• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Motion Responses of Barge in Variable Bathymetry Regions Based on Eigen-function Expansion Method

    2021-11-03 13:58:28
    船舶力學(xué) 2021年10期

    (School of Marine Science and Technology,Sun Yat-sen University,Zhuhai 519000,China)

    Abstract:A two-dimensional rectangular barge floating in variable bathymetry region is considered.The variable bathymetry is decomposed into a succession of steps and the fluid domain can be divided into a series of rectangular sub-domains.The eigenfunction expansion is used for the velocity potential defined in each region.The solution of velocity potential can be obtained based on the continuity hypothesis.The convergence of computational model is discussed and the parameters in the eigenfunction expansion method are suggested.The hydrodynamic coefficients of the barge under both the flat bottom and inclined bottom conditions are calculated and compared with the results in the literature.And motion responses of the barge in irregular waves are verified by the experimental results.

    Key words:eigenfunction expansion method;variable bathymetry;barge

    0 Introduction

    The motion response of a floating body in variable bathymetry regions is a mathematically interesting issue attracting many researchers.A specific case is the project of Liquefied Natural Gas(LNG)terminals and LNG floating storage units.The wave-induced loads and motions of floating bodies in waters with a restricted depth are important for the design of mooring system and for insuring that under-keel clearance is sufficient.The estimation of motions and loads can be given by the solution of classical wave-body-seabed hydrodynamic interaction problems.

    When the depth variation is small or the horizontal dimension of floating body is small in comparison to the bottom variation length,the water depth can be assumed to be constant.Otherwise the variations of bathymetry may have a significant effect on hydrodynamic behavior of the floating body.Under the assumption of slowly varying bathymetry,the mild-slope equations have been used for studying the floating body motions[1].And the method was extended in Ref.[2]to study steeper bathymetric variations.A linear hybrid model of mild-slope equation and boundary element method was developed to study the wave propagation around floating structures in coastal zones[3].The timedependent mild-slope equation model was adopted for a single and multiple wave energy converters based on the overtopping principle in Ref.[4]and Ref.[5].

    The step method was developed for the wave transmission in variable bathymetry regions,which was extended for studying the reflection and transmission of normal incident waves by twodimensional trenches and shoals in Ref.[6].The three-dimensional bathymetric anomalies with gradual transitions in depth was studied in Ref.[7]and Ref.[8].The bathymetric anomaly was represented by a series of steps,which can approximate uniform or non-uniform slopes.Experimental study of the effect of variable bathymetry on the slow-drift wave response of floating bodies was given by Ref.[9].A rectangular barge moored at different positions along an inclined beach and submitted to irregular beam seas was studied and the results were compared with the solutions of the Newman’s approximation and the step method.

    The hydrodynamic coefficients of a two-dimensional truncated rectangular floating structure in extremely shallow water was studied in Ref.[10]based on the method of matched asymptotic expansions.The radiation problem was solved under assumptions of linear wave theory,by matching two outer flows with the inner flow near the structure edge.The hydrodynamic coefficients of a three-dimensional floating truncated vertical cylinder was given by Ref.[11].

    The simplicity of the Rankine sources method in conjunction with appropriate representations of the wave field in the exterior infinite domains was adopted for floating body in variable bathymetry regions[12].The fluid domain was divided into three sub-domains and the near field of floating body was solved by the Rankine sources method.Similarly a coupling method between the Boussinesq equations and the integral equation method with application to numerical wave tank was presented in Ref.[13].In order to solve the roll responses of ship-hull sections,the vortex particle method for the generation of vorticity in the boundary layer was combined with the boundary element method for the non-linear waves in Ref.[14].

    In this paper,the eigenfunction expansion method was built for simulating rectangular barge in variable bathymetry regions.The fluid domain was divided into a series of rectangular sub-domains and eigenfunction expansions were used for the velocity potential.The particular solution was proposed for the radiation velocity potential.The convergence of eigenfunction expansion method was verified for different evanescent modes and sub-domains.Hydrodynamic coefficients of barge in variable bathymetry regions were discussed and compared with those calculated by boundary element method.The motion responses of the barge in irregular waves were calculated and compared with experimental results measured in the basin.

    1 Mathematical model

    As shown in Fig.1,the two-dimensional rectangular barge floats in waves with variable bathymetry.The wave field is excited by incident waves propagating from the left-hand side semi-infinite sub-domain.The assumption of an incompressible,inviscid and irrotational flow is adopted and the linearized potential flow theory is used for the hydrodynamic computations of the floating barge.The coordinate systemoxzis located on the free surface at rest withz-axis pointing upwards.

