• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Geometry of time-dependent PT-symmetric quantum mechanics?

    2021-10-28 07:02:06DaJianZhang張大劍QinghaiWang王清海andJiangbinGong龔江濱
    Chinese Physics B 2021年10期
    關(guān)鍵詞:江濱張大

    Da-Jian Zhang(張大劍) Qing-hai Wang(王清海) and Jiangbin Gong(龔江濱)

    1Department of Physics,Shandong University,Jinan 250100,China

    2 Department of Physics,National University of Singapore,117551,Singapore

    Keywords: time-dependent PT-symmetric quantum mechanics, geometry, time-varying inner product, unconventional geometric phase

    1. Introduction

    Standard quantum mechanics is built upon a fixed Hilbert space,with the associated inner product of two complex vectors being defined by the Dirac bra-ket notation. However,such a quantum theory may not consistently treat physical problems with time-varying Hilbert spaces. For example, it is not obvious how to depict the dynamics of a particle in an infinitely deep square-well potential with a moving boundary,of which the instantaneous Hilbert space changes with time.It is thus necessary and motivating to formulate new types of quantum theories that allow the inner product to change along a parameter path.

    Inspired by the pioneering work of Bender and Boettcher concerning time-independent parity-time-reversal-symmetric(PT-symmetric)quantum mechanics(PTQM),[1]Gong and Wang proposed a Schr¨odinger-like equation capable of explicitly accounting for a time-varying inner product.[2]Such a proposal was further enriched and developed into a conceptual framework applicable to generic non-Hermitian systems,[3]in which a series of notions like the time-dependent Hilbert space,the observable,and the measurement postulate are formulated. These results lead to a consistent quantum theory extending the time-independentPTQM into the time-dependent domain,referred to as time-dependentPTQM hereafter.

    The advent of time-dependentPTQM has spurred a renewed interest in the fundamentals of quantum mechanics.[4–10]In particular, how to construct the timevarying inner product was demonstrated in Refs.[5,6]and how to define the energy observable for a time-dependent Hilbert space was discussed in Refs.[3,9]. Further developments are witnessed by the reexaminations of some interesting issues in statistics mechanics,[11–15]such as the Jarzynski equality[11,13]and the Crooks fluctuation theorem.[3,12]

    In this work,we explore the geometrical aspects of timedependentPTQM, which is a fascinating topic for the following reasons. First,given the fact that a time-varying inner product is always excluded in standard quantum mechanics,its nontrivial interplay with other concepts in quantum physics,e.g., the Berry phase,[16]is still not well understood in a unified fashion. Second,even in the absence of a time-varying inner product, geometric aspects of standard quantum mechanics are known to be of profound importance in various frontier topics of quantum information science and condensed-matter physics. One thus anticipates that physics arising from a timevarying inner product shall advance our fundamental understanding of the profound role of geometry in time-dependentPTQM. Last but not least, there have been ongoing investigations of physical properties, especially topological properties,ofPT-symmetric systems recently.[17–38]In view of this,a systematic inspection of the geometry of time-dependentPTQM would be a useful, perhaps indispensible, reference point to tackle physical problems involving time-varying system’s parameters.

    The purpose of this work is to present comprehensive and rigorous results regarding the geometry of time-dependentPTQM. To this end, we start with the identification of a geometric phase(GP)that emerges naturally from a cyclic evolution of aPT-symmetric system. Then,with the motivation of revealing the geometry underlying the GP,we formulate,in succession,a series of related differential-geometry concepts,including connection,curvature,parallel transport,metric tensor, and quantum geometric tensor. Of particular interest is the metric tensor advocated here, which may be Riemannian or pseudo-Riemannian,depending on the physical context under consideration. Its pseudo-Riemannian feature is absent in standard quantum mechanics. As detailed below,the findings of this work are applicable to a rather general physical context and include the results of Refs.[4,10]as special cases.

    To exemplify the application of our findings, we revisit one well-known example displaying the so-called unconventional GP,[39]which is the sum of a GP and a dynamical phase(DP)proportional to the GP,and as such,may not be well understood within the geometric theory in standard quantum mechanics. Here,we show that the unconventional GP,instead of being the sum of a GP and a DP, can be expressed as a single GP found in this paper, with the associated metric tensor categorized as a pseudo-Riemannian metric. This provides an interesting interpretation of the geometric nature of the unconventional GP.

