• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Observation of the exceptional point in superconducting qubit with dissipation controlled by parametric modulation?

    2021-10-28 07:03:24ZhanWang王戰(zhàn)ZhongchengXiang相忠誠TongLiu劉桐XiaohuiSong宋小會(huì)PengtaoSong宋鵬濤XueyiGuo郭學(xué)儀LuhongSu蘇鷺紅HeZhang張賀YanjingDu杜燕京andDongningZheng鄭東寧
    Chinese Physics B 2021年10期
    關(guān)鍵詞:東寧燕京

    Zhan Wang(王戰(zhàn)) Zhongcheng Xiang(相忠誠) Tong Liu(劉桐) Xiaohui Song(宋小會(huì))Pengtao Song(宋鵬濤) Xueyi Guo(郭學(xué)儀) Luhong Su(蘇鷺紅)He Zhang(張賀) Yanjing Du(杜燕京) and Dongning Zheng(鄭東寧)

    1Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    3Songshan Lake Materials Laboratory,Dongguan 523808,China

    4China University of Geosciences,Beijing 100083,China

    Keywords: exceptional point,parity-time-reversal(PT)symmetry,longitudinal field modulation

    1. Introduction

    In recent years, non-Hermitian systems with PT symmetry have attracted widespread attention because of their intriguing properties and potential applications in sensitive detection.[1]The PT symmetry can be realized by considering a coupled bipartite system with balanced gain and loss of energy or particles from the environment.[2]By varying the relative magnitude of the gain,loss and coupling strength,the system can show an unconventional transition between a PT symmetric phase and a PT broken phase at a so-called exceptional point (EP). At the EP, the eigenvalues of the non-Hermitian Hamiltonian, which describes the system, coalesce together and the corresponding eigenvectors also coincide at this point.Also,the breaking of the PT symmetry causes the eigenvalues of the non-Hermitian Hamiltonian to change from real to complex. The presence of the EP can lead to many peculiar physical phenomena, such as unidirectional invisibility,[3]nonreciprocal light propagation,[4–7]loss-induced suppression and revival of lasing.[8–10]More importantly, it is suggested that near the EP the system is more sensitive to external perturbations and this could give rise to enhanced sensing.[11,12]

    EPs have been experimentally observed in different kinds of systems. Initially, it was mostly reported in semiclassical systems with balanced gain and loss, such as optical cavities,[11–14]microwave resonators[6,15–17]and mechanical oscillators.[18–20]More recently, work performed on quantum systems, such as cold atoms,[21–23]nitrogenvacancy centers,[24,25]superconducting circuits[26,27]and trapped ions[28,29]were reported. For the pure lossy quantum system,it has been shown that the lossy Hamiltonian could be mapped to a PT symmetric Hamiltonian and display passive PT symmetry breaking.[21,32]

    In superconducting circuits, a single transmon qubit embedded in a 3D waveguide cavity is used to demonstrate the PT symmetry broken transition and the presence of EP.[26]The lowest three energy levels|g〉,|e〉, and|f〉of the qubit are involved. The first excited state|e〉and the second excited state|f〉are used to form the bipartite quantum system of investigation while the ground state|g〉is regarded as the environment. The key to the demonstration of the PT symmetry broken transition is a large and adjustable dissipation channel for a large decay rate of|e〉to|g〉. It is realized by inserting an impedance matching element(IME)between the cavity and the outside readout circuit. However,this method requires an additional element that may affect the performance of the entire qubit device.In this work,we demonstrate the observation of the PT symmetric broken phase transition and the EP on a frequency tunable superconducting Xmon qubit by parametric modulation of the qubit frequency that results in a controllable interaction between the qubit and a lossy readout resonator.This interaction transfers the qubit excitation to the resonator and, thus, creates a lossy channel controlling the decay rate of|e〉to|g〉. This approach of decay rate controlling with parametric modulation has been proposed in Ref.[30]and has been used for fast reset of superconducting qubits. It is simple and requires no additional hardware or modifications to the device components. It can be implemented easily on multi-qubit devices for the exploration of rich physics in non-Hermitian systems with PT symmetry.

    2. Principle of the experiment

    2.1. PT symmetry broken transition in a single dissipative qubit

    As shown in Ref.[26],a two-level non-Hermitian system with applied resonance driving and a loss term to the environment may be described by an effective Hamiltonian(ˉh=1)

    where|e〉and|g〉denote the first and second excited states of the quantum system,respectively,andγeis the occupationnumber loss rate.This Hamiltonian may be rewritten asHeff=HPT?iγeI/4, whereHPT=Jσx ?iγeσz/4 is a PT-symmetric Hamiltonian,andIis the identity matrix,σx(z)is the Pauli matrix,Jσx=J(|f〉〈e|+|e〉〈f|) when we just consider the|e〉state and the|f〉state. The complex eigenvalues ofHeffhave different imaginary components atJ<γe/4,and the system is in the PT broken phase. At a stronger coupling,past the EP atJ0=γe/4, the imaginary components for the two dissipative eigenmodes coincide, and the system is in the PT symmetric(unbroken) phase. To implementHeff, we require the respective energy decay ratesγe ?γf.