    Fig.1 2D sketch of a barge floating in waves with variable bathymetry

    The fluid domainDis decomposed into three partsD(m)(m=1,2,3).D(1)is the sub-domain characterized byx≤awhere the depth is constant and equal toh1;D(3)is the sub-domain characterized byx≥bwhere the depth is constant and equal toh3;D(2)is the variable bathymetry sub-domain(a<x<b)which contains the floating body.If the rigid bottom is defined byz=-h(x),the expression of function can be shown as follows:

    The velocity potential field in time harmonic can be represented by:

    whereωis the angular frequency of incident wave.Here the velocity potentialφ(x,z)can be decomposed into the classical form:

    whereAis the incident wave amplitude andgis the acceleration due to gravity.φI(x,z)denotes the incident wave potential andφD(x,z)is the diffraction wave potential due to the variable bathymetry and fixed body.φRk()x,z(k=1,3,5)represents the radiation potentials associated with the motions of floating body,i.e.surge(k=1),heave(k=3)and pitch(k=5).akdenotes the complex amplitudes of corresponding motions of floating body.

    In the variable bathymetry region and the down-wave region there is no gain in separatingφIandφDwhich are associated together under the form:

    The waves are propagating from the left-hand side semi-infinite sub-domain along theoxaxis.In the up-wave region(x≤a),the velocity potential of regular incoming waves is

    where the wavenumberk10satisfiesω2=gk10tanhk10h1.

    In the variable bathymetry regions,the velocity potentialφsatisfies the Laplace equation,the free-surface boundary condition and the no-flow condition on the solid boundaries:

    The radiation potentialsφRk,[k=1,3,5]verify the boundary value problem

    where the generalized normal vectorfkon the wetted surface aref1=nx,f3=nz,f5=(z-zG)nx-(x-xG)nz.is the outer normal vector.

    2 Computational model

    The boundary value problem of velocity potential will be solved based on matching eigenfunction expansions in the fluid domain.The fluid domain limited by the rectangular barge and variable bathymetry is discretized as a series of horizontal steps and defined as a succession of rectangular sub-domains.And the eigenfunction is used for the expressions of velocity potential in each subdomain.

    For the definition of sub-domains,thexaxis is discretized intoN-1 pointsx1,x2,…,xN-1and the fluid domain is divided intoNsub-domains.xIandxJare the left and right boundaries of the barge respectively.In the successive sub-domains(i=1,…,I)and(i=J+1,…,N)excluding the sub-domains below the barge,the velocity potentialφi(x,z)can be written as:

    and in the successive sub-domains(i=I+1,…,J)which are below the barge,the velocity potential can be written as:

    In Eq.(8),the coefficientsBi0are the transmitted wave amplitudes and the coefficientsCi0are the reflected wave amplitudes.The coefficientsBimandCimare the amplitude functions for the evanescent modes which decay exponentially with the distance from the boundary.The wave numberskimandλimverify:

    wheredis the draft of the barge,andβis the initial propagation angle with respect to thexaxis.

    For the radiation potentialsφRk,a particular solution is introduced for the velocity potential below the barge due to the normal velocity on boundaries of the barge.Here the particular solutionφpkiis given for surge,heave and pitch motions:

    And the rest part of the radiation potential is the same as the potentialφi.

    To obtain the unknown coefficientsBimandCim,the velocity potentialφiand horizontal derivative of velocity potential satisfy:

    Using the orthogonal properties of eigenfunction and integrating along the connected lines,a linear system with unknownsBimandCimcan be built.For the radiation potentialφRk,the process of solution is the same.Due to the appearance of the particular potential,some constant terms appear in the linear system.The coefficient matrix can be preconditioned by an incomplete LU-factorization and the linear system is solved by the GMRES(generalized minimal residual method)iterative scheme.With the solution of the linear system,the velocity potential and hydrodynamic coefficients of the floating body can be given.

    3 Convergence of model

    A two-dimensional rectangular barge is considered,with non-dimensional breadthB/h=1.5 and draftd/h=0.5,whereh=(h1+h3)/2 denotes the mean depth[12].The center of gravity has been selected to coincide with the center of flotation.The linear shoal betweenx=aandx=bcharacterized by a bottom slope of 0.125 is adopted.

    Firstly,the convergence of evanescent modes in the eigenfunction expansion method has been tested for the hydrodynamic coefficients of the barge.The added masses,damping coefficients and wave loads of barge under sway,heave and roll motions are shown in Figs.2-4.The wave length obtained from linear dispersion relation is divided by the mean water depth,which gives the values of abscissa.The non-dimensional added masses,damping coefficients and wave loads are calculated based on the following expressions:

    whereHis the incident wave height.Different evanescent modes are compared for all the non-dimensional hydrodynamic coefficients.From Figs.2-4,the computational model has converged and the discrepancy of numerical results can be ignored.In the following sections,20 evanescent modes are adopted for all the numerical computations.

