• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Study of Pressure Fluctuation Induced by Propeller Cavitation with Pre-shrouded Vanes

    2021-11-03 13:57:08,,
    船舶力學 2021年10期

    ,,

    (1.China Ship Scientific Research Center,Wuxi 214082,China;2.Jiangsu Key Laboratory of Green Ship Technology,Wuxi 214082,China;3.CSIC Shanghai Marine Energy Saving Technology Development Co.,Ltd.,Shanghai 200011,China)

    Abstract:A numerical method to predict the propeller cavitation and hull pressure fluctuation in the ship stern is set up in this paper by using unsteady viscous RANS approach and Schnerr-Sauer cavitation model.The numerical error or uncertainty is estimated with verification and validation method before evaluation of the energy-saving performance at self-propulsion condition by using the revised ITTC’78 method.Then the hull pressure fluctuation induced by propeller cavitation is predicted without Pre-Shrouded Vanes(PSV,CMES-PSV).The numerical method is used to study the hull pressure fluctuation with PSV,which has five fins and a half duct.The cavity patterns and the amplitudes of the first and second blade frequencies(BF)of hull pressure fluctuation are compared.When PSV energysaving device is used,the 1BF and 2BF pressure fluctuations decrease about 33% and 20% respectively,and the cavitation shape areas also decrease.

    Key words:propeller cavitation;CFD;pressure fluctuation;energy-saving device

    0 Introduction

    In recent years,ship energy saving has become an important topic in shipbuilding and shipping industry all over the world.An energy-saving device between the ship stern and propeller is one of the effective measures to realize energy saving of a ship.We know that when cavitation occurs on a propeller,the pressure fluctuation will be drastically increased.In some serious conditions,the hull structure at stern could be destroyed by the pressure fluctuation,which will also reduce the comfort of crew accommodation.So,the cavitation performance when an energy saving device is installed at the ship stern should be investigated.

    With the development of the hardware technology,high performance computing could be used in computational fluid dynamics(CFD).The RANS approach,one of CFD methods,has been used to simulate the cavitation of a ship and propellers widely since 1980s[1-2].Watanabe et al[3]used RANS method to simulate the propeller cavitation in uniform and non-uniform flows.The pressure distribution on the propeller showed a good agreement with experiments and the steady cavity simulations were basically consistent with test results.Paik et al[4]simulated the unsteady cavitation induced pressure fluctuation as the blades passed through the high wake flow of ship stern.The results from spectrum analysis showed there were three high amplitudes with the frequency the same as the 1st,2nd and 3rd blade rotating frequency,and results showed good agreement with those of experiments.Li et al[5]predicted the E779A propeller cavitation in non-uniform wakes and verified the accuracy of its CFD method.Yang et al[6]used RANS method to simulate the cavitation on propeller and monitored the pressure fluctuation on a double-stern ship.Detailed analysis was presented for the distribution and amplitude of pressure fluctuations.Paik et al[7]compared the cavitation patterns on two propellers with slightly different geometries by the commercial software FLUENT.Some researchers tried to use an open source CFD code to simulate the propeller cavitation performance behind the ship hull,such as Asnaghi[8]and Zheng[9],and the simulations showed a good agreement with experiments.Bensow[10]simulated the hull-propeller interaction with a pre-swirlstator installation in model scale,and the hydrodynamic performance of cavitation flow of the propeller was shown.With more and more energy-saving devices installed in ship stern,the propeller cavitation and hull vibration risk increase.Therefore,the hull pressure fluctuation and cavitation performance should be evaluated when an energy-saving device is installed.

    This paper is dedicated to comparison of the unsteady cavitation generated on a propeller in the stern region with and without PSV,and analysis of the hull pressure fluctuations induced by the unsteady cavitation.

    1 Methods

    1.1 Governing equations

    The solution of the flow field is based on the continuity equation and momentum equations.Here the RANS equations were adopted,which has a lower computational effort and enough accuracy for ship engineering.

    whereUis the velocity,pis the mixture pressure,Fsis the body force,ρis the mixture density,μis the laminar viscosity,andμtis the turbulent viscosity.The SSTκ-ωturbulence model is used to simulate the turbulent viscosityμt,this model is widely studied in ship hydrodynamics.

    The interface of liquid and vapor is captured by VOF approach,the fluid is scaled by the liquid volume fractionγ,γ=1 means the physical properties of the pure water.

    The density and dynamic viscosity are shown below:

    where the subscripts v and l refer to the vapor and liquid components.

    The mass transfer equation of the liquid volume fractionγis:

    We should model the mass transfer ratem˙.