    2.2. Qubit decay rate control

    We consider a generic system with a two-level atom(with transition frequencyωq) coupled to a resonator (with frequencyωr). If the effective coupling isgeff, the Hamiltonian(ˉh=1)of this coupled system in the Jaynes–Cummings model is

    wherea,a+,σ?,σ+are lowering and raising operators of the resonator and the qubit, respectively, andσzis the Pauli matrix. Considering the dissipation, the dynamics can be described by the following Lindblad master equation:

    The above formula shows thatγecan be tuned by varyinggeand the frequency detuning ?ω. Obviously, theγeshows maximum when ?ω=0.

    2.3. Longitudinal field modulation

    For a single Xmon,we realize qubit frequency parametric modulation by applying a longitudinal field modulation(LFM)with frequencyωzand amplitudehz. In the laboratory coordinate system,the Hamiltonian(ˉh=1)of the qubit system with LFM and transverse resonance driving is

    whereJnis thenth-Bessel functions of the first kind. It shows,with the LFM applied on the qubit,sidebands appear atωq?nωz(n=0,±1,±2,...). Another feature of the Hamiltonian is that the Rabi oscillation term may disappear whenJn(α)=0.In Fig.1,we show the measured qubit energy spectrum with and without LFM. The measurements are taken atωq/2π~4.92 GHz andωz/2π=0,20 MHz.

    Fig.1. Measured qubit energy spectrum(a)without and(b)with LFM.The qubit is biased at 4.92 GHz. The modulation frequency is ωz/2π =20 MHz.

    3. Experimental setup

    In the experiment, we realize a non-Hermitian system with PT symmetry on a frequency tunable superconducting Xmon qubit. Figure 1(a) shows an optical photograph of the device. The qubit is formed by a DC-SQUID (the enlarged region in the graph)shunted by a cross-shaped capacitor. The Xmon qubit can be regarded as an anharmonic oscillator exhibiting a series of unequally spaced energy levels that can be individually addressed with microwave pulses via theXYcontrol line. A magnetic flux applied to the SQUID loop through theZcontrol line can tune the energy level spacing. The qubit is capacitively coupled to a readoutλ/4 resonator that is also coupled to a microwave transmission line. When the fundamental mode frequency of the resonator is substantially larger than the qubit transition frequency between the lowest two levels,the dispersive interaction between the qubit and the resonator results in a state-dependent shift in the resonator frequency.Thus,in this dispersive readout scheme,the qubit state information can be obtained by measuring the transmission or reflection coefficients of the transmission line.

    Following the scheme of Ref. [26], we use the first two excited states of|e〉and|f〉to form a two-level system and regard the ground state|g〉as the environment. By applying a coherent resonate drive(Rabi drive)of variable amplitude,the coupling between|e〉and|f〉can be realized. To observe the PT symmetry broken transition and the EP, we need to introduce controllable losses of the system energy to the environment in such a way that the decay rate of the state|e〉(γe)is much larger than that of the state|f〉(γf). This can be realized by parametric modulation of qubit frequency using LFM as discussed in Subsection 2.3. In other words, when the frequency of one sideband is in resonance with the readout resonator, the decay through the lossy readout resonator is maximized. By varying the LFM frequency and amplitude,the decay can be adjusted. Meanwhile, we vary the driving amplitudeΩx,which means changing the coupling strengthJ,so that the PT symmetry broken transition can be observed.The schematic of this process and the corresponding pulse and waveform sequence are shown in Figs.2(b)and 2(c).

    Fig. 2. (a) Optical graph of a frequency tunable superconducting Xmon qubit. (b)Experiment schematic diagram for the observation of the PT symmetry broken transition and the EP.In the diagram,γe,γf,κr represents the decay rate of the states|e〉,|f〉and the resonator,respectively. The geff and?ω are the effective coupling strength and detuning between the resonator and the qubit after applying longitudinal field modulation(LFM).Ωx is the amplitude of Rabi driving while ωx is the frequency. ωr and ωq are the frequencies of the resonator and the qubit (energy level between the state |g〉and|e〉),respectively. (c)Pulse and waveform sequence of the experiments.

    To ensure that the experimental conditions meet the theoretical requirements,characterization work needs to be carried out at first. Initial state preparation and readout are carried out at an idle frequency point, corresponding toωge/2π=5.69378 GHz andωfe/2π=5.4411 GHz. The anharmonicity is about 252.67 MHz. The readout resonator frequency is about 6.6178 GHz and it differs from theωge/2πby 924 MHz.The readout resonator frequency shift 2χgeis about 0.55 MHz when the qubit is excited from|g〉to|e〉while the shift 2χe fis about 0.4 MHz for|e〉to|f〉excitation. The coupling strength between the qubit and the readout resonator may be calculated from the shift value and is found to be~48.7 MHz. With the AC stark effect measurements,the decay rate of photons in the readout resonatorκris~6 MHz.

    Fig.3. (a)Transmission data measured when the qubit is in|g〉,|e〉and|f〉states,respectively. (b)Transmission data taken at a fixed frequency marked by the dashed line in(a).