    Fig.2 Convergence of evanescent modes for added masses(a11 and a33)and damping coefficients(b11 and b33)

    Fig.3 Convergence of evanescent modes for added masses(a55 and a15)and damping coefficients(b55 and b15)

    Fig.4 Convergence of evanescent modes and different steps for wave loads

    Fig.5 Convergence of different steps for added masses(a11 and a33)and damping coefficients(b11 and b33)

    The fluid domain has been divided into a succession of sub-domains and the convergence of number of sub-domains is studied.For the case named<Step 1>,all the 37 sub-domains are distributed in the fluid domain where 11 sub-domains on the left side of the barge,15 sub-domains under the barge and 11 sub-domains are on the right side of the barge.For the case named<Step 2>,all the 52 sub-domains are distributed in the fluid domain where 16 sub-domains are on the left side of the barge,20 sub-domains under the barge and 16 sub-domains on the right side of the barge.For the case named<Step 3>,all the 72 sub-domains are distributed in the fluid domain where 21 sub-domains are on the left side of the barge,30 sub-domains under the barge and 21 sub-domains on the right side of the barge.

    From Figs.4-6,the non-dimensional hydrodynamic coefficients are compared with different numbers of sub-domains.The numerical results are convergent except that small discrepancies can be found in added massa15and damping coefficientb15.In the following sections,the type of Step 3 is adopted for all the computations.

    Fig.6 Convergence of different steps for added masses(a55 and a15)and damping coefficients(b55 and b15)

    4 Hydrodynamic coefficients

    The hydrodynamic coefficients of the barge with linear shoal is given based on boundary element method[12].The near field is represented by boundary integral representation involving Rankine sources.The far field is modelled by complete series expansions derived by separation of variables in the constant depth half-strips.In the following Figs.7-9,the results given in the paper[12](blue lines)are compared with that calculated by the eigenfunction expansion method(red lines).The results given in the paper[12]concerning two bottom profiles are shown by solid lines(flat bottom)and lines marked as star(slope of 0.25).And the results given by the eigenfunction expansion method are shown by solid lines(slope of 0.125),lines marked as star(slope of 0.25)and lines marked as circle(slope of 0.3).The comparisons of excited loads,added masses and damping coefficients are shown in Figs.7-9.From the comparisons,the eigenfunction expansion method shows an overall good agreement with boundary element method.

    In fact,the velocity potential of incident wave is different for step method and boundary element method.In the step method,the velocity potential of incident wave in a constant depth is adopted for the left-hand side semi-infinite sub-domain.But the incident wave potential in the boundary element method is calculated by the means of the consistent coupled-mode model[15],which involves the variable bathymetry region.There are some differences in the values of excited loads,added masses and damping coefficients.For the values ofa15andb15,the significant discrepancy is due to the sensitivity of coefficients.The results should be verified by experimental data.

    Fig.7 Comparison of wave excited loads between boundary element method and eigenfunction expansion method

    Fig.8 Comparison of added masses(a11 and a15)and damping coefficients(b11 and b15)

    Fig.9 Comparison of added masses(a33 and a55)and damping coefficients(b33 and b55)

    For an infinite water depth,the added massesa13,a35and damping coefficientsb13,b35of rectangular barge should be equal to zero.Due to the effect of variable bathymetry regions,the values of added masses and damping coefficients should be considered.In Figs.10-11,the coupling effects of sway,heave and roll motions can be found.

    Fig.10 Values of added mass a13 and damping coefficient b13

    Fig.11 Values of added mass a35 and damping coefficient b35

    5 Experimental comparisons

    Fig.12 Comparison of sway motion between numerical and experimental results

    The experiments were carried out in the BGO-First offshore tank located in la Seyne sur Mer in France.The experimental settings are shown in Ref.[9].The length of basin is 40 m and width is 16 m.In our experiments,the false bottom was raised and inclined at a slope of 5%,starting from a depth of 1.05 m by the wavemaker side and emerging by 15 cm at its other side.The rectangular barge model has a length of 2.47 m,a beam of 0.6 m,a depth of 0.3 m and its draft during the tests was 0.12 m.The center of gravity is located at 0.135 m above keel line and a roll radius of gyration equal to 0.19 m.In our comparisons,the water depth of barge’s position is 54 cm.The barge was submitted to irregular waves of Pierson-Moskowitz spectra with a peak period of 1.2 s and a significant waveheight of 20 mm.The sway,heave and roll motion responses of the barge were compared between the numerical and experimental results as shown in Figs.12-14.The response amplitude operator(RAO)of experimental results are calculated by the following equation:

    whereSoutis the spectrum of the barge motion andSinis the spectrum of the incident wave.

