做人人爽| 亚洲熟妇熟女久久| 在线观看美女被高潮喷水网站 | 性色av乱码一区二区三区2| 观看美女的网站| 天天躁日日操中文字幕| 国产精华一区二区三区| 后天国语完整版免费观看| 欧美日韩福利视频一区二区| 熟女人妻精品中文字幕| 桃色一区二区三区在线观看| 特大巨黑吊av在线直播| 久久伊人香网站| av片东京热男人的天堂| 首页视频小说图片口味搜索| 精品久久久久久久久久久久久| 无限看片的www在线观看| 看片在线看免费视频| 99热精品在线国产| netflix在线观看网站| 免费av不卡在线播放| 伊人久久大香线蕉亚洲五| 精品国产三级普通话版| 国产91精品成人一区二区三区| 国产精品爽爽va在线观看网站| 久久天躁狠狠躁夜夜2o2o| 日本黄色片子视频| 国产v大片淫在线免费观看| 给我免费播放毛片高清在线观看| 欧美色视频一区免费| 成人鲁丝片一二三区免费| 真实男女啪啪啪动态图| 国产高清videossex| 亚洲欧美日韩高清在线视频| 日日夜夜操网爽| 在线观看舔阴道视频| 成人国产综合亚洲| 亚洲国产高清在线一区二区三| 国产精品影院久久| 色噜噜av男人的天堂激情| www.999成人在线观看| a级毛片a级免费在线| 男插女下体视频免费在线播放| 少妇的丰满在线观看| 国产伦精品一区二区三区四那| 久久精品国产综合久久久| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品在线观看二区| av中文乱码字幕在线| 色综合亚洲欧美另类图片| 51午夜福利影视在线观看| 亚洲人与动物交配视频| 欧美国产日韩亚洲一区| 黑人欧美特级aaaaaa片| 手机成人av网站| 999久久久国产精品视频| 男人舔女人的私密视频| 国产精品久久久久久亚洲av鲁大| 村上凉子中文字幕在线| 国产主播在线观看一区二区| 黄频高清免费视频| 亚洲五月婷婷丁香| x7x7x7水蜜桃| 制服人妻中文乱码| 成人精品一区二区免费| 国产成+人综合+亚洲专区| ponron亚洲| 少妇丰满av| 国产亚洲欧美在线一区二区| 欧美xxxx黑人xx丫x性爽| 久久草成人影院| 一区二区三区国产精品乱码| 看黄色毛片网站| 国产精品一区二区精品视频观看| 国产亚洲av高清不卡| 午夜福利在线在线| 18禁国产床啪视频网站| 亚洲九九香蕉| 男人和女人高潮做爰伦理| 国产97色在线日韩免费| 99热这里只有是精品50| 搡老熟女国产l中国老女人| 麻豆成人av在线观看| 男女午夜视频在线观看| 欧美午夜高清在线| 琪琪午夜伦伦电影理论片6080| a级毛片在线看网站| 无人区码免费观看不卡| 日本一二三区视频观看| 欧美zozozo另类| 免费搜索国产男女视频| 久久九九热精品免费| 欧美日韩一级在线毛片| e午夜精品久久久久久久| 亚洲欧美精品综合久久99| 欧美色欧美亚洲另类二区| 欧美丝袜亚洲另类 | 别揉我奶头~嗯~啊~动态视频| 特大巨黑吊av在线直播| 免费观看精品视频网站| 网址你懂的国产日韩在线| 国产男靠女视频免费网站| 女生性感内裤真人,穿戴方法视频| 久久亚洲真实| 精品欧美国产一区二区三| 久久久久国产一级毛片高清牌| 最新美女视频免费是黄的| www日本在线高清视频| 国产一区二区三区视频了| 久久久国产欧美日韩av| 99精品欧美一区二区三区四区| 国产成人精品久久二区二区91| 非洲黑人性xxxx精品又粗又长| 亚洲在线观看片| 欧美日韩精品网址| 午夜免费成人在线视频| 哪里可以看免费的av片| 欧美成人一区二区免费高清观看 | 在线观看66精品国产| 国产一区在线观看成人免费| 亚洲国产欧美人成| 亚洲国产色片| 成人18禁在线播放| 91在线观看av| 欧美一区二区精品小视频在线| 黄色女人牲交| 91久久精品国产一区二区成人 | 国产主播在线观看一区二区| 亚洲片人在线观看| 国产av不卡久久| 夜夜爽天天搞| 久久草成人影院| 亚洲专区字幕在线| 18禁黄网站禁片免费观看直播| 九九热线精品视视频播放| 青草久久国产| 观看免费一级毛片| 又紧又爽又黄一区二区| 一a级毛片在线观看| 精品免费久久久久久久清纯| 性色avwww在线观看| 