    Combining the transport Eq.(1),Eq.(3)and Eq.(5),we can get

    1.2 Cavitation model

    When the local pressure becomes lower than the vapour pressure,a phenomenon of the transition of water into vapor will be generated because of the small gas nuclei in the water.This phase change processing could be solved by some cavitation mass transfer model,such as Schnerr-Sauer.This model is widely used to predict propeller cavitation.

    wheren0is the number density of micro bubbles per liquid volume,Ris the initial nuclei radius.Schnerr-Sauer’s cavity model could consider the motion of a single bubble of radiusR,which is based on bubble dynamics.

    1.3 Solution procedure

    We use the finite volume method to discretize the fluid governing equations,and the cell-center positions of computational grid are used to store the unsolved flow variables.The time items are in Euler format,and the momentum equation is in second order form.

    The commercial solver Fluent used in this study is a multiphase flow solver,taking two fluids into account using the VOF method.

    We use quasi-stable MRF method to simulate the rotation of a propeller for quasi-steady flow as an initial input,a sliding mesh method as well as interface between ship static region and propeller moving region is then applied to simulate the unsteady flow field.The SIMPLE algorithm is used for solving the velocity and the pressure fields.This simulation processing could reduce the computational time.

    1.4 Boundary conditions and mesh generation

    The investigated model in this paper is a tanker.A four-bladed fixed pitch propeller is installed at the stern of this ship.The main parameters of the model propeller are shown in Tab.1,and the hull and propeller geometry are shown in Fig.1.

    Fig.1 Tanker hull and propeller geometry

    Tab.1 Main parameters of ship model

    The simulation region consists of inlet,pressure outlet and no-slip boundaries.At the inlet boundary,a fixed value of velocity is given,and the pressure value calculated by cavitation numberσnis constant at the pressure outlet boundary.The hull,propeller,PSV,rudder and hub boundary are no-slip wall conditions respectively.

    The commercial software HEXPRESS is used to generate the mesh.The computational domain is divided into two parts.One part named ship region contains the flow region that includes the inlet,outlet,ship,PSV and rudder,and the other part named propeller region contains propeller rotational cylinder.The unstructured hexahedral cell is used to generate the whole region grid.On the wall boundary such as ship wall,5 boundary layer cells with 1.3 stretching factor are inserted,which could meet the requirements of wall function condition.The overview of the surface mesh is shown in Fig.2.

    Fig.2 Surface mesh of the stern region

    2 Results

    2.1 Simulation uncertainty assessment

    The grid and iterative convergence are studied by the reference of ITTC revised procedure[11]and CFD uncertainty analysis method suggested by Xing and Stern[12].The simulation uncertainty of the ship model resistance is evaluated by verification and validation method.

    A cut-cell unstructured grid type is used to generate the cell around the complex surface of this ship.The surface grid size increases bywith a constant ratio of growth which insures the similarity of these three grid systems(GS1,GS2,GS3).GS1,GS2 and GS3 are the fine,medium and coarse grid systems respectively,as shown in Tab.2.They+is the first cell dimension measured normal to the wall.

    Tab.2 Grid systems

    The error and the uncertainties of the viscous resistance coefficientCVMare shown in Tab.3.The subscript M refers to the model,V refers to viscous.The grid uncertainty(UG,the subscript G refers to grid)is about 1.72%ofSC(SCis the numerical reference value,the subscript C refers to correction),and decreases to 0.29% with correction.In Tab.3,RGis the convergence ratio,pGis the order of accuracy,CGis the correction factor,δ*Gis the numerical error,andUGCis the correction ofUG.

    Tab.3 Verification of CVM

    The validation process ofCVMis utilizing benchmark model test value to estimate the uncertainty of the numerical model.The comparison error(E),validation uncertainty(UV)and numerical uncertainty(USN,the subscript S refers to simulation,N refers to numerical)are defined as following:

    where the other numerical parameter uncertainty(UP,the subscript P refers to numerical parameter)due to time step is zero in the present problem.Tab.4 shows the validation ofCVM.It is assumed that the test uncertainty(Uexp)is 2.0%.||E<UVmeans the validation of numerical simulation is achieved.

    Tab.4 Validation of CVM

    2.2 Evaluation of energy saving

    The model simulations to estimate the self-propulsion performance with and without PSV were carried out.Fig.3 presents the results of experiments and simulations of thrust coefficient(KT),torque coefficient(KQ)and open water efficiency coefficient(η0).At the advance ratioJ=0.6,the errors ofKT,KQandη0are about 2.07%,5.71%,and-3.04%,respectively.Tab.5 presents the results of simulations of the self-propulsion.For the three given model speeds(VM),the propeller torque(QM)decreases when the energy-saving device is installed.The delivered powers(PDM)with PSV reduce by 4.1%,3.3%and 4.2%at three different model speeds,respectively.

