• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Surface treatment of titanium dioxide nanopowder using rotary electrode dielectric barrier discharge reactor

    2021-10-31 08:15:42NawRuthaPAWTakumaKIMURATatsuoISHIJIMAYasunoriTANAKAYusukeNAKANOYoshihikoUESUGIShioriSUEYASUShuWATANABEandKeitaroNAKAMURA
    Plasma Science and Technology 2021年10期

    Naw Rutha PAW, Takuma KIMURA, Tatsuo ISHIJIMA,Yasunori TANAKA, Yusuke NAKANO, Yoshihiko UESUGI,Shiori SUEYASU, Shu WATANABE and Keitaro NAKAMURA

    1 Faculty of Electrical Engineering and Computer Science, Kanazawa University, Kanazawa 920-1192,Japan

    2 Research Center for Production & Technology, Nisshin Seifun Group Inc., Fujimino 356-8511, Japan

    Abstract Titanium dioxide (TiO2) nanopowder (P-25; Degussa AG) was treated using dielectric barrier discharge (DBD) in a rotary electrode DBD (RE-DBD) reactor.Its electrical and optical characteristics were investigated during RE-DBD generation.The treated TiO2 nanopowder properties and structures were analyzed using x-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR).After RE-DBD treatment, XRD measurements indicated that the anatase peak theta positions shifted from 25.3° to 25.1°, which can be attributed to the substitution of new functional groups in the TiO2 lattice.The FTIR results show that hydroxyl groups (OH) at 3400 cm?1 increased considerably.The mechanism used to modify the TiO2 nanopowder surface by air DBD treatment was confirmed from optical emission spectrum measurements.Reactive species, such as OH radical, ozone and atomic oxygen can play key roles in hydroxyl formation on the TiO2 nanopowder surface.

    Keywords: dielectric barrier discharge, nanopowder, reactive species, rotary electrodes, surface treatment, titanium dioxide

    1.Introduction

    Among different semiconductors,titanium dioxide(TiO2)[1]has been regarded as a material with multifunctional applications [1–3] due to its diverse and unique properties.In particular, it is crucially important for photocatalytic applications due to its peculiar application prospects for humidity sensors [4], air treatment [5], air purification [6], water splitting [7], self-cleaning [8], super capacitors [9] and solar energy conversion [10, 11].However, a wide band gap and fast recombination of photo-generated electrons and holes are shortcomings that can reduce the efficiency of pure TiO2.To resolve this difficulty,one possible means of improving TiO2performance is efficient light harvesting.Another means is by obtaining a certain number of holes and photo-generated electrons on the surface before recombination.To achieve the desired performance using this technique, the surface structure is modified using metal doping and non-metal doping methods [12, 13].For metal doping methods, metallic elements, such as Fe [13], Ni [14] and Cu [15], are applied for surface treatment.When using the non-metal doping method,N [16], C [17] and S [13] are used as non-metallic dopants.For metal doping, some shortcomings related to thermal and chemical instability of TiO2remain.Although high doping enhances the band gap, the optical/photocatalytic performance is reduced due to increasing carrier recombination centers [18].Another technique for surface treatment is adding Ti3+[19] and defects of oxygen vacancies [20] in the band gap.In contrast to the case of high doping,instead of the recombination center,this method uses oxygen vacancies and Ti3+to construct a trap center to enhance the band gap.To create a trap center using defects of oxygen vacancies in the lattice of TiO2,vacuum activation[18],surface hydrogenation[9, 21, 22] and plasma treatment [23] have been reported as effective methods for TiO2surface treatment.Using the hydrogenation method, photocatalytic activity can be enhanced because the TiO2surface is functionalized by hydroxyl groups.However, a disadvantage of the hydrogenation method is that it necessitates the use of high temperatures.Moreover, the obtained sample becomes black,which is unsuitable for various optoelectronic applications.The vacuum activation method also increases absorption, but also color effect [18], which is not suitable for transparent electrode applications.

    Among the treatment methods, the plasma treatment has also been reported as an effective method for TiO2surface modification due to its diverse and beneficial properties[18, 24, 25].Recently, Liet al[26] modified anatase-TiO2using dielectric barrier discharge (DBD) argon plasma with 20 min treatment time to enhance photocatalytic degradation.Nevertheless, no report in the relevant literature describes a study of the application of air DBD treatment for commercial TiO2nanopowder modification.Moreover, some problems remain for powder and particulate materials.In the case of a fixed sample treatment method using nonthermal plasma, the process effectiveness is expected to decrease due to the shadow effect as a result of overlapped powders [27].To overcome powder surface overlapping and to treat it uniformly with nonthermal plasma, a rotary electrode dielectric barrier discharge reactor (RE-DBDR) was developed to treat and modify the particulate powder material uniformly during nonthermal plasma exposure on the powder surface.