    Fig.13 Comparison of heave motion between numerical and experimental results

    Fig.14 Comparison of roll motion between numerical and experimental results

    As viewed from the figures,the numerical results calculated by our eigenfunction expansion method coincide well with experimental results for sway and roll barge motions.For the heave motion of the barge,the oscillation ofRAOin the low frequencies can be found in the experimental results.Due to the reflected waves generated from the inclined bottom,the superposition of incident and reflected waves appears in the position of the barge.Non-linear shallow-water wave theory should be applied.

    6 Concluding remarks

    The eigenfunction expansion method built in the paper is an effective semi-analytical approach for calculating motion responses of regular volumes in the frequency domain.The rectangular barge floating in variable bathymetry regions is solved based on matching eigenfunction expansions and the particular solution of radiation velocity potential is given.The convergence of the computational model is discussed and the parameters in the model are suggested.Added masses,damping coefficients and excited loads of the barge are calculated and compared with results in the literatures.The discrepancies of hydrodynamic coefficients of the barge under both the flat bottom and inclined bottom conditions are presented.The motion responses of the barge present an overall good agreement with the experimental results except for heave motion in low frequencies.Furthermore,nonlinear shallow water wave theory should be applied for nonlinear motions of the barge.

    Acknowledgments

    The authors would like to thank Fabien Remy and Bernard Molin in Ecole Centrale Marseille for their provision of experimental results,and the National Natural Science Foundation of China for its financial support.