    In addition to the above parameters, the decay rates of the excited statesγeandγf(representing decaying from the|e〉and|f〉states to environment) are of significance in the study of the non-Hermitian system. To characterizeγeandγf,we need to firstly readout and distinguish the different states.According to the dispersive readout theory,we know that different qubit states correspond to different frequency shifts of the readout resonator frequency. In this way, we can distinguish the three states of interest|g〉,|e〉and|f〉. The data are shown in Fig.3. We use oneπpulse or two sequentialπpulses to prepare the qubit into|e〉and|f〉states,respectively.The transmission data measured on the readout transmission line are shown in Fig. 3(a). Clearly, the resonant frequency shows a state-dependent shift(Note,the frequencies displayed on the horizontal axis are the values after down conversation.The actual value should be added 6.61 GHz,the local oscillation frequency). In Fig. 3(b), we show the transmission data measured at a fixed frequency(as marked by the black dashed line) in theI–Qpolar plane. The frequency is chosen so that the distinction of the three states is clear.

    Fig. 4. Relaxation data measured for the three states |e〉, |g〉 and |f〉.The solid curves are fitting to Eq.(9).

    4. Experimental control of qubit decay rate

    According to Section 2, changing the coupling strength and detuning frequency between the qubit and resonator by LFM leads to the changing of the qubit decay rate.This means that we can control the qubit decay rate by changing the amplitude and frequency of LFM.In our experiments,the bandwidth of theZcontrol line is limited to 0–500 MHz while the readout resonator frequency is 924 MHz greater than the quibt transition frequency when biased at the idle point. Thus, we may apply a LFM with modulation frequency around 462 MHz to achieve a largeγe. This corresponds ton=2 in Eq. (8). We prepare the qubit to the|e〉state before applying LFM for 1μs and finally measure the probability of state|e〉,Pe.We vary the LFM amplitude and frequency progressively to find the dependence of the decay rate on the LFM frequency and amplitude.The data are shown in Fig.5 and the strip-like region with very lowPe,and hence largeγe,is clearly identified.

    When LFM is applied at the sweet point of the qubit,there is a DC bias component acting on the qubit, resulting in the amplitude and frequency dependence of the lowPeregion shown in Fig.5. If LFM is applied away from the sweet point,the lowPeregion should be less frequency dependent.

    Fig.5. The Pe data corresponding to different LFM hz and ωz.

    Fig.6. Color map of Pe versus t for various values of hz.

    To show more clearly thatγechanges with LFM, we fix a modulation frequencyωz=470 MHz/2πand measure theγefor each modulation amplitudehz. The result is shown in Fig.6,and it is clear to see thatγechanges withhz.

    After showing that theγechanges withhz,we should also verify thatγfdoes not change withhz. As discussed in Section 3,we prepare the qubit to the state|f〉,and wait for some time,finally measure the probability of|g〉,|e〉,|f〉states,respectively. During the waiting time, the longitudinal field is applied through theZcontrol line. According to Eq. (9), we can getγeandγfby fitting the probability data of|g〉,|e〉,and|f〉states. Data shown in Fig.7 confirm that the change ofγfis small when LFM is applied. The red solid line is the fitting curve using Eq. (5). Note that thex-axis variable in Fig. 7 is?ω,the detuning of the qubitn=2 sideband frequency to the readout resonator. In our experiments, the qubit is biased at the sweet point, thus the change of LFM amplitudehzwould also result in a change in ?ω. However,if the change ofhzis small,the relation between the two is approximately linear.

    Fig.7. The experiment results of γe and γf obtained by fitting the original relaxation data,similar to those shown in Fig.4.

    5. Quantified EP by oscillation frequency

    To observe PT symmetry broken transition, we choose a working point at whichγeis much larger thanγf.Similar to the procedure described in Ref.[26],we applyπg(shù)eandπefpulses to prepare the qubit to state|f〉and then apply a coherent microwave driving in resonance with the|e〉and|f〉transition frequency and with amplitudeJthrough theXYcontrol line.In the same time, a LFM is also applied to the qubit via theZcontrol line so thatγeis about 2.06 MHz andγfis about 0.08 MHz. Finally,after a period of timet,we switch off the driving field and LFM,and measure the occupation probability of state|f〉Pftogether with the probability of the state|g〉and|e〉. The schematic diagram of the whole process is shown in Fig.2(c). As discussed in Subsection 2.1,whenJ>γe/4,the system is in the PT symmetric phase andPfwould oscillate at a frequency

    At the EP,J=γe/4,the oscillation disappears.

    Because we consider only the system formed with|e〉and|f〉,we use the normalized probabilityPnf=Pf/(Pf+Pe)dynamics of the system. The results are displayed in Fig. 8. In Fig. 9(a), more detailed data are shown and the time dependence ofPnffor two differentJvalues (as marked by dashed lines in Fig. 9(a)) is given in Fig. 9(b). The solid lines are the fitting curves using a cosine function with exponentially decayed amplitude. Clearly, whenJis large, we observe the oscillatory behavior ofPnfand the oscillation disappears whenJis reduced below a certain value.