    As described herein, we propose new devices to implement a simple method with low costs that reduce the treatment time for surface modification.With regard to cost effectiveness, gas treatment was conducted by air.Rotary electrodes were placed while dispersing the powder for uniform treatment.It has been reported that the chamber temperature increases concomitantly with increasing operational frequency [28], which would cause thermal damage to the particulate material and raise the cost of power sources and electrical assemblies.To overcome this difficulty, instead of high frequency,low operation frequency was used to generate nonthermal plasma during treatment.We treated the commercial TiO2nanopowder by taking advantage of the REDBDR using air DBD.The plasma treatment time was set to 3 min for this study.To clarify the time effect, the treatment time was varied with it being set at 3 and 10 min.A marked change in the surface properties was observed after treatment using air DBD.The results indicated that the DBD-treated TiO2nanoparticles enhanced hydroxyl groups on the TiO2nanopowder surface compared with the pure TiO2.Lowtemperature DBD might not only provide a new strategy for surface modification as our newly developed RE-DBD reactor can also engender fast and efficient treatment time for additional industrial applications.

    2.Materials and methods

    2.1.Experiment setup and procedures

    The RE-DBDR experiment setup for powder treatment is presented in figure 1.Two rectangular thin metal plates(68 mm in length, 20 mm in height and 1 mm in thickness)were mounted on a rotating axial rod placed at the center of a cylindrical chamber (70 mm in inner diameter, 80 mm in height and 2 mm in thickness) made of polyoxymethylene(POM) material.The two thin metal plates, with upper and lower sides separated by a distance of 20 mm, are connected to a motor axis using an insulated rod, which allows it to act as a floating electrode in a reactor.Two cylindrical aluminum electrodes (74 mm in diameter, 30 mm in height and 0.2 mm in thickness)were mounted on the outside wall of the reactor with the upper and lower electrodes separated by 10 mm by the cylindrical POM insulator to prevent surface discharge on the external surface between the outside electrodes.For this study,DBD was produced using a cylindrical POM reactor at a high voltage (Vpp=30 kV, frequency=60 Hz).The AC voltage power supply was controlled by a 0–130 V voltage regulator.A high-voltage power supply (Neon Transformer,

    Vop=15 kV;LECIP Holdings Corp.)was used to step up the AC voltage power supply.For voltage measurements, two high-voltage probes (P6015A, 40 kV, 4 ns; Tektronix Inc.)were used.High-voltage probe I was used to measure the output voltage of the transformer.Probe II was used to measure the discharge voltage; for discharge current measurement, a current probe (2877; Pearson Electronics) was used.A monitoring capacitor,Cm=2000 pF,was connected in series with the reactor to measure the transferred charge.Electrical characteristics were observed using a digital oscilloscope (MSO6054A, 500 MHz, 4 GSa/s; Agilent Technologies Inc.).An air compressor (10 L, ACP-10A; Earth Man)introduced air into the reactor.The gas flow rate was controlled to 1.5 slm using a mass flow controller(SEC-E40,Air,10 slm; Horiba Stec, Co., Ltd).A DC high-power motor(12 V, 18 800 rpm) was used for rotating and controlling the high-speed floating electrodes, to provide rotational speed of approximate 5000 rpm.Configurations of the RE-DBDR and an image of the DBD during electrode rotating are depicted in figure 2.

    2.2.Sample preparation

    For sample preparation, titanium dioxide (TiO2) nanopowder(CAS: 13463-67-7, P-25; Degussa AG) was used.The powder had an anatase and rutile ratio of 85:15 and purity of 99.9%.Two treatment samples of the TiO2nanopowder were prepared to study fluctuation of the DBD treatment effect.For DBD treatment, 300 mg of TiO2nanopowder was used for each sample.After the nanopowder was introduced to the inner wall of the cylindrical POM reactor, the reactor was enclosed by a PMMA flange with an O-ring seal and a filter for the powder.Then, the electrodes were rotated by the motor at 5000 rpm, while introducing the operational gas species.Before generating DBD, TiO2nanopowder was dispersed by the electrode rotation for about 30 s.The DBD treatment times of the TiO2nanopowder were,respectively,3 and 10 min.After DBD treatment, the DBD-treated TiO2nanopowder samples were prepared to investigate the crystal structure and surface functional groups using x-ray diffraction(XRD), and Fourier-transform infrared (FTIR) analysis.

    2.3.Crystal characterization

    To analyze the structure and composition of the crystalline phase of the treated TiO2, XRD measurements were taken.The crystal structure of the TiO2nanopowder was identified using an x-ray diffractometer (Miniflex600; Rigaku Corp.).The sample powder was scanned using Cu-Kα radiation with operating voltage of 40 kV and operating current of 15 mA.The surface functional groups of the TiO2nanopowder were characterized using an FTIR spectrometer (Nicolet iS5;Thermo Scientific).The scan number was 16.The resolution was 4.To specify the functional groups on the TiO2nanopowder surface, a transmission sampling method was used.The standard powder ratio (100:1) was prepared for thin transparent pellets.For each measurement, 30 mg of TiO2powder sample was compressed using a hydraulic press to produce a 7 mm diameter thin pellet sample.Three sample pellets were replicated to observe the reproducibility.The error bar was approximately 3%.