法律面前人人平等表现在哪些方面| 色综合婷婷激情| 欧美日本亚洲视频在线播放| 国产精品日韩av在线免费观看| 国产欧美日韩一区二区精品| 色视频www国产| 怎么达到女性高潮| 熟女电影av网| 国产伦精品一区二区三区视频9 | 国产精品一区二区精品视频观看| 人人妻人人澡欧美一区二区| 国产欧美日韩精品亚洲av| 国产成人福利小说| 日本一二三区视频观看| 成人亚洲精品av一区二区| 香蕉久久夜色| 日韩欧美国产一区二区入口| 麻豆国产97在线/欧美| 禁无遮挡网站| 特大巨黑吊av在线直播| 不卡av一区二区三区| 亚洲美女视频黄频| 我要搜黄色片| 久久久久久久精品吃奶| 在线看三级毛片| 老司机深夜福利视频在线观看| 色噜噜av男人的天堂激情| 日韩三级视频一区二区三区| 男人的好看免费观看在线视频| 国产高清videossex| 老司机深夜福利视频在线观看| 无遮挡黄片免费观看| 久久亚洲真实| 国产 一区 欧美 日韩| 亚洲欧美精品综合一区二区三区| 18禁黄网站禁片免费观看直播| 亚洲九九香蕉| 狂野欧美激情性xxxx| 一个人看的www免费观看视频| 1024香蕉在线观看| 女警被强在线播放| 国产av麻豆久久久久久久| 亚洲成人免费电影在线观看| 亚洲精品在线观看二区| 国产黄a三级三级三级人| 亚洲人成电影免费在线| 久久精品亚洲精品国产色婷小说| 国产三级在线视频| 国产欧美日韩精品亚洲av| 久久午夜亚洲精品久久| 亚洲av成人精品一区久久| 国内精品美女久久久久久| 亚洲国产欧美人成| av片东京热男人的天堂| 在线十欧美十亚洲十日本专区| 国产主播在线观看一区二区| 一本久久中文字幕| 看免费av毛片| 午夜福利高清视频| 亚洲av电影在线进入| 狂野欧美激情性xxxx| 亚洲午夜精品一区,二区,三区| 欧美黄色片欧美黄色片| 午夜激情福利司机影院| 久久精品国产综合久久久| 国产亚洲精品久久久久久毛片| 亚洲av免费在线观看| 香蕉国产在线看| 亚洲av中文字字幕乱码综合| 神马国产精品三级电影在线观看| 久久中文字幕人妻熟女| 特大巨黑吊av在线直播| 一二三四在线观看免费中文在| 国产高清视频在线观看网站| 欧美日韩一级在线毛片| 日韩大尺度精品在线看网址| 亚洲一区二区三区色噜噜| 亚洲熟妇熟女久久| 黄色片一级片一级黄色片| 好看av亚洲va欧美ⅴa在| 最新中文字幕久久久久 | 久久久久国内视频| 一级毛片高清免费大全| 久久国产乱子伦精品免费另类| 国产精品 国内视频| 精品久久久久久久久久久久久| 亚洲国产高清在线一区二区三| 久久精品综合一区二区三区| x7x7x7水蜜桃| 曰老女人黄片| 国产成年人精品一区二区| 日本撒尿小便嘘嘘汇集6| 日本熟妇午夜| 深夜精品福利| 在线观看免费午夜福利视频| 一级毛片女人18水好多| 好男人电影高清在线观看| 少妇裸体淫交视频免费看高清| 国产精品久久电影中文字幕| 午夜两性在线视频| 哪里可以看免费的av片| xxxwww97欧美| 精品福利观看| 国产欧美日韩精品亚洲av| 久久久久性生活片| 岛国在线观看网站| 在线免费观看的www视频| 国产精品美女特级片免费视频播放器 | 成熟少妇高潮喷水视频| 成人特级黄色片久久久久久久| 亚洲av成人av| 国产成人一区二区三区免费视频网站| 国产精品亚洲美女久久久| 黄色女人牲交| 成人性生交大片免费视频hd| 亚洲午夜理论影院| 老司机在亚洲福利影院| 亚洲熟妇中文字幕五十中出| 老司机午夜福利在线观看视频| 欧美三级亚洲精品| 国产伦人伦偷精品视频| 亚洲欧美日韩高清在线视频| 18禁黄网站禁片免费观看直播| 成人av在线播放网站| 免费看光身美女| 久久中文看片网| 狂野欧美激情性xxxx| 我的老师免费观看完整版| 99国产精品一区二区蜜桃av| 99国产精品99久久久久| 国产蜜桃级精品一区二区三区| 热99re8久久精品国产| 婷婷亚洲欧美| 麻豆国产97在线/欧美| 91麻豆av在线| 午夜视频精品福利| 啪啪无遮挡十八禁网站| 99国产精品99久久久久| 久久精品国产清高在天天线| x7x7x7水蜜桃| 一区二区三区激情视频| 少妇裸体淫交视频免费看高清| 