    Fig.8. Color map of Pnf versus t for various values of J.

    Fig.9. (a)More detailed of Pnf evolution data measured under the same condition as in Fig.8. (b)The Pnf versus time and the fitting plot for two values of J(J=106,green dot;J=0.44,blue dot).

    In Fig. 10, the oscillation frequencyΩ0obtained by fitting is exhibited as a function of coupling strengthJ. The point at whichΩ0becomes zero is the EP. Further reducingJ, the system is in the PT broken phase. The solid red line is the fit to Eq. (10). The data show that, at the EP,J0is about 0.46 rad/μs, being consistent with the value 0.51 rad/μs obtained fromγe/4.

    Fig.10. Variation of oscillation frequency Ω0 with coupling strength J.

    6. Quantified EP through all parameter regions

    It has been pointed out that to accurately determine the location of EPs in experiments by measuring the asymptotic behavior of the energy around the EP without special prior knowledge is difficult.[29]Indeed, the evolution ofPfunderHeffgives an exponential decay that makes the determination ofΩ0become increasingly difficult when approaching the EP.To solve this problem, an alternative scheme of determining EP using all parameter regions has been proposed.[29]Here we also use this scheme in our experiments of superconducting qubits.

    Fig. 11. Determination of EP from the measurement of PJ (blue) and PΓ (red).

    The specific operation and measurement procedures are as follows. (i) Prepare the initial state to|f〉and let the system evolve for a period of timet. Then we measure the probability of state|e, 〉PJ(t). (ii) Repeat the procedure for the initial state(|f〉+|e〉)/2 and measure the probability of state(|f〉?|e〉)/2,PΓ(t). (iii) We repeat (i) and (ii) for different values of the coupling strengthJand lett=1/J. The data are displayed in Fig.11. The solid curves are fitting to the theoretical expression given in Ref.[29]which suggests that the cross point ofPJandPΓis the EP.At this point, we haveJ0~0.5,being also consistent with the value obtained in Fig.10.

    This method does not need to fit the oscillation frequency to determine the EP. However, it utilizes information of all three states and hence requires better readout calibration of the three states and the fidelity of the operation.

    7. Dependence of EP position on the decay rate

    According to Subsection 2.1, the position of the EP should vary with the decay rateγe. We make measurements for four different values ofγeand determine the corresponding EPs.The position of EPJ0is shown in Fig.12.The agreement between experiment points andγe/4 is reasonable.

    Fig.12. Dependence of EP position J0 on the decay rate γe.

    8. Conclusion

    We utilize a previously reported dissipation control technique for frequency tunable superconducting transmon qubits[30]to investigate the PT symmetric phase transition of non-Hermitian quantum system and determine the corresponding EP.The non-Hermitian quantum system is formed with the first and the second excited states of the qubit. We show that the dissipation rate of the first excited state of the transmon qubit could be tuned by parametric modulation of the qubit frequency. The parametric modulation effectively changes the coupling strength between the qubit and its lossy readout resonator.By varying the coupling between the two excited states of the qubit,the PT phase transition is observed. Two methods are used to determine the EP and the results are in agreement with that calculated by the theory.

    Our study demonstrates a possible new approach for further investigation of the remarkable phenomena of non-Hermitian systems in the vicinity of the EP.Furthermore, the approach can be implemented on multi-qubit devices to investigate the properties of many-body non-Hermitian systems and to explore the high-order EPs.