    3.Results and discussion

    3.1.Electrical characteristics

    The static electrode configuration and an image of its discharge generation during rotation are shown in figure 2.Electrical characteristics of the RE-DBDR are shown in figures 3(a)and(b).DBD was generated between the edges of the rotary plates and the inner wall surface of the reactor.The waveforms of the applied voltageVa(t),discharge currentI(t) and capacitance voltageVc(t) atfapp=60 Hz andVpp=30 kV and rotational speed=~5000 rpm are shown in figure 3(a).DBD in air is generally influenced by filamentary discharge in nature.Discharges can generate effective reactive species, such as atoms, radicals and excited species with high electron densities (1014–1015cm?3)[24, 29].These species are important for surface treatment.The formation mechanism and distribution of current filaments as surface discharge were discussed in earlier reports[24, 29, 30].The transported charge was measured using a 2000 pF monitoring capacitor connected in series with the reactor to calculate the discharge area.The charge voltage(Q–V)area,also known as the Lissajous figure,was obtained by plotting the applied voltage of the reactor on theX-axis and the transferred charge on theY-axis.In figure 3(b), the Lissajous figure atfapp=60 Hz,Vpp=30 kV and rotational speed=~5000 rpm is shown.Power consumption during the DBD generation can be estimated from the energy by multiplying the frequencyfappand area of the Lissajous figure:Pdis=fapp×area of the Lissajous figure.The discharge power consumption during the powder treatment was 0.75 W.The Lissajous figure resembles an ellipse, indicating the presence of residual ions at all times.The shape effect and characteristics of the Lissajous figure were discussed in the report of an earlier study [29].

    3.2.Optical characteristics

    The optical emission spectra (OES) at 5000 rpm rotational speed are shown in figure 4.To identify the reactive species present in the DBD air plasma, the optical emission spectra were observed at wavelengths of 300–450 nm,as presented in figure 4.The main contributions to the emission spectrum of the air DBD produced by rotary floating electrodes are the nitrogen molecular band spectra of the second positive system(C–B).Moreover, a small peak of OH radical at 308 nm wavelength can also be investigated.The SPS of nitrogen can engender the formation of oxygen atom, producing ozone[29,31,32].Ozone is an active species due to its long lifetime and high oxidation potential.The ozone concentration was monitored using a UV O3analyzer (Model 49i; Thermo Scientific, Inc.) during DBD air discharge.Results show that the average ozone concentration by DBD air plasma was 250 ppm.In general, the initial ozone can be created according to the following equation [32]:

    Therein, M is the third collision molecule, which can be O2,O3or N2.In addition, high UV radiation, oxygen atoms and nitrogen oxides contribute to the decomposition of ozone in the reactor [24, 32].Reactive atomic oxygen can be created from the ozone decomposition process, the surface layer of TiO2.The rotational and vibrational temperatures were 300 and 2500 K,respectively,based on the massive OES[33–35].Based on these results, the surface layer functional group mechanism can be changed by reactive species, such as OH radicals, ozone and atomic oxygen.These oxidative species can play a key role in improving surface properties.

    3.3.XRD analysis

    XRD patterns of pure TiO2nanopowder and DBD-treated TiO2are shown in figure 5(a).The phase theta structure in TiO2powder clearly illustrates the anatase and rutile phases.The phase peaks at 25.3°, 38°, 48°, 62.8° and 69° represent the anatase crystalline phase,whereas the peaks at 27.42°,36.2°,41.4°,54°and 55.4° are assigned to the rutile crystalline phase [36].The crystalline peaks remained the same,indicating that no heat effect caused by the DBD treatment exists on the crystalline structure.In figure 5(b), significant peak shift at anatase (101) and rutile(101) after DBD treatment is shown.Compared with the pure TiO2,the phase theta of anatase shifted from 25.3°to 25.1°.The rutile phase structure peak shifted in a similar way from 27.4°to 27.2° in the DBD-treated TiO2.However, no new peak can be observed in the XRD pattern.Because there was no change in the crystal phase of anatase and rutile peak performance,we assume that the peak shifting is attributed to the new functional group formed on the TiO2[37].