    Fig.3 Comparison of propeller open water performances

    Tab.5 Simulation data of self-propulsion

    The self-propulsion performance is calculated using the revised ITTC’78 method[13-14].Tab.6 shows the self-propulsion factors and delivered power reduction for PSV.The PSV significantly improves the wake fraction(wS,the subscript denotes the full scale ship)and little changes in thrust reduction(tS),so the hull efficiency(ηHS)increases.The rotative efficiency(ηRS)increases a little and the propeller open water efficiency(η0S)decreases.Due to these the propulsive efficiency(ηDS)increases with PSV.Accordingly,the PSV reduces the delivered power by 2.2%,1.7% and 2.2% at the ship speeds of 13 kn,14 kn and 15 kn respectively.

    Tab.6 Results of self-propulsion analysis with and without PSV of full scale ship

    2.3 Flow field comparison

    The cavitation simulation input parameters in this study are listed in Tab.7.Wherenis the propeller rotational speed,σn0.8Ris cavity number at 0.8Rof propeller,andKTis the thrust coefficient of the propeller after the ship hull from self-propulsion prediction.

    Tab.7 Test conditions(Ballast draft)

    In model test,the pressure is adjusted in the large cavitation channel to meet the cavitation number throughKT-identity method,which ensures that the model propeller loads are equal to full scale.In cavity simulation process,the steady flow field simulated by MRF method is used as an initial input to calculate the unsteady flow with sliding mesh method to simulate the rotation of the propeller,and then the propeller cavitation performance is predicted by activating the cavitation model.The number and density coefficient of nuclei chosen in Schnerr-Sauer cavitation model aren0=2×108anddNuc=1×10-4respectively.

    The main PSV’s energy saving mechanism is to reduce the loss of swirl energy in ship wake generated by a propeller.Fig.4 shows the definition of the circumferential angle distribution.Figs.5-7 are the tangential velocity(Ut,the subscript t refers to tangential)distributions in front of the propeller.TheUinletis the reference velocity,which is used by inlet velocity.As shown in figures,when PSV is fixed,the tangential velocity distributions in front of the propeller change little.Figs.8-10 show the flowfield behind the propeller.The tangential velocity lines with PSV move down from 0.7Rto 0.9R,and the velocity peaks also decrease.The PSV induces an opposite rotational flow,which could reduce the loss of rotational energy of the propeller.

    Fig.4 Sketch of circumferential position definition

    Fig.5 Tangential velocity in front of propeller at 0.5R

    Fig.6 Tangential velocity in front of propeller at 0.7R

    Fig.7 Tangential velocity in front of propeller at 0.9R

    Fig.8 Tangential velocity behind propeller at 0.5R

    Fig.9 Tangential velocity behind propeller at 0.7R

    Fig.10 Tangential velocity behind propellerat 0.9R

    2.4 Propeller cavitation performance and induced hull pressure fluctuation

    The predicted cavitation patterns on the propeller blades with and without PSV are compared in Fig.11 and Fig.12,respectively.

    Fig.11 Simulation sketches at ballast draft condition without PSV(model scale)

    Fig.12 Simulation sketches at ballast draft condition with PSV(model scale)

    The cavity shape is identified by vapor iso-surface of 0.1.The change process of cavitation is basically the same whether with or without PSV.The main feature,the variation of the attached cavity with the rotational angels of propeller and the cavity collapse at the tail of the main cavity shows almost the same.The cavity first appeared at almost the same location atφ=-20° and grows up with blade rotating,then achieves the maximum area at aboutφ=20°.At each position,the area of cavity without PSV is a little larger than that with PSV.

    By arranging the monitoring points on the stern surface of the ship,the hull pressure fluctuation induced by propeller cavity is investigated.The monitor positions are shown in Fig.13.

    Fig.13 Arrangement of monitor points

    The FFT signal processing program is used to calculate the pressure fluctuation spectrum,and the pressure fluctuation at full scale is predicted based on model value.The first blade frequency(1BF)amplitudes and the second blade frequency(2BF)amplitudes of the hull pressure fluctuation with and without PSV are shown in Fig.14 and Fig.15,respectively.When the PSV energy-saving device is installed,the 1BF and 2BF pressure fluctuation decreases about 33%and 20%respectively.In most situations,the cavitation patterns and the hull pressure fluctuations should be checked when using PSV to make sure there is no cavitation erosion and vibration risk.In this case,the pressure fluctuation and cavitation shape have been improved with the PSV installed.