    猜你喜歡
    東寧燕京
    憶燕京門下
    少林與太極(2023年4期)2023-07-14 07:47:54
    Hardware for multi-superconducting qubit control and readout*
    Fasudil prevents liver fibrosis via activating natural killer cells and suppressing hepatic stellate cells
    寧波市海曙東寧工具有限公司
    An Analysis of the Difficulties and Learning Methods of English Grammar in Senior High Schools
    Tunable coupling between Xmon qubit and coplanar waveguide resonator?
    “燕京八絕”之首的景泰藍(lán)色彩研究
    流行色(2018年10期)2018-03-23 03:36:26
    燕京理工學(xué)院·環(huán)境藝術(shù)設(shè)計(jì)專業(yè)
    斂汗止血的五倍子
    我們的作品
    桃色一区二区三区在线观看| 精品久久久久久久久av| 日本免费a在线| 给我免费播放毛片高清在线观看| 99热这里只有是精品在线观看| 久久久精品大字幕| 我的老师免费观看完整版| 黄片wwwwww| 丰满乱子伦码专区| 三级毛片av免费| 丝袜喷水一区| 午夜精品一区二区三区免费看| 午夜日韩欧美国产| 免费av观看视频| 国产精品1区2区在线观看.| 91av网一区二区| 亚洲最大成人av| 成人av在线播放网站| 丝袜喷水一区| 成人毛片a级毛片在线播放| 97超视频在线观看视频| 亚洲欧美日韩高清专用| 国产色婷婷99| 永久网站在线| 精品久久国产蜜桃| 午夜激情福利司机影院| av在线亚洲专区| 日韩一本色道免费dvd| 天堂动漫精品| 黄色视频,在线免费观看| 午夜免费激情av| 欧美国产日韩亚洲一区| 在线观看免费视频日本深夜| 美女黄网站色视频| 18禁在线播放成人免费| 69人妻影院| 久久综合国产亚洲精品| 日韩欧美精品v在线| 亚洲国产精品久久男人天堂| 久久人妻av系列| 中文资源天堂在线| 91在线观看av| 免费av不卡在线播放| 一进一出抽搐gif免费好疼| 三级国产精品欧美在线观看| 伊人久久精品亚洲午夜| 国产毛片a区久久久久| 欧美日韩一区二区视频在线观看视频在线 | 村上凉子中文字幕在线| 少妇人妻一区二区三区视频| 久久中文看片网| 中文字幕熟女人妻在线| 国产精品久久视频播放| 国产美女午夜福利| 99热这里只有精品一区| 国产av麻豆久久久久久久| 小蜜桃在线观看免费完整版高清| 久久久久久久久久成人| 高清午夜精品一区二区三区 | 免费看美女性在线毛片视频| 久久草成人影院| 久久精品国产亚洲av涩爱 | 我要看日韩黄色一级片| 久久精品国产亚洲网站| 久久鲁丝午夜福利片| 久久国产乱子免费精品| 久久久久国内视频| 99久久精品一区二区三区| 欧美一区二区精品小视频在线| 国产精品人妻久久久影院| 国产亚洲av嫩草精品影院| 真实男女啪啪啪动态图| 又粗又爽又猛毛片免费看| 欧美一区二区国产精品久久精品| 97超级碰碰碰精品色视频在线观看| 赤兔流量卡办理| 男人舔奶头视频| 激情 狠狠 欧美| 能在线免费观看的黄片| 国产伦在线观看视频一区| 国产 一区精品| 日日干狠狠操夜夜爽| 欧美成人精品欧美一级黄| 少妇熟女aⅴ在线视频| av国产免费在线观看| 两个人视频免费观看高清| 精品日产1卡2卡| 少妇高潮的动态图| 国产私拍福利视频在线观看| 最近2019中文字幕mv第一页| 国产成人freesex在线 | 别揉我奶头 嗯啊视频| av在线亚洲专区| 国产免费一级a男人的天堂| 亚洲综合色惰| 99在线视频只有这里精品首页| 精品久久久噜噜| 欧美一区二区精品小视频在线| 国产精品日韩av在线免费观看| 国产美女午夜福利| 久久久久国产精品人妻aⅴ院| 一级a爱片免费观看的视频| 一区二区三区四区激情视频 | 亚洲欧美日韩东京热| 3wmmmm亚洲av在线观看| 99久久精品国产国产毛片| 亚洲在线观看片| 一进一出抽搐gif免费好疼| 日韩强制内射视频| 国产69精品久久久久777片| 两性午夜刺激爽爽歪歪视频在线观看| 国内揄拍国产精品人妻在线| 亚洲精品国产av成人精品 | 欧美性感艳星| 色尼玛亚洲综合影院| 99视频精品全部免费 在线| 精品乱码久久久久久99久播| 国产成人aa在线观看| 国产亚洲精品综合一区在线观看| avwww免费| 国模一区二区三区四区视频| 小蜜桃在线观看免费完整版高清| 