    This paper is organized as follows. In Section 2, we recapitulate some fundamentals ofPTQM. In Section 3, we identify the GP. In Section 4, we formulate a series of differential geometry concepts, including connection, curvature,parallel transport, metric tensor, and quantum geometric tensor.Section 5 presents our interpretation of the unconventional GP.Section 6 provides a general formula for GP which unifies several real and gauge-invariant GPs in the literature,and Section 7 concludes this work.

    2. Fundamentals of PT QM

    To present our findings clearly,we recapitulate some notions in time-dependentPTQM,[2,3]such as the metric operator, the physical Hilbert space, the physical observable, the Schr¨odinger-like equation,and the density operator.

    A positive-definite operatorWis said to be the metric operator for aPT-symmetric systemSwith unbrokenPTsymmetry if it satisfies

    whereHdenotes the Hamiltonian of the systemS. Usually,Hdepends on some system’s parametersλ:=(λ1,...,λm),which belong to a parameter manifoldM[m=dim(M)]representing the classical configuration of control fields. In the following,we denote the metric operator and the Hamiltonian byW(λ)andH(λ),respectively,in order to indicate their dependence on the parametersλ.

    The physical Hilbert space ofS,denoted as?(λ),is defined to be the Hilbert space endowed with the following inner product:

    which is dependent onλ. It is worth noting that two states|ψ〉∈?(λ)and|φ〉∈?(λ′)are not comparable whenλ/=λ′,as they belong to two different physical Hilbert spaces.

    An operatorOis said to be a physical observable ofSif it is a Hermitian operator under the new inner product in Eq.(2),

    or equivalently,

    Apparently,H(λ)is a physical observable. It has been argued thatH(λ)can be regarded as the energy observable ofS.[3,9]

    An evolution ofSis associated with a parameter pathλt ∈Mover a time interval[0,τ]. For this,the physical Hilbert space moves with time,and the evolving state|ψ(t)〉at timetbelongs to?(λt).The Schr¨odinger-like equation guaranteeing the unitarity of the evolution is found to be(ˉh=1)[2]

    For a state|ψ〉∈N(λ), the associated density operatorρis defined to be[3,10]

    It is easy to see thatρis a positive operator with respect to the inner product (2) and satisfies tr(ρ)=1 andρ2=ρ; that is,it fulfills the conditions of being a density operator for a pure state. Similar to the two states|ψ〉∈N(λ)and|φ〉∈N(λ′),their associated density operatorsρ=|ψ〉〈ψ|W(λ) andσ=|φ〉〈φ|W(λ′)can be regarded as identical if and only ifλ=λ′and|ψ〉= ei?|φ〉for some? ∈R.

    3. Geometric phase

    Let us consider the situation that the evolving state|ψ(t)〉ofSreturns to its initial physical state,|ψ(τ)〉= eiα|ψ(0)〉,and moreover, the system’s parameters return to their initial values,λτ=λ0. This defines a curve of density operators

    Equation(14)indicates that the phaseβdepends explicitly on the Hamiltonian and thus represents a DP.On the contrary,the phaseγ,as a factor obtained by removing the DP from the total phase, depends solely upon the closed curveCin Eq. (9),as will be proved shortly. Therefore,γis our GP.It is interesting to note that DP and GP for non-Hermitian systems were usually defined to be complex in the previous works(see,e.g.,Refs.[40,41]). By contrast,both the DP and GP defined here are real phase factors. Indeed, sinceH(t) is a physical observable satisfying Eq. (3), the term?φa(t),H(t)φa(t)?λtappearing in Eq. (14) is real, which leads to the fact thatβis real. The fact thatγis real follows immediately from the operation of taking the imaginary part of a complex number in Eq.(15).

    To prove thatγis uniquely determined byC,we resort to the following gauge-invariant formula ofγ:

    Here,the term e∫t0dsRe?φb(s),˙φb(s)?λshas been neglected,since it is a real and positive number and thus makes no contribution.Equation(22)clearly shows thatγis uniquely determined byC.