    She lives in a castle which lies east of the sun and west of the moon, and there too is a princess with a nose which is three ells long, and she now is the one whom I must marry

    Fig.14 The 1BF amplitude of hull pressure fluctuation predicted with and without PSV

    Fig.15 The 2BF amplitude of hull pressure fluctuation predicted with and without PSV

    3 Conclusions

    In this paper,the propeller cavitation patterns and the amplitudes of the first blade frequency(1BF)and the second blade frequency(2BF)with and without PSV are simulated,respectively.Some conclusions are reached as following:

    (1)The uncertainty evaluation of the simulation method is carried out.The verification and validation of numerical simulation are achieved.The simulation uncertainty is about 1.72%.

    (2)The self-propulsion performance of this single screw ship with or without PSV is calculated by using 1978 ITTC performance prediction method.The maximum energy-saving effect of the full scale ship is about 2.2%.

    (3)The cavitation character of the target propeller with ship model is simulated.The hull pressure fluctuation decreases when the PSV is installed,and the cavitation extent with PSV is also a little smaller than that without PSV at each circumferential position.

    Therefore,the simulation method in this paper has a good prediction accuracy to predict the ship self-propulsion performance.After the installation of this designed PSV,not only the energysaving effect can be obtained,but also the risk of cavitation erosion and vibration can be reduced.