    精品久久久久久,| 亚洲中文av在线| 美女免费视频网站| 特级一级黄色大片| 91在线观看av| 一本综合久久免费| 观看免费一级毛片| www.精华液| 国产综合懂色| 熟女少妇亚洲综合色aaa.| 国产v大片淫在线免费观看| www.精华液| 日本一本二区三区精品| 真人做人爱边吃奶动态| 亚洲一区二区三区不卡视频| 亚洲自偷自拍图片 自拍| 白带黄色成豆腐渣| 两性午夜刺激爽爽歪歪视频在线观看| 婷婷亚洲欧美| 麻豆成人av在线观看| 亚洲欧美精品综合一区二区三区| 欧美日韩瑟瑟在线播放| 757午夜福利合集在线观看| 又紧又爽又黄一区二区| 999精品在线视频| 欧美一区二区精品小视频在线| 欧美日韩中文字幕国产精品一区二区三区| 此物有八面人人有两片| 亚洲精品一区av在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 草草在线视频免费看| 国产高清视频在线观看网站| 亚洲精品粉嫩美女一区| 国产一区二区在线av高清观看| 国产三级黄色录像| 嫩草影院精品99| 国产成人精品久久二区二区91| 69av精品久久久久久| 一本久久中文字幕| 黄片大片在线免费观看| 成人av在线播放网站| 国产成人一区二区三区免费视频网站| 午夜激情欧美在线| 成人鲁丝片一二三区免费| 亚洲欧美精品综合久久99| 中文字幕精品亚洲无线码一区| bbb黄色大片| 国产亚洲欧美98| 美女扒开内裤让男人捅视频| 国产av一区在线观看免费| 最近最新中文字幕大全电影3| 天堂网av新在线| 精品久久久久久久人妻蜜臀av| 9191精品国产免费久久| 天天一区二区日本电影三级| 久久香蕉精品热| 999久久久精品免费观看国产| 大型黄色视频在线免费观看| 午夜福利在线在线| 亚洲国产精品sss在线观看| 精华霜和精华液先用哪个| 国产男靠女视频免费网站| 国产精品久久久av美女十八| 亚洲美女黄片视频| 国产精品久久久久久精品电影| 亚洲av免费在线观看| 99在线人妻在线中文字幕| 91在线精品国自产拍蜜月 | 18禁黄网站禁片免费观看直播| av国产免费在线观看| 在线免费观看的www视频| 国产亚洲欧美在线一区二区| 亚洲狠狠婷婷综合久久图片| 俄罗斯特黄特色一大片| 免费人成视频x8x8入口观看| 日韩有码中文字幕| 特大巨黑吊av在线直播| 淫妇啪啪啪对白视频| 黑人操中国人逼视频| 一二三四在线观看免费中文在| 99久久久亚洲精品蜜臀av| 亚洲真实伦在线观看| 午夜福利欧美成人| 日本精品一区二区三区蜜桃| 午夜福利免费观看在线| 亚洲精品粉嫩美女一区| 97超视频在线观看视频| 97超视频在线观看视频| 国产不卡一卡二| 在线观看一区二区三区| 日本精品一区二区三区蜜桃| 精品久久久久久久毛片微露脸| 亚洲欧美一区二区三区黑人| 在线观看午夜福利视频| 在线观看免费午夜福利视频| 久久久久国产一级毛片高清牌| 国产av一区在线观看免费| 成人精品一区二区免费| 757午夜福利合集在线观看| 999久久久精品免费观看国产| 亚洲真实伦在线观看| 国产伦精品一区二区三区视频9 | 亚洲成人久久性| 亚洲乱码一区二区免费版| 在线观看一区二区三区| 欧美黄色片欧美黄色片| 久久中文字幕人妻熟女| 亚洲欧美日韩卡通动漫| 久久天躁狠狠躁夜夜2o2o| 欧美成狂野欧美在线观看| 美女高潮的动态| 婷婷丁香在线五月| 观看免费一级毛片| 欧美高清成人免费视频www| 日本熟妇午夜| 1000部很黄的大片| 久久国产乱子伦精品免费另类| 99热只有精品国产| 舔av片在线| 十八禁人妻一区二区| 成人av在线播放网站| 午夜福利成人在线免费观看| 欧美最黄视频在线播放免费| 特级一级黄色大片| 身体一侧抽搐| av欧美777| or卡值多少钱| 高清毛片免费观看视频网站| 欧美3d第一页| 国内精品久久久久精免费| 曰老女人黄片| 一区二区三区激情视频| 久久国产精品影院| 国产三级中文精品| 在线永久观看黄色视频| 极品教师在线免费播放| 一本久久中文字幕| 欧美黄色淫秽网站| 亚洲 欧美一区二区三区| 不卡av一区二区三区| 精品国产超薄肉色丝袜足j| 欧美av亚洲av综合av国产av| 精品国产三级普通话版| 国产av不卡久久| 欧美黑人巨大hd| 美女高潮的动态| 中文字幕久久专区| 一级黄色大片毛片| 午夜免费成人在线视频| 一二三四社区在线视频社区8| 久久中文字幕人妻熟女| 亚洲aⅴ乱码一区二区在线播放| 