    It is worth noting that the result just presented includes the results of Refs.[4,10]as special cases. Indeed,the GP obtained in Refs.[4,10]is for the eigenstate ofH(λ),and therefore,is a counterpart of Berry’s phase.[16]In contrast,the GPγobtained here is for a generic cyclic state which may or may not be the eigenstate ofH(λ). In this sence,γis a counterpart of Aharonov–Anandan’s phase.[42]Moreover,it has been shown[3]that the dynamics of a generic non-Hermitian system can be described by the Schr¨odinger-like equation (5)with Eq. (6). This implies that the GP found here is applicable to a much more general physical context compared with Refs.[4,10].

    4. Differential geometry concepts

    There is a one–one correspondence between rays inR(λ)and density operators over?(λ). Indeed, given a ray [|ψ〉]inR(λ), one can assign to it a unique density operatorρover?(λ), which isρ=|ψ〉〈ψ|/?ψ,ψ ?λ. Conversely,given a density operatorρover?(λ), one can express it asρ=|ψ〉〈ψ| for some|ψ〉∈N(λ). Then, the unique ray associated toρis[|ψ〉]. Under the effect of this one–one correspondence,a curve inRcan be simply understood as a curve of density operators. Now,it becomes clear thatCin Eq.(9)is actually a curve in the space of raysR.

    A coordinate system can be established by considering a local patch onRand the region ofP(R,U(1)) over the patch. Let (λ1,...,λm,λm+1,...,λm+n) be the local coordinates of a point ofRon the patch. Here,λμ,μ=1,...,m,are the system’s parameters as before, used to specify which subset,R(λ), the point belongs to. The remainderλμ,μ=m+1,...,m+n, are used to represent local coordinates parameterizing the manifoldR(λ) [n= dim(R(λ))]. Then,the local coordinates of a point ofP(R,U(1)) can be expressed as (θ,λ1,...,λm,λm+1,...,λm+n), whereθ ∈R is defined up to an integer multiple of 2π.[43]Using these local coordinates, we can express density operators and states in a coordinate-dependent form. Since a density operatorρis a point ofR, it can be represented asρ=ρ(λ1,...,λm+n).Likewise,a state|φ〉,as a point ofP(R,U(1)),can be written as|φ〉=|φ(θ,λ1,...,λm+n)〉.

    With these notions, we may now start to formulate differential geometry concepts, including connection, curvature,parallel transport, metric tensor, and quantum geometric tensor.

    4.1. Connection

    Equation(23)implies that the horizontal part satisfies

    4.2. Curvature

    4.3. Parallel transport

    A choice of connection is equivalent to a notion of parallel transport. By definition,a curve|φ(t)〉is said to be parallel transported along a curve in the base manifold if the vertical part of its tangent vector,i.e.,|˙φv(t)〉,vanishes. Using Eq.(23)and noting the relation|˙φ(t)〉=|˙φv(t)〉+|˙φh(t)〉,we have

    Therefore,|˙φv(t)〉vanishes if and only if

    representing the parallel transport condition associated with the connectionA. Equation (37) is a counterpart of the Berry–Simon parallel transport condition.[44]It depicts a parallel way of transporting|φ(t)〉along a curve inR. Evidently,|φb(t)〉fulfills Eq. (37) and hence is parallel transported. This transport is along the closed curveCin Eq. (9),since|φb(t)〉〈φb(t)|=ρ(t). Starting at an initial point|φb(0)〉,the transport will end at a different point|φb(τ)〉= eiγ|φb(0)〉,as can be easily verified by using Eq. (18). The difference,known as holonomy,is precisely our GPγ.

    4.4. Metric tensor

    To obtain a metric tensor, we resort to the formula for the fidelity between two nearby density operatorsρ(λ1,...,λm+n) andρ(λ1+δλ1,...,λm+n+δλm+n).[10]It reads

    4.5. Quantum geometric tensor

    This point can be easily verified by comparing Eq. (42) with Eq.(43).

    From Eqs.(45)and(46), it follows immediately that the quantum geometric tensor (43) depicts a unified picture: Its imaginary part gives the Berry curvature(35)and thus further determines the GP(31),whereas its real part induces the metric tensor(42)and thereby further determines the fidelity(39).