    3.4.FTIR analysis

    To confirm the fluctuation level, we produced three pellets of TiO2nanopowder using 0,3 and 10 min treatment.Figure 6(a)shows the FTIR spectra of pure TiO2at 3 and 10 min DBDtreated TiO2nanopowder at wavenumbers of 400–4000 cm?1.Figure 6(b) shows peaks at 1800–1200 cm?1.The obtained FTIR spectra had similar profiles for each treatment time,suggesting that uniform treatment of TiO2nanopowder surface was realized using RE-DBDR.Figure 6(a)shows transmittance in the vibrational band of 400–1250 cm?1, which is the result produced by the O–Ti–O lattice[38,39].Change in the O–Ti–O peak was observed after 3 min treatment.The peak at around 1630 cm?1was assigned to the Ti–O structure [36].Peaks at 350–3000 cm?1are denoted by bending vibration of the hydroxyl(OH)or H2O group.Formation of the OH groups has been reported [38, 39].This group has very high and strong oxidation capability.Results show that Ti–O–Ti and OH band did not appear clearly with increasing DBD treatment time,suggesting TiO2nanopowder modification.The DBD-treated TiO2nanopowder shows gas phase CO2band at 2348 cm?1,indicating CO2adsorption on the surface [40,41].Figure 6(b)shows a functional group peak at 1385 cm?1after DBD plasma treatment; the peak is assigned to C–H/COO groups.The C–H/COO group was detected due to the formation of CO2[26, 40, 42] on the TiO2surface.These results indicate a porous carbon layer formation on the TiO2nanopowder, presumably due to chemical and physical activation processes[42,43].The carbon source might be the air compressor or the reactor wall from the POM chamber by etching due to DBD.Identification of the carbon layer formation and its carbon source remains a subject for future work.Formation of the C–H/COO group and the gas phase CO2band at 2348 cm?1showed a stronger peak in both DBD treatments, indicating that the surface functional groups of commercial TiO2surface properties can be enhanced remarkably with the assistance of reactive species in DBD.

    Figure 1.Experiment setup for a RE-DBDR.

    Figure 2.Schematic diagram of a RE-DBDR.(a) Top view, (b) cross-sectional view and (c) photograph of a RE-DBDR with DBD generation while rotating.

    Figure 3.Electrical characteristic of RE-DBDR.(a) Voltage and current waveforms of RE-DBDR; I(t) is discharge current, Va(t) is applied voltage and Vc(t) is capacitance voltage; (b) Lissajous figure at fapp=60 Hz, Vpp=30 kV, rotational speed=5000 rpm.

    Figure 4.OES of RE-DBDR at fapp=60 Hz, Vpp=30 kV and 5000 rpm rotational speed.

    Figure 5.XRD patterns.(a)TiO2 nanoparticles,DBD-treated TiO2(3 min)and DBD-treated TiO2(10 min);(b)XRD pattern at anatase(101)and rutile (101) at fapp=60 Hz, Vpp=30 kV and 5000 rpm rotational speed.

    Figure 6.FTIR spectra of pure TiO2 nanoparticles.3 min and 10 min DBD-treated TiO2 in the wavenumber between (a) 400 cm?1 and 3800 cm?1 and (b) 1200 cm?1 and 1800 cm?1 at fapp=60 Hz,Vpp=30 kV and 5000 rpm rotational speed.

    4.Conclusion

    In conclusion, we processed and modified surface properties of RE-DBDR-treated P-25 TiO2nanopowders.Nonthermal barrier filamentary discharge was generated to treat and modify the TiO2nanoparticle surface in an air atmosphere using RE-DBDR.Using RE-DBDR, we treated the TiO2nanopowder at low temperatures for 3 and 10 min.It would be more interesting to apply RE-DBD in a continuous process, because the present study was conducted in a batch process.More detailed treatment time dependence is necessary as future work.Treatment with air DBD engenders remarkable modification of the TiO2nanopowder surface properties compared with untreated TiO2.The XRD patterns show that the peak shifted to a lower theta degree.Moreover,the FTIR results confirmed the surface functional groups and the porous carbon layer formation on the power surface.OES analyses elucidated the mechanism of the surface layer functional group.The main contributions to the emission spectrum of the air DBD produced by rotatable floating electrodes are the nitrogen molecular band spectra of the second positive system (C–B).Based on the OES results,reactive species, such as OH radical, ozone and atomic oxygen can play key roles in hydroxyl formation on TiO2nanopowder surface.These results constitute important information for improving nanopowder surface modification based on nonthermal DBD treatment for additional optoelectronic, environmental and energy applications.

    Acknowledgments

    The first author extends her sincere gratitude to her senior,Mr Kentaro Morimoto, for initiating the development of the rotary floating electrode reactor for particulate material treatment and another senior, Dr Mohammad Rasel Pervez,for valuable advice.