一本一本综合久久| 人妻久久中文字幕网| 99久久99久久久精品蜜桃| 亚洲成人免费电影在线观看| av中文乱码字幕在线| 久久久久久久久久黄片| 亚洲av熟女| 热99re8久久精品国产| 两个人看的免费小视频| 一本综合久久免费| 亚洲成人久久性| 日韩欧美一区二区三区在线观看| 99精品欧美一区二区三区四区| 香蕉丝袜av| 国产美女午夜福利| 天堂影院成人在线观看| 国产亚洲精品av在线| 夜夜看夜夜爽夜夜摸| 久久国产乱子伦精品免费另类| 麻豆国产97在线/欧美| 亚洲aⅴ乱码一区二区在线播放| 99精品久久久久人妻精品| 精品无人区乱码1区二区| 国产成人啪精品午夜网站| 小蜜桃在线观看免费完整版高清| 日韩中文字幕欧美一区二区| 丁香欧美五月| 欧美一区二区国产精品久久精品| 99久久无色码亚洲精品果冻| 亚洲欧美激情综合另类| 人妻丰满熟妇av一区二区三区| 天天一区二区日本电影三级| 国产精品综合久久久久久久免费| 国产主播在线观看一区二区| 国产午夜精品久久久久久| 欧美zozozo另类| bbb黄色大片| 精品一区二区三区av网在线观看| 老司机在亚洲福利影院| 精华霜和精华液先用哪个| 成在线人永久免费视频| tocl精华| 国产精品久久电影中文字幕| 国产1区2区3区精品| 老汉色∧v一级毛片| 国产av在哪里看| 国产三级在线视频| 长腿黑丝高跟| 性色avwww在线观看| 香蕉国产在线看| 别揉我奶头~嗯~啊~动态视频| 女警被强在线播放| 久久这里只有精品19| 看免费av毛片| 黑人巨大精品欧美一区二区mp4| 欧美又色又爽又黄视频| 国产三级黄色录像| 欧美乱妇无乱码| 日本在线视频免费播放| 搞女人的毛片| 欧美一区二区精品小视频在线| 免费av毛片视频| 日本a在线网址| 老司机午夜十八禁免费视频| 一级毛片精品| 精品国产亚洲在线| 久久亚洲精品不卡| 舔av片在线| 99精品久久久久人妻精品| 亚洲欧洲精品一区二区精品久久久| 搞女人的毛片| 亚洲专区中文字幕在线| 宅男免费午夜| 亚洲黑人精品在线| 久久久国产成人精品二区| 99久久99久久久精品蜜桃| 国产爱豆传媒在线观看| 日韩欧美三级三区| 久久久久九九精品影院| 国内久久婷婷六月综合欲色啪| 国产精品99久久久久久久久| 亚洲av成人不卡在线观看播放网| 国产精品一区二区三区四区久久| 一夜夜www| 精品一区二区三区四区五区乱码| 精品国内亚洲2022精品成人| 国产精品一区二区三区四区免费观看 | 国产免费男女视频| 国产三级在线视频| 偷拍熟女少妇极品色| 久久久久国内视频| 精品午夜福利视频在线观看一区| 欧美午夜高清在线| 亚洲性夜色夜夜综合| 美女 人体艺术 gogo| 国产精品野战在线观看| 亚洲熟女毛片儿| 欧美午夜高清在线| 久久天躁狠狠躁夜夜2o2o| 日本在线视频免费播放| 婷婷精品国产亚洲av| 最新中文字幕久久久久 | 色视频www国产| 久久精品国产综合久久久| 日韩精品青青久久久久久| 女生性感内裤真人,穿戴方法视频| 欧美乱妇无乱码| 亚洲在线观看片| 成人特级黄色片久久久久久久| 国产欧美日韩一区二区三| 久久中文字幕一级| 桃色一区二区三区在线观看| 国产精品亚洲美女久久久| 亚洲成人精品中文字幕电影| 中文字幕熟女人妻在线| 中国美女看黄片| 成人18禁在线播放| 国产亚洲av高清不卡| 18禁国产床啪视频网站| 99riav亚洲国产免费| 精品久久久久久久久久久久久| 欧美激情久久久久久爽电影| 国产一区在线观看成人免费| 51午夜福利影视在线观看| 国产69精品久久久久777片 | 19禁男女啪啪无遮挡网站| 禁无遮挡网站| 精品久久久久久久久久免费视频| 精品国产超薄肉色丝袜足j| 亚洲av成人av| 久久久国产成人免费| 成人欧美大片| 好男人电影高清在线观看| 久久久久久国产a免费观看| 在线观看免费午夜福利视频| 99久久精品一区二区三区| 又粗又爽又猛毛片免费看| 一个人免费在线观看的高清视频| 精品无人区乱码1区二区| 亚洲国产欧美网| 男女午夜视频在线观看| 免费观看人在逋| 成人三级做爰电影| 国产精品一区二区三区四区免费观看 | 精品久久久久久久末码| 99久久综合精品五月天人人| 超碰成人久久| 啦啦啦免费观看视频1| 99久久无色码亚洲精品果冻| 国产又黄又爽又无遮挡在线| 国产伦精品一区二区三区四那| 欧美极品一区二区三区四区| 亚洲无线在线观看| 国产成人精品久久二区二区免费| 