    日本一区二区免费在线视频| 悠悠久久av| 国产精品1区2区在线观看.| 国产视频一区二区在线看| 曰老女人黄片| 老汉色∧v一级毛片| 国产免费av片在线观看野外av| 制服丝袜大香蕉在线| 免费人成视频x8x8入口观看| 午夜福利在线观看吧| 99久久综合精品五月天人人| 国产精品国产高清国产av| 黄片大片在线免费观看| 亚洲成国产人片在线观看| 国产激情久久老熟女| 黄色a级毛片大全视频| 一级a爱视频在线免费观看| 搡老岳熟女国产| 精品久久久久久久毛片微露脸| 99在线视频只有这里精品首页| 欧美大码av| 国产精品免费视频内射| 精品一品国产午夜福利视频| 99国产综合亚洲精品| 99香蕉大伊视频| 精品久久久久久久久久免费视频| 99久久久亚洲精品蜜臀av| 日本精品一区二区三区蜜桃| 男人操女人黄网站| 国内精品久久久久精免费| 97人妻天天添夜夜摸| 久久狼人影院| 这个男人来自地球电影免费观看| 人人妻人人澡人人看| 啦啦啦观看免费观看视频高清 | 中文字幕另类日韩欧美亚洲嫩草| 欧美中文日本在线观看视频| 激情在线观看视频在线高清| 久久婷婷人人爽人人干人人爱 | 亚洲成人免费电影在线观看| 在线免费观看的www视频| 日韩高清综合在线| 啦啦啦观看免费观看视频高清 | 在线av久久热| 真人做人爱边吃奶动态| 国产单亲对白刺激| 99香蕉大伊视频| 欧美一级毛片孕妇| 精品久久久久久久久久免费视频| 黑人操中国人逼视频| 亚洲专区国产一区二区| 好男人电影高清在线观看| 国产又爽黄色视频| 欧美黑人欧美精品刺激| 久久中文字幕一级| 女性生殖器流出的白浆| 母亲3免费完整高清在线观看| 久久香蕉激情| 美女扒开内裤让男人捅视频| 欧美精品亚洲一区二区| 在线观看免费视频网站a站| 大型av网站在线播放| 婷婷丁香在线五月| 国产精品一区二区精品视频观看| 欧美黄色片欧美黄色片| 国产精品秋霞免费鲁丝片| 一级毛片高清免费大全| 亚洲成人精品中文字幕电影| 黄频高清免费视频| 国产av一区在线观看免费| 国产精品98久久久久久宅男小说| 99热只有精品国产| 国产国语露脸激情在线看| 久久 成人 亚洲| 好男人电影高清在线观看| 国产精品爽爽va在线观看网站 | 老司机午夜福利在线观看视频| 色婷婷久久久亚洲欧美| 国产欧美日韩一区二区三| 黄片大片在线免费观看| 色播在线永久视频| 一区福利在线观看| 欧美乱妇无乱码| 精品久久久久久久久久免费视频| av中文乱码字幕在线| 亚洲狠狠婷婷综合久久图片| 亚洲免费av在线视频| 超碰成人久久| 欧美黑人精品巨大| 一区在线观看完整版| 啦啦啦韩国在线观看视频| 悠悠久久av| 久久久久久久午夜电影| 精品午夜福利视频在线观看一区| 国产亚洲av高清不卡| 深夜精品福利| 日韩一卡2卡3卡4卡2021年| 91在线观看av| 久久婷婷人人爽人人干人人爱 | 日本五十路高清| 俄罗斯特黄特色一大片| 成人三级做爰电影| 激情视频va一区二区三区| 亚洲久久久国产精品| 操出白浆在线播放| 在线观看舔阴道视频| 丁香欧美五月| 亚洲国产欧美一区二区综合| 国产片内射在线| 午夜两性在线视频| 国产精品日韩av在线免费观看 | av视频免费观看在线观看| 在线观看午夜福利视频| 精品久久久久久久人妻蜜臀av | 久9热在线精品视频| 亚洲色图综合在线观看| 搡老岳熟女国产| 午夜福利在线观看吧| 国产成人av激情在线播放| 12—13女人毛片做爰片一| 淫秽高清视频在线观看| 亚洲国产中文字幕在线视频| 亚洲成人免费电影在线观看| 欧美日韩亚洲综合一区二区三区_| 久久久国产成人精品二区| 亚洲一区中文字幕在线| 国产精品,欧美在线| 午夜精品久久久久久毛片777| 国产成人精品久久二区二区免费| 日韩欧美一区视频在线观看| 波多野结衣一区麻豆| 日日爽夜夜爽网站| 国产xxxxx性猛交| 麻豆av在线久日| 黄片播放在线免费| 亚洲成人精品中文字幕电影| 国产精华一区二区三区| 熟妇人妻久久中文字幕3abv| www国产在线视频色| 看黄色毛片网站| 午夜影院日韩av| 日韩av在线大香蕉| 欧美最黄视频在线播放免费| 欧美av亚洲av综合av国产av| 91国产中文字幕| 99国产精品99久久久久| 精品一品国产午夜福利视频| 国产麻豆成人av免费视频| 一本综合久久免费| av在线播放免费不卡| 国产成人影院久久av| 免费观看精品视频网站| 中文字幕人成人乱码亚洲影| 久久香蕉激情| 欧美精品亚洲一区二区| 国产一区二区激情短视频| 