    简卡轻食公司| 欧美日韩亚洲高清精品| 中文字幕亚洲精品专区| 高清在线视频一区二区三区| 精品人妻一区二区三区麻豆| 国产一区有黄有色的免费视频| 欧美97在线视频| 色5月婷婷丁香| 18+在线观看网站| 国产探花极品一区二区| 亚洲电影在线观看av| 国产免费一级a男人的天堂| 免费观看a级毛片全部| 最近最新中文字幕免费大全7| 在线观看三级黄色| 久久久精品94久久精品| 亚洲欧美清纯卡通| 婷婷色av中文字幕| a级一级毛片免费在线观看| 青春草视频在线免费观看| 人妻 亚洲 视频| 内射极品少妇av片p| 人妻制服诱惑在线中文字幕| 国产黄色免费在线视频| 99久久精品热视频| 超碰av人人做人人爽久久| 插阴视频在线观看视频| 晚上一个人看的免费电影| 日韩欧美精品免费久久| 成年免费大片在线观看| 免费人成在线观看视频色| 99久久精品一区二区三区| 久久精品国产亚洲网站| 99热这里只有是精品50| 你懂的网址亚洲精品在线观看| 免费高清在线观看视频在线观看| 日韩中文字幕视频在线看片 | 人体艺术视频欧美日本| 尾随美女入室| 99热这里只有是精品50| 日本黄色日本黄色录像| 欧美 日韩 精品 国产| 少妇精品久久久久久久| 亚洲人成网站在线观看播放| 伊人久久精品亚洲午夜| 亚洲激情五月婷婷啪啪| 汤姆久久久久久久影院中文字幕| 我的女老师完整版在线观看| 一级毛片久久久久久久久女| 精品人妻熟女av久视频| 亚洲av成人精品一区久久| 午夜激情福利司机影院| 在线亚洲精品国产二区图片欧美 | 成人18禁高潮啪啪吃奶动态图 | 视频中文字幕在线观看| 亚洲欧美日韩卡通动漫| 嫩草影院入口| 99热这里只有是精品在线观看| kizo精华| 久久久午夜欧美精品| 久久久久人妻精品一区果冻| 亚洲成人一二三区av| 人人妻人人爽人人添夜夜欢视频 | 亚洲精品乱码久久久久久按摩| 国产亚洲欧美精品永久| 男人和女人高潮做爰伦理| 国产一区有黄有色的免费视频| 制服丝袜香蕉在线| 欧美另类一区| 超碰97精品在线观看| 在线播放无遮挡| 免费高清在线观看视频在线观看| 一级毛片久久久久久久久女| 老熟女久久久| 高清午夜精品一区二区三区| 啦啦啦在线观看免费高清www| 久久韩国三级中文字幕| 欧美精品亚洲一区二区| 高清在线视频一区二区三区| 97超碰精品成人国产| 亚洲第一区二区三区不卡| 爱豆传媒免费全集在线观看| 国产亚洲精品久久久com| 久久久久久久亚洲中文字幕| 男女啪啪激烈高潮av片| 黄色怎么调成土黄色| 欧美丝袜亚洲另类| 一个人看视频在线观看www免费| 欧美精品一区二区免费开放| 亚洲成人手机| 精品一区二区三卡| 亚洲精品日韩在线中文字幕| 观看美女的网站| 嘟嘟电影网在线观看| 亚洲国产日韩一区二区| 久久久久久久久大av| 夜夜骑夜夜射夜夜干| 又黄又爽又刺激的免费视频.| 九九在线视频观看精品| 国产精品三级大全| 亚洲精品中文字幕在线视频 | 肉色欧美久久久久久久蜜桃| 最近最新中文字幕免费大全7| 热99国产精品久久久久久7| 国产免费又黄又爽又色| 一区二区三区精品91| 青青草视频在线视频观看| 免费看日本二区| 黄色配什么色好看| 亚洲精品色激情综合| 久久久久网色| 日韩成人伦理影院| 少妇被粗大猛烈的视频| 18禁在线无遮挡免费观看视频| 直男gayav资源| 高清午夜精品一区二区三区| 少妇的逼好多水| 亚洲人与动物交配视频| 九草在线视频观看| 国产成人免费观看mmmm| 男人爽女人下面视频在线观看| 国产成人午夜福利电影在线观看| 亚洲欧美日韩无卡精品| 一区二区三区乱码不卡18| tube8黄色片| 成人毛片60女人毛片免费| 男女边吃奶边做爰视频| 久久精品国产亚洲网站| 国产av精品麻豆| 性色avwww在线观看| 纯流量卡能插随身wifi吗| 久久女婷五月综合色啪小说| 国产精品三级大全| 九九爱精品视频在线观看| 肉色欧美久久久久久久蜜桃| 97在线视频观看| 国产视频内射| 色网站视频免费| 啦啦啦在线观看免费高清www| 一级黄片播放器| 国产精品人妻久久久久久| 亚洲成人中文字幕在线播放| 精品久久久久久久末码| 亚洲第一av免费看| 在线观看免费日韩欧美大片 | 丰满乱子伦码专区| 超碰97精品在线观看| 久久女婷五月综合色啪小说| 一本色道久久久久久精品综合| 麻豆成人午夜福利视频| 中文资源天堂在线| 亚洲国产精品专区欧美| 秋霞在线观看毛片| 