欧美日本亚洲视频在线播放| 日日摸夜夜添夜夜爱| 国产av一区在线观看免费| 国产熟女欧美一区二区| 国产成人福利小说| 成熟少妇高潮喷水视频| 欧美三级亚洲精品| 久久久久久大精品| 蜜桃久久精品国产亚洲av| 在线a可以看的网站| 国产成年人精品一区二区| 欧美xxxx性猛交bbbb| 亚洲成av人片在线播放无| 两个人的视频大全免费| 国产私拍福利视频在线观看| 久久综合国产亚洲精品| 成人性生交大片免费视频hd| 老司机福利观看| av在线老鸭窝| 一本一本综合久久| 精品久久久久久成人av| 国产探花极品一区二区| 亚洲精品成人久久久久久| 午夜亚洲福利在线播放| 极品教师在线视频| 色5月婷婷丁香| 久久精品夜夜夜夜夜久久蜜豆| 国产一区二区激情短视频| 成人性生交大片免费视频hd| 欧美最黄视频在线播放免费| 成人av一区二区三区在线看| 国产男人的电影天堂91| 国产亚洲精品久久久com| 可以在线观看毛片的网站| 97碰自拍视频| 亚洲七黄色美女视频| 最新在线观看一区二区三区| a级一级毛片免费在线观看| 日韩一本色道免费dvd| 一级毛片电影观看 | 深爱激情五月婷婷| 国产美女午夜福利| 18+在线观看网站| 2021天堂中文幕一二区在线观| 欧美性感艳星| 99久国产av精品| 久久久久国产网址| 国产不卡一卡二| 69av精品久久久久久| 成年av动漫网址| 国产探花极品一区二区| 日本色播在线视频| 搡老妇女老女人老熟妇| 晚上一个人看的免费电影| 搞女人的毛片| 欧美日韩精品成人综合77777| 91在线精品国自产拍蜜月| 亚洲精品456在线播放app| 少妇的逼水好多| 中文字幕av成人在线电影| 狂野欧美激情性xxxx在线观看| 51国产日韩欧美| 99精品在免费线老司机午夜| 久久久久国产精品人妻aⅴ院| 久久欧美精品欧美久久欧美| 天堂动漫精品| 最近在线观看免费完整版| 精品久久久久久久久久免费视频| 白带黄色成豆腐渣| 日产精品乱码卡一卡2卡三| 天堂动漫精品| 国产亚洲av嫩草精品影院| 亚洲第一电影网av| 欧美不卡视频在线免费观看| 国产真实伦视频高清在线观看| 久久久久久大精品| 亚洲欧美中文字幕日韩二区| 亚洲第一电影网av| 亚洲国产精品合色在线| 久久国产乱子免费精品| av视频在线观看入口| 日本黄色片子视频| 国产精品野战在线观看| 国产精品一区二区性色av| 婷婷六月久久综合丁香| 一个人免费在线观看电影| 在线免费观看不下载黄p国产| 高清毛片免费看| 成年版毛片免费区| 少妇人妻一区二区三区视频| 美女xxoo啪啪120秒动态图| 男人的好看免费观看在线视频| 蜜桃亚洲精品一区二区三区| 日韩在线高清观看一区二区三区| 在线a可以看的网站| 在线观看av片永久免费下载| 国产一区亚洲一区在线观看| 久久午夜亚洲精品久久| 久久久a久久爽久久v久久| 欧美最新免费一区二区三区| 日本 av在线| 欧美日韩乱码在线| 久久精品国产亚洲网站| 亚洲欧美成人精品一区二区| 精品人妻偷拍中文字幕| 国产男人的电影天堂91| 美女内射精品一级片tv| 久久久久精品国产欧美久久久| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲欧美成人精品一区二区| 亚洲一区二区三区色噜噜| 亚洲18禁久久av| 99国产精品一区二区蜜桃av| 欧美3d第一页| 午夜视频国产福利| 午夜福利高清视频| 久久精品久久久久久噜噜老黄 | 日韩欧美国产在线观看| 色哟哟哟哟哟哟| 日韩欧美免费精品| 特大巨黑吊av在线直播| 中文亚洲av片在线观看爽| 有码 亚洲区| 少妇人妻精品综合一区二区 | 一卡2卡三卡四卡精品乱码亚洲| 国产高清三级在线| 一进一出抽搐gif免费好疼| 搡老妇女老女人老熟妇| 国产69精品久久久久777片| 一个人看的www免费观看视频| 国产高清视频在线观看网站| 久久精品夜色国产| 婷婷亚洲欧美| АⅤ资源中文在线天堂| 久久99热6这里只有精品| 国产精品亚洲一级av第二区| 国产一区二区亚洲精品在线观看| 最新在线观看一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 深夜精品福利| 99热全是精品| 白带黄色成豆腐渣| 久久精品国产自在天天线| 久久午夜福利片| 国内精品久久久久精免费| 91午夜精品亚洲一区二区三区| 丰满乱子伦码专区| 国产日本99.