三级毛片av免费| 女性被躁到高潮视频| 欧美午夜高清在线| 日韩有码中文字幕| 搞女人的毛片| 亚洲男人天堂网一区| 性少妇av在线| 国产亚洲av高清不卡| av有码第一页| 高清在线国产一区| 国产欧美日韩一区二区三区在线| 免费看美女性在线毛片视频| 欧美久久黑人一区二区| 午夜福利18| av超薄肉色丝袜交足视频| 怎么达到女性高潮| 国产又色又爽无遮挡免费看| 亚洲色图 男人天堂 中文字幕| 亚洲午夜理论影院| 国产免费av片在线观看野外av| 欧美日韩一级在线毛片| 国产乱人伦免费视频| 免费高清视频大片| 欧美另类亚洲清纯唯美| 久久人人97超碰香蕉20202| 久久精品aⅴ一区二区三区四区| 欧美老熟妇乱子伦牲交| 国产av精品麻豆| 又大又爽又粗| 亚洲avbb在线观看| 国产成+人综合+亚洲专区| 亚洲全国av大片| 国产欧美日韩精品亚洲av| 禁无遮挡网站| av天堂久久9| 国产精品98久久久久久宅男小说| 啦啦啦免费观看视频1| 叶爱在线成人免费视频播放| 国产国语露脸激情在线看| 怎么达到女性高潮| 麻豆久久精品国产亚洲av| 国产精品一区二区三区四区久久 | 国产精品久久电影中文字幕| 亚洲伊人色综图| 久久精品91无色码中文字幕| 亚洲精品av麻豆狂野| 国产精品久久久av美女十八| 欧美人与性动交α欧美精品济南到| 好看av亚洲va欧美ⅴa在| 久久天堂一区二区三区四区| 老司机午夜福利在线观看视频| 欧美日韩黄片免| 久久人妻福利社区极品人妻图片| 欧美最黄视频在线播放免费| 黄色女人牲交| 亚洲免费av在线视频| 成人特级黄色片久久久久久久| 午夜福利免费观看在线| 黑人欧美特级aaaaaa片| 村上凉子中文字幕在线| 99香蕉大伊视频| 手机成人av网站| 久久久久久国产a免费观看| 亚洲国产中文字幕在线视频| 村上凉子中文字幕在线| 三级毛片av免费| 一级黄色大片毛片| 搡老妇女老女人老熟妇| 丝袜美足系列| 99热只有精品国产| 日韩欧美在线二视频| 韩国精品一区二区三区| 成年人黄色毛片网站| 又黄又粗又硬又大视频| 亚洲无线在线观看| 久久午夜综合久久蜜桃| 午夜a级毛片| 免费在线观看黄色视频的| 九色亚洲精品在线播放| 日韩欧美免费精品| 亚洲色图综合在线观看| 99热只有精品国产| 国产精品久久电影中文字幕| 波多野结衣av一区二区av| 午夜福利视频1000在线观看 | 91国产中文字幕| 天天一区二区日本电影三级 | 中文字幕精品免费在线观看视频| 90打野战视频偷拍视频| 国产99久久九九免费精品| 欧美黑人精品巨大| 成熟少妇高潮喷水视频| 涩涩av久久男人的天堂| 国产成人av教育| 日韩中文字幕欧美一区二区| 免费搜索国产男女视频| 中文字幕精品免费在线观看视频| 亚洲狠狠婷婷综合久久图片| 精品久久久久久久人妻蜜臀av | 成人亚洲精品av一区二区| ponron亚洲| av超薄肉色丝袜交足视频| 国产亚洲精品综合一区在线观看 | 国产精品香港三级国产av潘金莲| 桃色一区二区三区在线观看| 999久久久国产精品视频| www.www免费av| 欧美 亚洲 国产 日韩一| 日韩三级视频一区二区三区| 亚洲在线自拍视频| 国产一卡二卡三卡精品| 亚洲avbb在线观看| 美女午夜性视频免费| 国产成人一区二区三区免费视频网站| 悠悠久久av| 一边摸一边抽搐一进一小说| 成年版毛片免费区| 性色av乱码一区二区三区2| 丁香六月欧美| 在线天堂中文资源库| www.熟女人妻精品国产| 国产主播在线观看一区二区| 色综合欧美亚洲国产小说| 999久久久国产精品视频| 男人的好看免费观看在线视频 | 91在线观看av| 亚洲av成人av| 亚洲国产精品久久男人天堂| 在线观看免费视频网站a站| 亚洲免费av在线视频| 国产欧美日韩一区二区三区在线| 国产欧美日韩一区二区精品| 亚洲中文字幕一区二区三区有码在线看 | 99久久综合精品五月天人人| 国产蜜桃级精品一区二区三区| 禁无遮挡网站| 国产精品免费视频内射| 一个人观看的视频www高清免费观看 | 亚洲欧美日韩无卡精品| 国产成人一区二区三区免费视频网站| 亚洲专区中文字幕在线| 国产精品美女特级片免费视频播放器 | 男女之事视频高清在线观看| 国产极品粉嫩免费观看在线| 在线观看舔阴道视频| 日本欧美视频一区| 视频在线观看一区二区三区| 日韩大尺度精品在线看网址 | 一级,二级,三级黄色视频| 亚洲avbb在线观看| 中文字幕精品免费在线观看视频| 国产av在哪里看| av在线天堂中文字幕| 