女人久久www免费人成看片| 亚洲精品色激情综合| 99热6这里只有精品| 99国产精品免费福利视频| 亚洲成人中文字幕在线播放| 人妻少妇偷人精品九色| 国产精品一区二区在线观看99| 国产国拍精品亚洲av在线观看| 乱系列少妇在线播放| 在线观看人妻少妇| 最近手机中文字幕大全| 国产一级毛片在线| 少妇 在线观看| 99久久人妻综合| 国产精品一区二区在线观看99| 亚洲av.av天堂| 超碰av人人做人人爽久久| 少妇熟女欧美另类| 中文在线观看免费www的网站| 日本免费在线观看一区| 高清av免费在线| 狂野欧美激情性bbbbbb| 91精品一卡2卡3卡4卡| 中文天堂在线官网| 在线观看国产h片| 日本黄色片子视频| av线在线观看网站| 在线天堂最新版资源| 日韩三级伦理在线观看| 国产在视频线精品| 欧美 日韩 精品 国产| 国产av码专区亚洲av| 久久久久久久久大av| 成人无遮挡网站| 久久精品国产鲁丝片午夜精品| 成人亚洲欧美一区二区av| 一本色道久久久久久精品综合| 一区二区三区乱码不卡18| 欧美97在线视频| 国产女主播在线喷水免费视频网站| 精品久久国产蜜桃| 国产老妇伦熟女老妇高清| 联通29元200g的流量卡| 两个人的视频大全免费| 日韩三级伦理在线观看| 99久久精品国产国产毛片| 80岁老熟妇乱子伦牲交| 我的老师免费观看完整版| 大片电影免费在线观看免费| 国产精品一区www在线观看| 一级爰片在线观看| 免费观看av网站的网址| 亚洲熟女精品中文字幕| 91久久精品国产一区二区三区| 人妻少妇偷人精品九色| 美女视频免费永久观看网站| 成年女人在线观看亚洲视频| 色综合色国产| 最黄视频免费看| av一本久久久久| 天天躁日日操中文字幕| 妹子高潮喷水视频| 夜夜爽夜夜爽视频| 欧美激情国产日韩精品一区| 99视频精品全部免费 在线| 国产精品成人在线| 亚州av有码| 插阴视频在线观看视频| 免费黄频网站在线观看国产| 插逼视频在线观看| 丰满迷人的少妇在线观看| 亚洲国产精品国产精品| 亚洲欧美日韩无卡精品| 一级黄片播放器| 你懂的网址亚洲精品在线观看| 一级毛片久久久久久久久女| a级一级毛片免费在线观看| 搡女人真爽免费视频火全软件| 久久久久国产精品人妻一区二区| 黑丝袜美女国产一区| 一级二级三级毛片免费看| av在线app专区| 亚洲精品久久久久久婷婷小说| av国产久精品久网站免费入址| 在线播放无遮挡| 亚洲精品乱久久久久久| 亚洲精品一区蜜桃| 国产精品福利在线免费观看| av女优亚洲男人天堂| 欧美激情极品国产一区二区三区 | 2018国产大陆天天弄谢| 在线免费观看不下载黄p国产| 欧美高清成人免费视频www| 久久久久久伊人网av| 热re99久久精品国产66热6| av在线蜜桃| 国产高清有码在线观看视频| 国产精品人妻久久久久久| 18禁裸乳无遮挡动漫免费视频| 欧美丝袜亚洲另类| 日韩欧美 国产精品| 啦啦啦视频在线资源免费观看| 日韩视频在线欧美| 日韩大片免费观看网站| 亚洲精品一区蜜桃| 男女下面进入的视频免费午夜| 少妇 在线观看| 国产有黄有色有爽视频| 91精品国产国语对白视频| 久久毛片免费看一区二区三区| 成人国产av品久久久| 国产免费一区二区三区四区乱码| 又黄又爽又刺激的免费视频.| 日韩人妻高清精品专区| 成人特级av手机在线观看| 久久精品国产亚洲网站| 精品少妇黑人巨大在线播放| 男女免费视频国产| 18禁裸乳无遮挡动漫免费视频| 日韩欧美精品免费久久| 丝瓜视频免费看黄片| 岛国毛片在线播放| 国产成人免费观看mmmm| 狂野欧美激情性bbbbbb| 人妻制服诱惑在线中文字幕| 国内少妇人妻偷人精品xxx网站| 全区人妻精品视频| 国产成人91sexporn| 简卡轻食公司| 亚洲无线观看免费| 久久精品国产自在天天线| 日韩欧美精品免费久久| 中文在线观看免费www的网站| 在线观看av片永久免费下载| 噜噜噜噜噜久久久久久91| 日韩一区二区三区影片| 国产欧美亚洲国产| 少妇人妻 视频| 国产成人a∨麻豆精品| 欧美 日韩 精品 国产| 亚洲欧美精品自产自拍| 各种免费的搞黄视频| 韩国av在线不卡| 亚洲精华国产精华液的使用体验| 蜜臀久久99精品久久宅男| 激情 狠狠 欧美| 在线免费观看不下载黄p国产| 国产成人精品一,二区| 纵有疾风起免费观看全集完整版| 亚洲欧美日韩无卡精品| 成人无遮挡网站| 看免费成人av毛片| 