久久久久久国产a免费观看| 亚洲中文字幕日韩| 91字幕亚洲| 免费高清视频大片| 在线观看日韩欧美| 夜夜躁狠狠躁天天躁| 91字幕亚洲| 中文字幕熟女人妻在线| 国产97色在线日韩免费| 日韩精品中文字幕看吧| 午夜福利高清视频| 国产精品一及| 1024手机看黄色片| 亚洲av成人一区二区三| 村上凉子中文字幕在线| 99久久无色码亚洲精品果冻| 高清在线国产一区| 国产精品久久久久久久电影 | 欧美日韩黄片免| 波多野结衣高清作品| 高清毛片免费观看视频网站| 午夜久久久久精精品| 黄色成人免费大全| 国产一区二区在线观看日韩 | 欧美日本视频| 国产高清视频在线播放一区| 国产成人福利小说| 欧美日韩一级在线毛片| 国产1区2区3区精品| 国产乱人视频| 天堂动漫精品| 麻豆成人午夜福利视频| 国产激情欧美一区二区| 大型黄色视频在线免费观看| 99在线人妻在线中文字幕| 男人的好看免费观看在线视频| 国产又黄又爽又无遮挡在线| 日本黄色视频三级网站网址| 男女床上黄色一级片免费看| 国产精品久久视频播放| 欧美国产日韩亚洲一区| 欧美日韩综合久久久久久 | 国产精品美女特级片免费视频播放器 | 丰满人妻熟妇乱又伦精品不卡| 欧美三级亚洲精品| 欧美午夜高清在线| 性色avwww在线观看| 亚洲国产精品久久男人天堂| 欧美不卡视频在线免费观看| 亚洲美女视频黄频| 这个男人来自地球电影免费观看| 最近最新中文字幕大全电影3| 大型黄色视频在线免费观看| 男女下面进入的视频免费午夜| 日本 欧美在线| 一级毛片女人18水好多| 午夜福利18| a级毛片在线看网站| 可以在线观看毛片的网站| 久久久国产欧美日韩av| 成人无遮挡网站| 免费在线观看日本一区| 久久久国产欧美日韩av| 亚洲五月婷婷丁香| 久久久久久久久中文| 97人妻精品一区二区三区麻豆| 午夜福利在线观看吧| 免费在线观看日本一区| 亚洲精品一区av在线观看| 国产精品久久视频播放| 亚洲av中文字字幕乱码综合| 最好的美女福利视频网| www.www免费av| 99久久99久久久精品蜜桃| 久久精品aⅴ一区二区三区四区| 欧美色视频一区免费| 国产免费男女视频| 久久久久久久久久黄片| 美女高潮的动态| 亚洲色图av天堂| 男女做爰动态图高潮gif福利片| av女优亚洲男人天堂 | 午夜福利免费观看在线| 99热这里只有精品一区 | 亚洲熟妇中文字幕五十中出| 少妇的丰满在线观看| 久久久久国产精品人妻aⅴ院| 长腿黑丝高跟| 老司机午夜福利在线观看视频| 精品国产亚洲在线| 免费大片18禁| 久久国产精品人妻蜜桃| 最好的美女福利视频网| 男插女下体视频免费在线播放| 国产精品亚洲美女久久久| 国产成年人精品一区二区| 很黄的视频免费| 在线观看免费视频日本深夜| 国产一区二区在线av高清观看| 一卡2卡三卡四卡精品乱码亚洲| 成人av一区二区三区在线看| 狠狠狠狠99中文字幕| 可以在线观看毛片的网站| 色噜噜av男人的天堂激情| 一级作爱视频免费观看| 又黄又爽又免费观看的视频| 亚洲精品美女久久av网站| 人妻久久中文字幕网| 不卡一级毛片| 欧美成人性av电影在线观看| 99热这里只有是精品50| 欧美在线黄色| 国产淫片久久久久久久久 | 久久天堂一区二区三区四区| 国产成人aa在线观看| 国产精品99久久99久久久不卡| 女生性感内裤真人,穿戴方法视频| 美女扒开内裤让男人捅视频| 欧美一区二区精品小视频在线| cao死你这个sao货| 麻豆一二三区av精品| 香蕉av资源在线| 国产69精品久久久久777片 | 午夜免费激情av| 搞女人的毛片| 国产一区二区激情短视频| 级片在线观看| 又粗又爽又猛毛片免费看| a在线观看视频网站| 国产亚洲精品综合一区在线观看| 美女黄网站色视频| 特大巨黑吊av在线直播| ponron亚洲| 亚洲精华国产精华精| 亚洲无线观看免费| 亚洲国产欧洲综合997久久,| 欧美极品一区二区三区四区| www.