    5. On the unconventional geometric phase

    So far,we have presented our main findings,consisting of a GP and a series of differential geometry concepts, namely,connection, curvature, parallel transport, metric tensor, and quantum geometric tensor.To exemplify the application of our findings,we revisit one well-known example that yields an interesting GP,called the unconventional GP in the literature.[39]

    The physical model studied in Ref.[39]is a harmonic oscillator. Its Hamiltonian reads

    and|z〉denotes a coherent state. At the timet=τ:=2π/δ,the evolving state|?(t)〉returns to its initial physical state,i.e.,|?(τ)〉= eiγ(τ)|0〉, and it acquires a total phaseγ(τ). A remarkable observation made in Ref. [39] is thatγ(τ) has a nonzero DP component but is still of geometric nature, i.e.,it is an unconventional GP. In showing this, the DP and GP components ofγ(τ), denoted respectively byγdandγg, were calculated, and found to satisfyγd=ηγg(η/=0,?1). So,γ(τ)=(1+η)γg, indicating thatγ(τ) is of geometric nature as it inherits geometric features fromγg. Despite this interesting observation, it remains an open question whether the unconventional GP itself admits a geometric interpretation or not.

    Physically speaking,thePT-symmetric system and its equivalent Hermitian system may be considered two different interpretations of the dynamics of a same physical system.

    Suppose now thatz1(t) = iΩD(e?iδt ?1)eiφL/δ, i.e.,z1(t)=z(t). For this, Eq. (52) reduces to Eq. (47). Hence,the evolution of the Hermitian system is simply the evolution process studied in Ref. [39]. As another interpretation of the dynamics of the same physical system, thePT-symmetric system undergos the corresponding evolution|ψ(t)〉= e?2z1(t)a?|?(t)〉. Sincez1(τ)=z1(0)=0 and|?(τ)〉= eiγ(τ)|?(0)〉,this evolution is cyclic,and the evolving state|ψ(t)〉of thePT-symmetric system acquires the same total phaseγ(τ) as that of the Hermitian system. Note that for thePT-symmetric system, the total phase accumulated in any cyclic evolution is simply the GPγin Eq.(15),due to the vanishing of its Hamiltonian. Hence,γ(τ)=γ,i.e.,the unconventional GP is precisely the GP expressed by Eq.(15).

    To shed more light on the unconventional GP, we calculate the quantum geometric tensor in Eq. (43), with which,we further obtain the curvatureΩand the metric ds2. To do this, we find the evolution operator of thePT-symmetric system. Using magnus expansion[47]and noting that the commutator ofK(t) at different time is a number, we have that the evolution operator reads e?2z1(t)a?D(z1(t)), up to a global phase factor,whereD(z1):= ez1a??z1?ais the displacement operator. So, starting at an arbitrary coherent state|“some complex number”〉, the evolving state|ψ(t)〉reads|ψ(t)〉= e?2z1(t)a?|z1(t)+“some complex number”〉, up to a phase factor. So,the evolving state is of the form e?2z1a?|z2〉,wherez2=z1(t)+“some complex number”. Substituting e?2z1a?|z2〉into Eq.(43),i.e.,setting|φ〉and|φ〉appearing in Eq.(43)as|φ〉= e?2z1a?|z2〉and|φ〉= e2z1?a|z2〉,we obtain,after tedious but straightforward calculations,

    That is,

    For the evolution process studied in Ref.[39],in which the initial state is|0〉,we havez1(t)=z2(t),leading to the constraintsλ1=λ3andλ2=λ4. Substitutingλ1=λ3andλ2=λ4into Eq.(55), we haveΩ=?2dλ1∧dλ2. From Eq. (45), it follows that

    6. A general geometric phase

    It may be an interesting topic for future work to generalize the GP found here to a more general setting,[48]like the non-cyclic case considered in Ref. [49]. This is a non-trivial problem, as the Hilbert space?(t) changes with timetin general.[3]To shed some light on the problem,we provide one possible way to achieve the generalization,

    where|ψ(t)〉is an (unnormalized) state in?(t) andW(t) is the(time-dependent)metric operator associated with?(t).[3]Mathematically, the GP is defined as a functional of a state and the metric operator,γ=γ[ψ(t),W(t)]. It is easy to see thatγdefined in Eq. (59) is gauge-invariant and reduces to the GP given by Eq. (15) in cyclic cases. With the choice of Dirac inner-product, i.e.,W(t)=1, Eq. (59) reproduces AA phase for the cyclic states in Ref.[48]and non-cyclic states in Ref. [50]. Thus, the GP defined in Eq. (59) unifies real and gauge-invariant geometric phases in non-Hermitian systems.