免费观看| 看免费成人av毛片| 成人国产麻豆网| 日韩成人伦理影院| 亚洲欧美精品自产自拍| 国产精品三级大全| 久久久久性生活片| 欧美激情久久久久久爽电影| 菩萨蛮人人尽说江南好唐韦庄 | 国产激情偷乱视频一区二区| 最好的美女福利视频网| 99国产精品一区二区蜜桃av| 老师上课跳d突然被开到最大视频| 午夜福利在线观看免费完整高清在 | 麻豆一二三区av精品| 最好的美女福利视频网| 夜夜爽天天搞| 啦啦啦观看免费观看视频高清| 亚洲精品一区av在线观看| 综合色丁香网| 麻豆国产av国片精品| 欧美性猛交╳xxx乱大交人| 熟女人妻精品中文字幕| 啦啦啦韩国在线观看视频| 日本五十路高清| 性插视频无遮挡在线免费观看| 亚洲国产精品久久男人天堂| 日本-黄色视频高清免费观看| 中国国产av一级| 久久久国产成人精品二区| 成人特级黄色片久久久久久久| 亚洲自偷自拍三级| 三级毛片av免费| 又黄又爽又免费观看的视频| 久久久久久伊人网av| 午夜爱爱视频在线播放| 欧美+日韩+精品| 久久人人爽人人爽人人片va| 国产69精品久久久久777片| 精品不卡国产一区二区三区| 欧美性猛交黑人性爽| 非洲黑人性xxxx精品又粗又长| 亚洲人成网站高清观看| 国产精品久久久久久亚洲av鲁大| 高清毛片免费观看视频网站| 国产亚洲精品综合一区在线观看| 一进一出好大好爽视频| 精品无人区乱码1区二区| 欧美不卡视频在线免费观看| 久久久久久久午夜电影| 欧美另类亚洲清纯唯美| 伦理电影大哥的女人| avwww免费| 精品人妻熟女av久视频| 国产黄片美女视频| 久久久久久久午夜电影| 亚洲美女搞黄在线观看 | 偷拍熟女少妇极品色| 亚洲图色成人| 日日啪夜夜撸| 六月丁香七月| 国产激情偷乱视频一区二区| 热99在线观看视频| 午夜激情欧美在线| 婷婷精品国产亚洲av| 亚洲无线在线观看| 国产综合懂色| 又粗又爽又猛毛片免费看| 校园人妻丝袜中文字幕| 免费黄网站久久成人精品| 网址你懂的国产日韩在线| 国产精品一及| 久99久视频精品免费| 欧美绝顶高潮抽搐喷水| 免费av毛片视频| 1024手机看黄色片| 久久亚洲国产成人精品v| 欧美日韩精品成人综合77777| 成人无遮挡网站| 国产色爽女视频免费观看| 亚洲成人精品中文字幕电影| 99国产精品一区二区蜜桃av| 别揉我奶头 嗯啊视频| 两个人的视频大全免费| 亚洲精品国产成人久久av| 人妻久久中文字幕网| 国产熟女欧美一区二区| 国产一区二区激情短视频| 色av中文字幕| 国产精品一区二区性色av| 精品免费久久久久久久清纯| 一本精品99久久精品77| av天堂在线播放| 18禁在线无遮挡免费观看视频 | 在线观看一区二区三区| 给我免费播放毛片高清在线观看| 久久久欧美国产精品| avwww免费| 久久久色成人| 成人高潮视频无遮挡免费网站| 国产成人91sexporn| 中文字幕精品亚洲无线码一区| 人妻制服诱惑在线中文字幕| av免费在线看不卡| 国产亚洲欧美98| 成人亚洲欧美一区二区av| 综合色av麻豆| 午夜精品国产一区二区电影 | 99热这里只有是精品在线观看| 国产高清不卡午夜福利| 一个人免费在线观看电影| 国产色婷婷99| 男女做爰动态图高潮gif福利片| 国产精品一区www在线观看| 国内精品一区二区在线观看| 丰满乱子伦码专区| 最近最新中文字幕大全电影3| 国产三级在线视频| 一本久久中文字幕| 国产在视频线在精品| 亚洲精品亚洲一区二区| 国产成人a∨麻豆精品| 人人妻人人看人人澡| 91麻豆精品激情在线观看国产| 国产日本99.免费观看| 中文亚洲av片在线观看爽| 中国国产av一级| 国产成人a区在线观看| 成人三级黄色视频| 久久国内精品自在自线图片| 搡老熟女国产l中国老女人| 久久婷婷人人爽人人干人人爱| 国产成人aa在线观看| 在线观看66精品国产| 我要搜黄色片| 亚洲丝袜综合中文字幕| 亚洲成人中文字幕在线播放| 亚洲四区av| 人人妻人人澡人人爽人人夜夜 | 国产三级中文精品| 观看美女的网站| 国产精华一区二区三区| 少妇的逼水好多| 精品久久久久久久久av| 男女那种视频在线观看| 亚洲av中文av极速乱| 国产亚洲精品久久久com| 国产精品一区二区三区四区免费观看 | 久久这里只有精品中国| 在线看三级毛片| 日本成人三级电影网站| 性插视频无遮挡在线免费观看| 亚洲欧美日韩高清在线视频| 免费av毛片视频| 国内久久婷婷六月综合欲色啪| 人人妻,人人澡人人爽秒播| 99久久无色码亚洲精品果冻| 亚洲在线自拍视频| 国产一区二区在线观看日韩| 性欧美人与动物交配| 蜜臀久久99精品久久宅男| 精品人妻熟女av久视频| 国产精品一区二区性色av| 午夜免费激情av| 成年版毛片免费区| 久久6这里有精品| 国产亚洲精品av在线| 丰满人妻一区二区三区视频av| 精品无人区乱码1区二区| 国产毛片a区久久久久| 亚洲18禁久久av| 久久久久精品国产欧美久久久| 美女免费视频网站| 别揉我奶头~嗯~啊~动态视频| 插逼视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 小蜜桃在线观看免费完整版高清| 高清日韩中文字幕在线| 别揉我奶头 