自偷自拍.com| 日本一二三区视频观看| 日韩精品中文字幕看吧| 久久久精品欧美日韩精品| 天堂网av新在线| 九九久久精品国产亚洲av麻豆 | 搞女人的毛片| 床上黄色一级片| 成人18禁在线播放| 日韩人妻高清精品专区| 99在线视频只有这里精品首页| 在线播放国产精品三级| 无遮挡黄片免费观看| 一进一出抽搐动态| 在线a可以看的网站| 欧美日韩乱码在线| 少妇的逼水好多| 亚洲国产欧洲综合997久久,| 色尼玛亚洲综合影院| 午夜福利18| 狂野欧美白嫩少妇大欣赏| 国产精品久久久久久久电影 | av天堂在线播放| 亚洲 欧美 日韩 在线 免费| 婷婷亚洲欧美| av福利片在线观看| 我要搜黄色片| 9191精品国产免费久久| 亚洲av电影在线进入| 午夜日韩欧美国产| 亚洲精品美女久久av网站| 国产aⅴ精品一区二区三区波| 2021天堂中文幕一二区在线观| 97超级碰碰碰精品色视频在线观看| 国产野战对白在线观看| 午夜福利成人在线免费观看| 一a级毛片在线观看| 久久久久国产一级毛片高清牌| 男人舔女人下体高潮全视频| 成人鲁丝片一二三区免费| 国产爱豆传媒在线观看| 两人在一起打扑克的视频| 天天躁狠狠躁夜夜躁狠狠躁| www.精华液| 免费电影在线观看免费观看| 国产精品电影一区二区三区| or卡值多少钱| 欧美乱色亚洲激情| 两个人视频免费观看高清| 亚洲av片天天在线观看| 亚洲av第一区精品v没综合| 欧美精品啪啪一区二区三区| 亚洲av第一区精品v没综合| 麻豆成人av在线观看| 嫁个100分男人电影在线观看| 三级国产精品欧美在线观看 | www.自偷自拍.com| 成人鲁丝片一二三区免费| 亚洲国产看品久久| 观看免费一级毛片| 老汉色av国产亚洲站长工具| 9191精品国产免费久久| 亚洲国产欧美一区二区综合| 亚洲精品在线美女| 中文字幕精品亚洲无线码一区| 亚洲欧美日韩无卡精品| 欧美国产日韩亚洲一区| 欧美绝顶高潮抽搐喷水| 亚洲国产精品成人综合色| 在线观看免费视频日本深夜| 国产真实乱freesex| 99国产极品粉嫩在线观看| 国产日本99.免费观看| www日本黄色视频网| av黄色大香蕉| 国产一区二区激情短视频| 黑人操中国人逼视频| 一个人免费在线观看电影 | 国产淫片久久久久久久久 | 久久久久久久久中文| 午夜亚洲福利在线播放| 精品不卡国产一区二区三区| 精品熟女少妇八av免费久了| 精品久久久久久,| 欧洲精品卡2卡3卡4卡5卡区| 变态另类丝袜制服| 国产成+人综合+亚洲专区| 久久亚洲真实| 1000部很黄的大片| 欧美黄色淫秽网站| 色综合亚洲欧美另类图片| 看免费av毛片| 亚洲七黄色美女视频| 99视频精品全部免费 在线 | 欧美在线黄色| 国产高清三级在线| 精品久久久久久久毛片微露脸| 天天一区二区日本电影三级| 桃红色精品国产亚洲av| 国产男靠女视频免费网站| 99热这里只有精品一区 | 亚洲国产中文字幕在线视频| 亚洲18禁久久av| 亚洲成av人片在线播放无| 国产精品久久久久久人妻精品电影| 精品国产亚洲在线| 欧美色欧美亚洲另类二区| 国内揄拍国产精品人妻在线| 一级毛片女人18水好多| 偷拍熟女少妇极品色| av福利片在线观看| 午夜激情福利司机影院| avwww免费| 啦啦啦观看免费观看视频高清| 俄罗斯特黄特色一大片| 久久国产精品影院| 国产成人aa在线观看| 丁香欧美五月| 国产精品一区二区免费欧美| 麻豆国产97在线/欧美| 天天一区二区日本电影三级| 最近在线观看免费完整版| 午夜福利18| 中文在线观看免费www的网站| 色综合站精品国产| 亚洲最大成人中文| 欧美成狂野欧美在线观看| 男女午夜视频在线观看| 精品久久久久久久久久久久久| 国产一区二区激情短视频| 曰老女人黄片| 午夜精品久久久久久毛片777| 日韩成人在线观看一区二区三区| 黄色丝袜av网址大全| 欧美日韩中文字幕国产精品一区二区三区| 亚洲最大成人中文| 午夜精品久久久久久毛片777| 啦啦啦免费观看视频1| 啦啦啦韩国在线观看视频| 亚洲av第一区精品v没综合| 我的老师免费观看完整版| 少妇的丰满在线观看| 岛国视频午夜一区免费看| 熟妇人妻久久中文字幕3abv| 男插女下体视频免费在线播放| 亚洲美女黄片视频| 欧美一级a爱片免费观看看| 日本免费a在线| 动漫黄色视频在线观看| 首页视频小说图片口味搜索| 日韩欧美三级三区| 久久精品亚洲精品国产色婷小说| 亚洲精品久久国产高清桃花| 国产精品影院久久| 亚洲第一电影网av| 90打野战视频偷拍视频| 黄色成人免费大全| 中文字幕精品亚洲无线码一区| 国产欧美日韩一区二区三| 一本综合久久免费| 国产亚洲av嫩草精品影院| 啦啦啦免费观看视频1| 国产1区2区3区精品| 久久亚洲真实| 婷婷精品国产亚洲av在线| 级片在线观看| 黄色视频,在线免费观看| 精品国产超薄肉色丝袜足j| 又爽又黄无遮挡网站| 天堂动漫精品| 日韩国内少妇激情av| 在线观看免费午夜福利视频|