    7. Conclusion

    We have presented a series of results on the geometry of time-dependentPTQM.Specifically,they are the GP(15),the connection(28),the curvature(35),the parallel transport condition(37),the metric tensor(42),and the quantum geometric tensor(43). The GP emerges naturally from cyclic evolutions ofPT-symmetric systems,and it may be regarded as a counterpart of Aharonov–Anandan’s phase. The connection and curvature are responsible for the appearance of the GP,as expressed by Eqs.(30)and(31). The quantum geometric tensor is a unifying concept, of which the imaginary part gives the curvature and the real part induces the metric tensor, as described by Eqs.(45)and(46),respectively.

    These results constitute a useful, perhaps indispensible,tool to tackle geometric problems involvingPT-symmetric systems with time-varying system’s parameters. As an illustration of their usefulness, we have solved the open question whether the unconventional GP admits a geometric interpretation or not. Specifically,we have shown that the unconventional GP,instead of being the sum of a DP and a GP,can be expressed as the single GP in Eq. (15), thus making its geometric nature undoubtedly clear.

    Of particular interest is the finding that the metric tensor(42)may be pseudo-Riemannian,which is elusive in standard quantum mechanics. This leads to the intriguing fact that there can exist three types of evolutions for aPT-symmetric system, i.e., spacelike, lightlike, and timelike evolutions, as shown in the example involving the unconventional GP. Further studies on the implications/applications of the pseudo-Riemannian feature are highly desirable.