精品欧美一区二区三区在线| 黄色成人免费大全| 亚洲男人天堂网一区| 精品熟女少妇八av免费久了| 咕卡用的链子| 搡老岳熟女国产| 日韩高清综合在线| 日日摸夜夜添夜夜添小说| 免费看a级黄色片| 大型av网站在线播放| 国产精品一区二区免费欧美| ponron亚洲| 大型av网站在线播放| 亚洲 欧美一区二区三区| 88av欧美| 国产在线精品亚洲第一网站| 99热只有精品国产| 在线播放国产精品三级| 亚洲av成人不卡在线观看播放网| 99精品欧美一区二区三区四区| 国产av在哪里看| 国产亚洲精品久久久久5区| 一卡2卡三卡四卡精品乱码亚洲| 神马国产精品三级电影在线观看 | 久久中文字幕人妻熟女| 欧美日本视频| 少妇裸体淫交视频免费看高清 | av片东京热男人的天堂| 久久人人精品亚洲av| 精品国产一区二区久久| 欧美+亚洲+日韩+国产| 午夜精品久久久久久毛片777| 国产99白浆流出| 男人的好看免费观看在线视频 | 曰老女人黄片| 亚洲一码二码三码区别大吗| 欧美精品啪啪一区二区三区| 亚洲国产精品成人综合色| 欧美 亚洲 国产 日韩一| 精品国产乱码久久久久久男人| 亚洲av片天天在线观看| 久久中文字幕一级| 欧美国产精品va在线观看不卡| av在线天堂中文字幕| 在线观看舔阴道视频| 国产精品自产拍在线观看55亚洲| 亚洲国产日韩欧美精品在线观看 | 非洲黑人性xxxx精品又粗又长| 不卡av一区二区三区| 亚洲精品国产精品久久久不卡| 日本撒尿小便嘘嘘汇集6| 精品不卡国产一区二区三区| 亚洲av熟女| 99国产精品一区二区三区| 黄频高清免费视频| 亚洲午夜精品一区,二区,三区| 久久人妻熟女aⅴ| 两性午夜刺激爽爽歪歪视频在线观看 | 悠悠久久av| 国产熟女午夜一区二区三区| 欧美日韩黄片免| 久久久久久久久久久久大奶| 国产亚洲精品综合一区在线观看 | 欧美乱码精品一区二区三区| 午夜亚洲福利在线播放| 欧美日韩瑟瑟在线播放| 一级,二级,三级黄色视频| 一级a爱视频在线免费观看| 午夜福利在线观看吧| 又紧又爽又黄一区二区| 成年人黄色毛片网站| 麻豆久久精品国产亚洲av| 欧美人与性动交α欧美精品济南到| 亚洲国产欧美日韩在线播放| 美女 人体艺术 gogo| 久久精品91蜜桃| 亚洲av美国av| 午夜免费观看网址| 亚洲五月婷婷丁香| 一本综合久久免费| 亚洲国产精品sss在线观看| 日韩大码丰满熟妇| 久久久久久久久中文| 久热这里只有精品99| 精品一区二区三区四区五区乱码| 激情在线观看视频在线高清| 国产精品香港三级国产av潘金莲| 69精品国产乱码久久久| 欧美乱色亚洲激情| 亚洲男人天堂网一区| 久久久国产成人精品二区| 久久精品91蜜桃| 制服丝袜大香蕉在线| 两个人看的免费小视频| 村上凉子中文字幕在线| 成人手机av| 又黄又爽又免费观看的视频| 国产一区二区在线av高清观看| 久久久久国产一级毛片高清牌| 亚洲国产高清在线一区二区三 | 91在线观看av| 在线永久观看黄色视频| 欧美日韩一级在线毛片| 手机成人av网站| 欧美黑人欧美精品刺激| 精品日产1卡2卡| 夜夜看夜夜爽夜夜摸| 亚洲性夜色夜夜综合| 91大片在线观看| 亚洲第一av免费看| 麻豆国产av国片精品| 岛国在线观看网站| 国产精品九九99| av天堂久久9| 欧美+亚洲+日韩+国产| 一区二区三区精品91| 757午夜福利合集在线观看| 视频区欧美日本亚洲| 啦啦啦韩国在线观看视频| 90打野战视频偷拍视频| 757午夜福利合集在线观看| 久久精品91无色码中文字幕| 亚洲国产欧美日韩在线播放| 两人在一起打扑克的视频| 欧美在线黄色| 欧美久久黑人一区二区| 亚洲无线在线观看| 又黄又爽又免费观看的视频| 在线观看免费日韩欧美大片| 韩国精品一区二区三区| 91成年电影在线观看| 好看av亚洲va欧美ⅴa在| av视频在线观看入口| 97人妻天天添夜夜摸| 亚洲五月婷婷丁香| 亚洲av成人不卡在线观看播放网| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看免费视频网站a站| 制服人妻中文乱码| 亚洲av日韩精品久久久久久密| 国产av一区二区精品久久| 久久人妻av系列| 女生性感内裤真人,穿戴方法视频| 热re99久久国产66热| 欧美激情高清一区二区三区| 九色亚洲精品在线播放| 久久香蕉激情| 成人三级黄色视频| 天堂影院成人在线观看| 成人免费观看视频高清| 又黄又爽又免费观看的视频| 午夜精品在线福利| 国产野战对白在线观看| 