嗯啊视频| 亚洲乱码一区二区免费版| 精品乱码久久久久久99久播| 97超级碰碰碰精品色视频在线观看| 久久鲁丝午夜福利片| 免费高清视频大片| 成年女人毛片免费观看观看9| 看非洲黑人一级黄片| 性插视频无遮挡在线免费观看| 中文字幕久久专区| 日韩中字成人| 能在线免费观看的黄片| 精品福利观看| 我要看日韩黄色一级片| 观看免费一级毛片| 日本色播在线视频| 别揉我奶头~嗯~啊~动态视频| 日韩国内少妇激情av| 久久久久久久久久黄片| 午夜激情福利司机影院| 波野结衣二区三区在线| 亚洲无线在线观看| 欧美高清性xxxxhd video| 老熟妇仑乱视频hdxx| 狠狠狠狠99中文字幕| 丝袜喷水一区| 午夜影院日韩av| 禁无遮挡网站| 两性午夜刺激爽爽歪歪视频在线观看| 色吧在线观看| 免费黄网站久久成人精品| 午夜福利18| 久久久国产成人精品二区| 最好的美女福利视频网| 在线免费观看不下载黄p国产| 天天躁夜夜躁狠狠久久av| 亚洲欧美日韩高清专用| 国产精品一区二区性色av| 亚洲精品久久国产高清桃花| 全区人妻精品视频| 一级毛片我不卡| 亚洲成人av在线免费| 一边摸一边抽搐一进一小说| av.在线天堂| 国产淫片久久久久久久久| 亚洲激情五月婷婷啪啪| 非洲黑人性xxxx精品又粗又长| 日产精品乱码卡一卡2卡三| 国产精品伦人一区二区| 亚洲真实伦在线观看| 老司机影院成人| 午夜福利在线观看免费完整高清在 | 久久精品国产亚洲网站| 两个人的视频大全免费| 性插视频无遮挡在线免费观看| 日韩一区二区视频免费看| 国产精品人妻久久久影院| 日本在线视频免费播放| 一区二区三区高清视频在线| 淫秽高清视频在线观看| 国产亚洲精品综合一区在线观看| 亚洲18禁久久av| 男女那种视频在线观看| 亚洲国产欧洲综合997久久,| 免费人成在线观看视频色| 国产精品三级大全| 日本一本二区三区精品| 亚洲精品一区av在线观看| 麻豆精品久久久久久蜜桃| 91午夜精品亚洲一区二区三区| 三级毛片av免费| 欧美一区二区精品小视频在线| 久久天躁狠狠躁夜夜2o2o| 99视频精品全部免费 在线| 禁无遮挡网站| 变态另类成人亚洲欧美熟女| 日本a在线网址| 日韩在线高清观看一区二区三区| 床上黄色一级片| a级一级毛片免费在线观看| 色综合站精品国产| 国内精品久久久久精免费| 少妇人妻一区二区三区视频| 韩国av在线不卡| 久久久久久九九精品二区国产| 国产成人影院久久av| 精品一区二区三区人妻视频| 美女cb高潮喷水在线观看| 亚洲电影在线观看av| 久久国内精品自在自线图片| 国产精品综合久久久久久久免费| 国产黄色视频一区二区在线观看 | 亚洲av电影不卡..在线观看| 精品久久久久久久久亚洲| 国产91av在线免费观看| avwww免费| 精品久久久久久成人av| 国产蜜桃级精品一区二区三区| 亚洲精品乱码久久久v下载方式| eeuss影院久久| 亚洲美女搞黄在线观看 | 少妇人妻精品综合一区二区 | 精品久久久噜噜| 久久久久久久久久黄片| 男女那种视频在线观看| 久久精品国产清高在天天线| 亚洲精品乱码久久久v下载方式| 美女大奶头视频| 久久草成人影院| 日本与韩国留学比较| 秋霞在线观看毛片| 亚洲激情五月婷婷啪啪| 麻豆精品久久久久久蜜桃| 日日啪夜夜撸| 中文字幕精品亚洲无线码一区| 日韩av不卡免费在线播放| 亚洲中文字幕日韩| 午夜老司机福利剧场| h日本视频在线播放| 91久久精品国产一区二区成人| 欧美+日韩+精品| 日本a在线网址| 人妻制服诱惑在线中文字幕| 日本免费a在线| 又黄又爽又免费观看的视频| 欧美成人一区二区免费高清观看| 欧美三级亚洲精品| 三级毛片av免费| 村上凉子中文字幕在线| 蜜桃亚洲精品一区二区三区| 国产精品一及| 亚洲av中文字字幕乱码综合| 国产一区二区三区在线臀色熟女| 搡老熟女国产l中国老女人| 六月丁香七月| 不卡一级毛片| 精品人妻熟女av久视频| 99国产极品粉嫩在线观看| 欧美中文日本在线观看视频| 亚洲欧美日韩无卡精品| 在线看三级毛片| 久久亚洲精品不卡| 男女那种视频在线观看| 国产一区二区激情短视频| 在线国产一区二区在线| 嫩草影院新地址| 三级经典国产精品| 午夜免费激情av| 日韩一本色道免费dvd| 成人鲁丝片一二三区免费| 久久婷婷人人爽人人干人人爱| 色尼玛亚洲综合影院| 国产国拍精品亚洲av在线观看| 97超碰精品成人国产| 女人十人毛片免费观看3o分钟| 亚洲中文字幕日韩| 国产中年淑女户外野战色| 美女大奶头视频| 久久精品国产亚洲av天美| 深夜精品福利| 亚洲人成网站在线观看播放| 在线观看美女被高潮喷水网站| 91狼人影院| 日韩av在线大香蕉| 国产精品亚洲一级av第二区| 亚洲精品国产av成人精品 | 亚洲婷婷狠狠爱综合网| 九九在线视频观看精品|