    猜你喜歡
    江濱張大
    Shape coexistence in 76Se within the neutron-proton interacting boson model
    休妻用狠招
    百家講壇(2020年8期)2020-09-26 10:38:54
    吃蝦記
    張大林美術(shù)作品欣賞
    九旬老太越活越精彩
    新天地(2018年12期)2018-12-24 09:53:16
    張大春讓健康從業(yè)者偉大起來(lái)
    張大勤
    意林(2016年22期)2016-11-30 19:06:08
    心為濟(jì)世挽沉疴——訪廣西江濱醫(yī)院中醫(yī)皮膚科副主任醫(yī)師唐偉東
    金色年華(2016年13期)2016-02-28 01:43:05
    暗戀桃花源
    家長(zhǎng)會(huì)
    亚洲av.av天堂| 在线免费观看不下载黄p国产| 18禁动态无遮挡网站| 国产精品人妻久久久影院| 日韩欧美精品免费久久| 欧美高清性xxxxhd video| av在线观看视频网站免费| 嫩草影院入口| 精品久久久久久电影网 | 欧美三级亚洲精品| 爱豆传媒免费全集在线观看| 精品国产一区二区三区久久久樱花 | 国产爱豆传媒在线观看| 久久精品影院6| 日本与韩国留学比较| 国产乱人偷精品视频| 在线免费十八禁| www日本黄色视频网| 欧美性猛交╳xxx乱大交人| 国产又色又爽无遮挡免| 国产成年人精品一区二区| 少妇高潮的动态图| 一级爰片在线观看| 乱系列少妇在线播放| 欧美一区二区亚洲| 国产探花极品一区二区| 国产欧美日韩精品一区二区| 国产高清国产精品国产三级 | av卡一久久| 日韩,欧美,国产一区二区三区 | 国产亚洲91精品色在线| 国产精品国产三级国产专区5o | 久久精品91蜜桃| 国产成人免费观看mmmm| 国产亚洲午夜精品一区二区久久 | 大香蕉97超碰在线| 国产精品国产高清国产av| 极品教师在线视频| 国产成人aa在线观看| 欧美日韩精品成人综合77777| 天堂影院成人在线观看| 美女内射精品一级片tv| 亚洲成av人片在线播放无| 麻豆国产97在线/欧美| 成年女人看的毛片在线观看| 2021少妇久久久久久久久久久| 日韩欧美 国产精品| 天堂影院成人在线观看| 偷拍熟女少妇极品色| 又爽又黄无遮挡网站| 最近中文字幕高清免费大全6| 国产成人91sexporn| av国产免费在线观看| 麻豆久久精品国产亚洲av| 国产三级中文精品| 久久99热这里只频精品6学生 | 99热6这里只有精品| 国产男人的电影天堂91| 看黄色毛片网站| 18禁在线无遮挡免费观看视频| 我的老师免费观看完整版| av在线老鸭窝| 大香蕉97超碰在线| 午夜福利在线观看吧| 长腿黑丝高跟| 美女国产视频在线观看| 亚洲一级一片aⅴ在线观看| 真实男女啪啪啪动态图| 免费观看的影片在线观看| 日产精品乱码卡一卡2卡三| 亚洲一级一片aⅴ在线观看| 国产午夜精品久久久久久一区二区三区| 国产成人午夜福利电影在线观看| 18+在线观看网站| 天天一区二区日本电影三级| 亚洲人成网站高清观看| 干丝袜人妻中文字幕| 综合色丁香网| 亚洲av成人av| 亚洲三级黄色毛片| 联通29元200g的流量卡| 汤姆久久久久久久影院中文字幕 | av在线观看视频网站免费| 三级国产精品欧美在线观看| 美女被艹到高潮喷水动态| 国产片特级美女逼逼视频| 噜噜噜噜噜久久久久久91| 国产精品综合久久久久久久免费| 91狼人影院| 国产在视频线在精品| 久久99热这里只频精品6学生 | 在线播放无遮挡| 国产精品久久久久久久久免| 成人无遮挡网站| 亚洲av成人av| 欧美高清成人免费视频www| 特大巨黑吊av在线直播| 小说图片视频综合网站| 日本一二三区视频观看| 国产精品久久久久久av不卡| 亚洲婷婷狠狠爱综合网| 国产成人精品婷婷| 麻豆乱淫一区二区| 3wmmmm亚洲av在线观看| 九九在线视频观看精品| 国内精品美女久久久久久| 级片在线观看| 亚洲精品乱久久久久久| 九九在线视频观看精品| 可以在线观看毛片的网站| 欧美性感艳星| 日韩欧美三级三区| 能在线免费看毛片的网站| 欧美最新免费一区二区三区| 青春草视频在线免费观看| 99热6这里只有精品| 3wmmmm亚洲av在线观看| 国产又黄又爽又无遮挡在线| 欧美一区二区亚洲| 亚洲成人av在线免费| 日韩欧美国产在线观看| av卡一久久| av黄色大香蕉| 亚洲国产高清在线一区二区三| 