亚洲av福利一区| av在线app专区| 最新中文字幕久久久久| 晚上一个人看的免费电影| 亚洲电影在线观看av| 一区二区三区四区激情视频| 尤物成人国产欧美一区二区三区| 我的老师免费观看完整版| 国产成人精品久久久久久| 一本—道久久a久久精品蜜桃钙片| 黄色视频在线播放观看不卡| 国产免费又黄又爽又色| 亚洲精品自拍成人| 亚洲,一卡二卡三卡| av专区在线播放| 日韩精品有码人妻一区| 我的女老师完整版在线观看| 久久精品夜色国产| 国产在线免费精品| 最近最新中文字幕免费大全7| 99热全是精品| 麻豆成人av视频| 五月伊人婷婷丁香| 一级毛片我不卡| 国产淫语在线视频| 这个男人来自地球电影免费观看 | 亚洲国产精品一区三区| 极品教师在线视频| 人妻 亚洲 视频| 国产精品福利在线免费观看| 校园人妻丝袜中文字幕| 中文字幕制服av| 男女免费视频国产| 免费观看性生交大片5| 一级爰片在线观看| 欧美亚洲 丝袜 人妻 在线| 久久 成人 亚洲| 乱码一卡2卡4卡精品| freevideosex欧美| 亚洲婷婷狠狠爱综合网| 99久久精品一区二区三区| 精品人妻视频免费看| 成人无遮挡网站| 蜜桃在线观看..| 九九久久精品国产亚洲av麻豆| 黄色视频在线播放观看不卡| 国产在线免费精品| 男女边吃奶边做爰视频| 亚洲美女搞黄在线观看| 国产女主播在线喷水免费视频网站| 免费观看性生交大片5| 国产色爽女视频免费观看| 久久久午夜欧美精品| 18禁裸乳无遮挡免费网站照片| 中国美白少妇内射xxxbb| 久久久久视频综合| 极品少妇高潮喷水抽搐| 国产精品一及| 免费黄网站久久成人精品| av免费观看日本| 性色av一级| 亚洲av国产av综合av卡| 热re99久久精品国产66热6| 国产精品偷伦视频观看了| 国产精品一二三区在线看| 亚洲精品,欧美精品| 秋霞在线观看毛片| 欧美日韩在线观看h| 国产亚洲一区二区精品| 亚洲真实伦在线观看| 少妇 在线观看| 亚洲精品亚洲一区二区| 久久人人爽人人片av| 2022亚洲国产成人精品| 亚洲精品456在线播放app| 黄片无遮挡物在线观看| 久热久热在线精品观看| 少妇丰满av| 中文字幕亚洲精品专区| 少妇人妻久久综合中文| 久久久a久久爽久久v久久| 国产成人免费观看mmmm| 中文字幕久久专区| 麻豆国产97在线/欧美| 夜夜爽夜夜爽视频| 国产精品欧美亚洲77777| 久久这里有精品视频免费| 欧美少妇被猛烈插入视频| 久热这里只有精品99| 国产精品三级大全| 日日摸夜夜添夜夜添av毛片| 欧美一区二区亚洲| 日韩国内少妇激情av| 校园人妻丝袜中文字幕| 亚洲av二区三区四区| 91在线精品国自产拍蜜月| 亚洲国产日韩一区二区| 亚洲av电影在线观看一区二区三区| 97超碰精品成人国产| 97在线视频观看| 免费看不卡的av| 搡老乐熟女国产| 高清视频免费观看一区二区| 啦啦啦中文免费视频观看日本| 国产精品.久久久| 国产免费一区二区三区四区乱码| 制服丝袜香蕉在线| 亚洲精品第二区| 国产精品国产三级专区第一集| 热re99久久精品国产66热6| 一区在线观看完整版| 成年av动漫网址| 成人午夜精彩视频在线观看| 欧美少妇被猛烈插入视频| 日韩成人伦理影院| 高清不卡的av网站| 一级毛片黄色毛片免费观看视频| 国产人妻一区二区三区在| freevideosex欧美| 麻豆精品久久久久久蜜桃| 欧美日韩视频精品一区| 久久久久久久久久久丰满| 97超视频在线观看视频| 男女无遮挡免费网站观看| 男女边吃奶边做爰视频| 久久亚洲国产成人精品v| 国产黄片视频在线免费观看| 欧美97在线视频| 中国三级夫妇交换| 简卡轻食公司| 婷婷色av中文字幕| 亚洲色图av天堂| 国产精品爽爽va在线观看网站| 联通29元200g的流量卡| 一本—道久久a久久精品蜜桃钙片| 久久女婷五月综合色啪小说| 亚洲国产精品专区欧美| 韩国高清视频一区二区三区| 中文天堂在线官网| 精品亚洲乱码少妇综合久久| 三级国产精品欧美在线观看| 一区二区三区乱码不卡18| 欧美人与善性xxx| 日本猛色少妇xxxxx猛交久久| 高清毛片免费看| 亚洲天堂av无毛| 99热这里只有是精品在线观看| 我的老师免费观看完整版| 国语对白做爰xxxⅹ性视频网站| 亚洲中文av在线| 超碰av人人做人人爽久久| av专区在线播放| 亚洲国产欧美在线一区| 久久久欧美国产精品| 免费大片18禁| 