在线播放国产精品三级| 亚洲中文av在线| 亚洲自偷自拍图片 自拍| 欧美成人一区二区免费高清观看 | 国产精品亚洲av一区麻豆| 在线观看免费视频网站a站| 91老司机精品| 国内毛片毛片毛片毛片毛片| 亚洲欧美日韩另类电影网站| 一进一出抽搐动态| 97人妻精品一区二区三区麻豆 | 色播在线永久视频| 母亲3免费完整高清在线观看| 欧美日韩黄片免| 欧美色欧美亚洲另类二区 | 怎么达到女性高潮| 欧美激情高清一区二区三区| 侵犯人妻中文字幕一二三四区| 亚洲色图 男人天堂 中文字幕| 国产精品影院久久| 免费久久久久久久精品成人欧美视频| 欧美在线黄色| 亚洲av电影不卡..在线观看| 一区二区日韩欧美中文字幕| e午夜精品久久久久久久| 色综合欧美亚洲国产小说| 国产精品综合久久久久久久免费 | 首页视频小说图片口味搜索| 波多野结衣av一区二区av| 夜夜夜夜夜久久久久| 神马国产精品三级电影在线观看 | 欧美av亚洲av综合av国产av| 午夜老司机福利片| 自线自在国产av| 99香蕉大伊视频| 麻豆一二三区av精品| cao死你这个sao货| 大码成人一级视频| 99re在线观看精品视频| 色综合欧美亚洲国产小说| 亚洲片人在线观看| 丰满人妻熟妇乱又伦精品不卡| 午夜免费观看网址| 99精品在免费线老司机午夜| 一个人免费在线观看的高清视频| 757午夜福利合集在线观看| 亚洲五月天丁香| 少妇粗大呻吟视频| 少妇的丰满在线观看| 在线永久观看黄色视频| 午夜免费鲁丝| 免费女性裸体啪啪无遮挡网站| 国产精品亚洲一级av第二区| 久99久视频精品免费| 美女大奶头视频| 最新美女视频免费是黄的| 成人免费观看视频高清| 亚洲欧美日韩高清在线视频| 少妇被粗大的猛进出69影院| aaaaa片日本免费| 777久久人妻少妇嫩草av网站| 亚洲色图 男人天堂 中文字幕| 精品人妻1区二区| 亚洲avbb在线观看| 在线永久观看黄色视频| 欧美丝袜亚洲另类 | 狂野欧美激情性xxxx| 亚洲欧美日韩另类电影网站| 黄色视频,在线免费观看| 国产激情欧美一区二区| 国产亚洲精品久久久久5区| 黑人巨大精品欧美一区二区mp4| 可以在线观看的亚洲视频| 搡老岳熟女国产| 精品第一国产精品| 极品教师在线免费播放| 一级黄色大片毛片| 国产成人一区二区三区免费视频网站| 在线观看免费视频网站a站| 免费观看精品视频网站| 欧美成人性av电影在线观看| 亚洲精品中文字幕在线视频| 欧美中文日本在线观看视频| 男女床上黄色一级片免费看| 国产伦一二天堂av在线观看| 嫁个100分男人电影在线观看| 波多野结衣高清无吗| 国产成人啪精品午夜网站| 在线天堂中文资源库| 亚洲国产精品合色在线| 99香蕉大伊视频| 亚洲精品久久成人aⅴ小说| 亚洲色图综合在线观看| 高清黄色对白视频在线免费看| 亚洲一区二区三区色噜噜| 欧美丝袜亚洲另类 | 村上凉子中文字幕在线| 国产麻豆成人av免费视频| 亚洲午夜精品一区,二区,三区| 国产精品,欧美在线| 老司机午夜福利在线观看视频| 黄色 视频免费看| 久久精品国产99精品国产亚洲性色 | 悠悠久久av| 欧美成人免费av一区二区三区| 99国产精品免费福利视频| 不卡av一区二区三区| 香蕉国产在线看| 成人三级黄色视频| 一级毛片女人18水好多| 大型av网站在线播放| 一区二区三区高清视频在线| 日韩欧美在线二视频| 90打野战视频偷拍视频| 一级a爱视频在线免费观看| 精品国产一区二区久久| 国产免费av片在线观看野外av| 亚洲中文日韩欧美视频| a在线观看视频网站| 成人三级黄色视频| 日日爽夜夜爽网站| 18美女黄网站色大片免费观看| 亚洲精品在线观看二区| 九色国产91popny在线| 少妇裸体淫交视频免费看高清 | 怎么达到女性高潮| 69av精品久久久久久| 伊人久久大香线蕉亚洲五| 天堂影院成人在线观看| 久久中文字幕一级| 在线观看www视频免费| 精品欧美一区二区三区在线| av有码第一页| 女同久久另类99精品国产91| e午夜精品久久久久久久| 99国产精品免费福利视频| 9热在线视频观看99| 精品无人区乱码1区二区| 亚洲激情在线av| 国产精品亚洲美女久久久| 久久午夜亚洲精品久久| 国产又爽黄色视频| 看片在线看免费视频| 午夜免费激情av| 午夜福利欧美成人| 亚洲中文日韩欧美视频| 成人手机av| 午夜福利欧美成人| 黑人操中国人逼视频| 香蕉国产在线看| 久久精品aⅴ一区二区三区四区| 久久精品国产综合久久久| 如日韩欧美国产精品一区二区三区|