校园人妻丝袜中文字幕| 国产精品野战在线观看| 在线a可以看的网站| 两个人视频免费观看高清| 久久久久久久久久成人| 欧美一区二区国产精品久久精品| 中文字幕av在线有码专区| 久久亚洲国产成人精品v| 日本一二三区视频观看| 亚洲欧美一区二区三区国产| 欧美日韩精品成人综合77777| 午夜福利视频1000在线观看| 国产av在哪里看| videossex国产| 爱豆传媒免费全集在线观看| 国产成人精品久久久久久| 中文精品一卡2卡3卡4更新| 高清午夜精品一区二区三区| 亚洲精华国产精华液的使用体验| 91精品伊人久久大香线蕉| 国产av在哪里看| 国内少妇人妻偷人精品xxx网站| 日韩亚洲欧美综合| 欧美精品国产亚洲| 国产精品无大码| 国国产精品蜜臀av免费| 天美传媒精品一区二区| 国产亚洲一区二区精品| 欧美变态另类bdsm刘玥| 好男人在线观看高清免费视频| 久久精品夜夜夜夜夜久久蜜豆| 91狼人影院| 晚上一个人看的免费电影| or卡值多少钱| 波多野结衣高清无吗| 午夜福利网站1000一区二区三区| 精品久久久久久久人妻蜜臀av| 国产精品女同一区二区软件| 高清在线视频一区二区三区 | 亚洲欧美清纯卡通| 99热这里只有是精品在线观看| 久久99热这里只频精品6学生 | 成人漫画全彩无遮挡| 国产欧美另类精品又又久久亚洲欧美| 两性午夜刺激爽爽歪歪视频在线观看| 真实男女啪啪啪动态图| 亚洲精品久久久久久婷婷小说 | 中国国产av一级| 少妇人妻一区二区三区视频| 亚洲最大成人中文| 亚洲欧美清纯卡通| 欧美最新免费一区二区三区| 日韩一区二区三区影片| 99久久精品一区二区三区| 一个人看视频在线观看www免费| 婷婷色麻豆天堂久久 | 男人舔奶头视频| 久久久国产成人免费| 一边摸一边抽搐一进一小说| 人妻夜夜爽99麻豆av| .国产精品久久| 色5月婷婷丁香| 国产免费一级a男人的天堂| 男人舔奶头视频| 国产伦精品一区二区三区视频9| 一级毛片久久久久久久久女| 日日摸夜夜添夜夜爱| 卡戴珊不雅视频在线播放| 毛片一级片免费看久久久久| 国产黄色视频一区二区在线观看 | 女人久久www免费人成看片 | 插阴视频在线观看视频| 国产精品一区www在线观看| 久久久久久久久久久丰满| 国产在线男女| 国产精品久久久久久久电影| av在线观看视频网站免费| 免费看a级黄色片| 男女边吃奶边做爰视频| 禁无遮挡网站| 色尼玛亚洲综合影院| 内射极品少妇av片p| 亚洲av二区三区四区| 亚洲自拍偷在线| 精品久久久久久久久亚洲| 日本wwww免费看| 久久99热这里只频精品6学生 | 青春草视频在线免费观看| 高清午夜精品一区二区三区| 亚洲av成人精品一二三区| 好男人视频免费观看在线| 日本黄色片子视频| 人人妻人人看人人澡| 欧美精品一区二区大全| 亚洲国产欧洲综合997久久,| 久久久久九九精品影院| 亚洲国产精品久久男人天堂| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲真实伦在线观看| 国产成年人精品一区二区| 禁无遮挡网站| 老女人水多毛片| 精品不卡国产一区二区三区| 欧美bdsm另类| 免费观看性生交大片5| 国产精品一二三区在线看| 99久久成人亚洲精品观看| 亚洲人成网站在线观看播放| 日本免费一区二区三区高清不卡| 美女国产视频在线观看| 18禁在线无遮挡免费观看视频| 欧美3d第一页| 久久久久免费精品人妻一区二区| 国产一级毛片七仙女欲春2| 热99在线观看视频| 91久久精品国产一区二区成人| 午夜精品在线福利| 国产日韩欧美在线精品| 亚洲经典国产精华液单| 久久这里只有精品中国| 91精品伊人久久大香线蕉| 三级国产精品片| 亚洲成av人片在线播放无| 国产av码专区亚洲av| 97人妻精品一区二区三区麻豆| 九色成人免费人妻av| 亚洲五月天丁香| 99久久成人亚洲精品观看| 成人亚洲欧美一区二区av| 亚洲美女视频黄频| av视频在线观看入口| 亚洲一区高清亚洲精品| 午夜精品一区二区三区免费看| 国内精品一区二区在线观看| 日本色播在线视频| 中文字幕av成人在线电影| 少妇丰满av| 午夜亚洲福利在线播放| 又爽又黄无遮挡网站| 小说图片视频综合网站| 2021天堂中文幕一二区在线观| 少妇的逼好多水| 国产亚洲精品久久久com| 国产精品久久久久久久久免| 日本熟妇午夜| 中文天堂在线官网| 成人特级av手机在线观看| 国产人妻一区二区三区在| 成人午夜精彩视频在线观看| 亚洲第一区二区三区不卡| 国产成年人精品一区二区| 久久国内精品自在自线图片| 