国产精品一区二区三区四区免费观看| 一本久久精品| 日韩一本色道免费dvd| 免费看日本二区| 亚洲综合色惰| 午夜视频国产福利| 亚洲精品国产色婷婷电影| 在线观看免费视频网站a站| 大码成人一级视频| 建设人人有责人人尽责人人享有的 | 少妇裸体淫交视频免费看高清| 极品少妇高潮喷水抽搐| 最黄视频免费看| 一级av片app| 高清黄色对白视频在线免费看 | 人妻少妇偷人精品九色| 寂寞人妻少妇视频99o| 中文乱码字字幕精品一区二区三区| 在线天堂最新版资源| videossex国产| 国产精品一区二区在线观看99| 久久国产亚洲av麻豆专区| 九草在线视频观看| 久久 成人 亚洲| 色综合色国产| 久久 成人 亚洲| 亚洲中文av在线| 久久 成人 亚洲| 色综合色国产| 一区二区三区四区激情视频| 99国产精品免费福利视频| 一级二级三级毛片免费看| 中文资源天堂在线| 久久久久久久精品精品| 伦理电影大哥的女人| 国产精品久久久久成人av| 天天躁夜夜躁狠狠久久av| 欧美日韩亚洲高清精品| 中文精品一卡2卡3卡4更新| 亚洲性久久影院| 亚洲国产最新在线播放| 这个男人来自地球电影免费观看 | 国产精品国产三级国产专区5o| 国产真实伦视频高清在线观看| 亚洲精品乱码久久久v下载方式| 亚洲国产欧美在线一区| 亚洲在久久综合| 中文字幕精品免费在线观看视频 | 超碰97精品在线观看| 亚洲国产av新网站| 国产在线一区二区三区精| 日韩制服骚丝袜av| 久久婷婷青草| 久久 成人 亚洲| 亚洲久久久国产精品| 精品少妇久久久久久888优播| 国产白丝娇喘喷水9色精品| 亚洲欧美中文字幕日韩二区| 少妇被粗大猛烈的视频| 精品亚洲乱码少妇综合久久| 国产精品人妻久久久影院| 国产免费又黄又爽又色| 国产永久视频网站| 精品久久久久久久久亚洲| 男人狂女人下面高潮的视频| 中文欧美无线码| 超碰97精品在线观看| av国产免费在线观看| 欧美丝袜亚洲另类| av播播在线观看一区| 久久久久国产精品人妻一区二区| 亚洲欧美日韩无卡精品| 内地一区二区视频在线| 少妇人妻久久综合中文| tube8黄色片| a级毛片免费高清观看在线播放| 国产精品不卡视频一区二区| 丰满迷人的少妇在线观看| 国产一区二区三区综合在线观看 | 少妇裸体淫交视频免费看高清| 十八禁网站网址无遮挡 | 日韩 亚洲 欧美在线| 久久久午夜欧美精品| 91精品国产九色| 色吧在线观看| 成年女人在线观看亚洲视频| 久久久精品94久久精品| 亚洲久久久国产精品| 一区二区三区四区激情视频| 五月开心婷婷网| 精品久久久精品久久久| 日本黄大片高清| 亚洲欧美一区二区三区国产| 2022亚洲国产成人精品| 国产欧美日韩一区二区三区在线 | 免费看不卡的av| 免费大片18禁| 老司机影院毛片| 亚洲精品日本国产第一区| 只有这里有精品99| 久久国内精品自在自线图片| 欧美精品人与动牲交sv欧美| 精品人妻熟女av久视频| 日本与韩国留学比较| 99热这里只有精品一区| 亚洲一级一片aⅴ在线观看| 99热这里只有是精品50| 中文精品一卡2卡3卡4更新| h视频一区二区三区| 搡老乐熟女国产| 91狼人影院| 高清不卡的av网站| 国产精品一区二区在线观看99| 春色校园在线视频观看| 国产精品一区二区性色av| 最近的中文字幕免费完整| 亚洲精品自拍成人| 婷婷色av中文字幕| 国产伦精品一区二区三区视频9| 乱码一卡2卡4卡精品| 国产国拍精品亚洲av在线观看| 亚洲av中文字字幕乱码综合| 黄色配什么色好看| 美女内射精品一级片tv| 欧美xxⅹ黑人| 少妇熟女欧美另类| 国产午夜精品久久久久久一区二区三区| 欧美成人精品欧美一级黄| 亚洲av男天堂| 久热这里只有精品99| 黄色怎么调成土黄色| 九九在线视频观看精品| 亚洲国产精品成人久久小说| 亚洲精品,欧美精品| 亚洲不卡免费看| 精品午夜福利在线看| 国产av一区二区精品久久 | 国产精品伦人一区二区| 一区在线观看完整版| 国产日韩欧美亚洲二区| 日本猛色少妇xxxxx猛交久久| 色5月婷婷丁香| 亚洲aⅴ乱码一区二区在线播放| 欧美xxxx黑人xx丫x性爽| www.av在线官网国产| 日韩欧美精品免费久久| 亚洲成色77777| 春色校园在线视频观看| 欧美精品人与动牲交sv欧美| 韩国高清视频一区二区三区| 精品久久久久久久久亚洲| av黄色大香蕉| 男女边吃奶边做爰视频| 伊人久久精品亚洲午夜| 国产在视频线精品|