淫妇啪啪啪对白视频| 国产一区在线观看成人免费| 一级作爱视频免费观看| 国产乱人伦免费视频| 精品久久久久久久毛片微露脸| 99精品在免费线老司机午夜| 国产免费av片在线观看野外av| 日韩欧美在线二视频| 国产精品久久久av美女十八| 亚洲人成电影免费在线| av福利片在线观看| 亚洲无线在线观看| 午夜久久久久精精品| 2021天堂中文幕一二区在线观| 女警被强在线播放| 国产高清视频在线播放一区| 欧美在线一区亚洲| 国产亚洲精品综合一区在线观看| 久久久久久久久久黄片| 成熟少妇高潮喷水视频| 神马国产精品三级电影在线观看| 中国美女看黄片| 欧美绝顶高潮抽搐喷水| 久久精品综合一区二区三区| 中文在线观看免费www的网站| 午夜福利18| 久9热在线精品视频| 又紧又爽又黄一区二区| 日本免费a在线| 窝窝影院91人妻| 丰满人妻一区二区三区视频av | 国产一区二区激情短视频| 中文在线观看免费www的网站| 久久久国产欧美日韩av| 亚洲成av人片免费观看| 岛国在线观看网站| 99国产综合亚洲精品| 精品国内亚洲2022精品成人| 一进一出好大好爽视频| 久久久久国产一级毛片高清牌| 伊人久久大香线蕉亚洲五| 久久九九热精品免费| 亚洲专区国产一区二区| 免费大片18禁| 可以在线观看毛片的网站| 色吧在线观看| 欧美日韩亚洲国产一区二区在线观看| 97碰自拍视频| 精品欧美国产一区二区三| 欧美日韩精品网址| 免费大片18禁| 成人精品一区二区免费| 国产成年人精品一区二区| 国产精品 欧美亚洲| 日韩成人在线观看一区二区三区| 可以在线观看的亚洲视频| 我的老师免费观看完整版| 俺也久久电影网| 一个人看的www免费观看视频| 在线观看美女被高潮喷水网站 | 亚洲va日本ⅴa欧美va伊人久久| 亚洲中文av在线| 真实男女啪啪啪动态图| avwww免费| 欧美中文日本在线观看视频| 精品电影一区二区在线| 禁无遮挡网站| 免费av不卡在线播放| а√天堂www在线а√下载| 天堂av国产一区二区熟女人妻| 亚洲av美国av| 精品久久久久久久久久久久久| 精华霜和精华液先用哪个| 国内精品久久久久久久电影| 12—13女人毛片做爰片一| 好男人在线观看高清免费视频| 亚洲人成网站在线播放欧美日韩| 夜夜爽天天搞| 亚洲欧美日韩东京热| or卡值多少钱| 9191精品国产免费久久| 国产精品日韩av在线免费观看| 免费观看精品视频网站| 天堂动漫精品| 男女那种视频在线观看| 精品国产美女av久久久久小说| 亚洲av电影不卡..在线观看| 亚洲国产精品999在线| 又爽又黄无遮挡网站| 久久欧美精品欧美久久欧美| 午夜精品久久久久久毛片777| 国产99白浆流出| 欧美乱妇无乱码| 久久精品91蜜桃| 久久性视频一级片| 国产精品亚洲一级av第二区| 色精品久久人妻99蜜桃| 手机成人av网站| 91久久精品国产一区二区成人 | 国内精品久久久久久久电影| 欧美+亚洲+日韩+国产| 精品熟女少妇八av免费久了| 99久久久亚洲精品蜜臀av| 久久午夜亚洲精品久久| 999久久久精品免费观看国产| 免费观看的影片在线观看| 日韩中文字幕欧美一区二区| 色精品久久人妻99蜜桃| 午夜两性在线视频| 男人和女人高潮做爰伦理| 动漫黄色视频在线观看| 久久九九热精品免费| 色哟哟哟哟哟哟| 精品熟女少妇八av免费久了| ponron亚洲| x7x7x7水蜜桃| 午夜福利18| 婷婷丁香在线五月| 久久精品夜夜夜夜夜久久蜜豆| www.精华液| 他把我摸到了高潮在线观看| 国产aⅴ精品一区二区三区波| 99热只有精品国产| 亚洲在线自拍视频| 老汉色av国产亚洲站长工具| 日韩大尺度精品在线看网址| 老汉色av国产亚洲站长工具| 欧美最黄视频在线播放免费| 女生性感内裤真人,穿戴方法视频| 99国产精品99久久久久| 亚洲狠狠婷婷综合久久图片| 国产伦在线观看视频一区| 搡老妇女老女人老熟妇| 岛国在线观看网站| 免费人成视频x8x8入口观看| 黄色日韩在线| 十八禁人妻一区二区| 精品国产超薄肉色丝袜足j| 国产欧美日韩一区二区精品| 99久久久亚洲精品蜜臀av| 熟女人妻精品中文字幕| 午夜免费成人在线视频|