国产一区有黄有色的免费视频 | 欧美极品一区二区三区四区| 三级经典国产精品| 亚洲欧洲国产日韩| 春色校园在线视频观看| 在线播放国产精品三级| 欧美日韩综合久久久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久久性生活片| 免费观看精品视频网站| 久久精品人妻少妇| 中国国产av一级| 久久久国产成人精品二区| 色5月婷婷丁香| 日韩中字成人| 欧美一区二区国产精品久久精品| 久久精品国产亚洲网站| 中国美白少妇内射xxxbb| 九九在线视频观看精品| 亚洲18禁久久av| 精品人妻熟女av久视频| 中国美白少妇内射xxxbb| 中文欧美无线码| 欧美性感艳星| 中文字幕亚洲精品专区| 免费无遮挡裸体视频| 日日撸夜夜添| 亚洲国产精品成人久久小说| 精品国内亚洲2022精品成人| 波多野结衣高清无吗| 日本av手机在线免费观看| 久久精品国产亚洲av天美| 国产老妇女一区| 变态另类丝袜制服| 欧美zozozo另类| 丝袜喷水一区| 欧美一区二区精品小视频在线| 成人特级av手机在线观看| 色视频www国产| 欧美不卡视频在线免费观看| 日韩中字成人| 一边摸一边抽搐一进一小说| 成人综合一区亚洲| 久久欧美精品欧美久久欧美| 日本免费a在线| 精品99又大又爽又粗少妇毛片| 亚洲经典国产精华液单| 在线免费观看的www视频| 亚洲欧美中文字幕日韩二区| 国产成人一区二区在线| 成人毛片60女人毛片免费| 色综合站精品国产| 嘟嘟电影网在线观看| 国产毛片a区久久久久| 两性午夜刺激爽爽歪歪视频在线观看| 91av网一区二区| 好男人视频免费观看在线| 日韩强制内射视频| 边亲边吃奶的免费视频| 国产精品久久久久久精品电影| 18禁在线无遮挡免费观看视频| 老女人水多毛片| 国产成人精品久久久久久| 国产精品人妻久久久影院| 国产乱来视频区| 大香蕉久久网| 久久人人爽人人爽人人片va| 久久精品国产亚洲网站| 91狼人影院| 久久这里只有精品中国| 久久久久网色| 国产精品野战在线观看| 亚洲精品日韩av片在线观看| 亚洲高清免费不卡视频| 国产亚洲av片在线观看秒播厂 | 天堂影院成人在线观看| 边亲边吃奶的免费视频| 最近中文字幕高清免费大全6| 亚洲天堂国产精品一区在线| 欧美一区二区精品小视频在线| 亚洲av一区综合| 欧美高清性xxxxhd video| 欧美精品一区二区大全| 免费观看性生交大片5| 亚洲国产精品国产精品| 欧美一区二区精品小视频在线| 亚洲av一区综合| 日本一本二区三区精品| 国产一区二区三区av在线| 亚洲欧美日韩卡通动漫| 国产淫语在线视频| 亚洲乱码一区二区免费版| 性插视频无遮挡在线免费观看| 欧美潮喷喷水| 亚洲欧洲国产日韩| 久久久国产成人免费| 欧美激情久久久久久爽电影| 国产成年人精品一区二区| 热99re8久久精品国产| 九草在线视频观看| 国产精品日韩av在线免费观看| 亚洲av电影不卡..在线观看| 国产毛片a区久久久久| 男女边吃奶边做爰视频| 亚洲精品456在线播放app| 国内精品美女久久久久久| 丰满乱子伦码专区| 亚洲av不卡在线观看| av.在线天堂| 成人特级av手机在线观看| 高清毛片免费看| 成人毛片60女人毛片免费| 69人妻影院| 成人一区二区视频在线观看| 最新中文字幕久久久久| 亚洲欧美日韩高清专用| 日本熟妇午夜| 亚洲av免费在线观看| 如何舔出高潮| 岛国毛片在线播放| 国产男人的电影天堂91| 女的被弄到高潮叫床怎么办| 精品一区二区三区人妻视频| 欧美性猛交╳xxx乱大交人| 精品久久久噜噜| av国产免费在线观看| 国产精品久久久久久精品电影小说 | or卡值多少钱| 黄色欧美视频在线观看| 免费观看在线日韩| av视频在线观看入口| 麻豆成人av视频| 久久久久久国产a免费观看| 夜夜爽夜夜爽视频| 美女大奶头视频| 亚洲国产精品成人久久小说| 日韩国内少妇激情av| 久久精品国产自在天天线| av女优亚洲男人天堂| 亚洲无线观看免费| 国产亚洲91精品色在线| 亚洲图色成人| 国产av码专区亚洲av| 亚洲精品乱码久久久v下载方式| 日韩av在线大香蕉| 成人一区二区视频在线观看| 亚洲怡红院男人天堂| 人妻少妇偷人精品九色| 人体艺术视频欧美日本| 国产黄色小视频在线观看| 日韩一区二区视频免费看| 最近最新中文字幕免费大全7| 亚洲一区高清亚洲精品| 寂寞人妻少妇视频99o| 日韩av在线大香蕉| 国产成人一区二区在线| 久久久久久大精品| 日韩视频在线欧美| 色综合亚洲欧美另类图片| 国产单亲对白刺激| 久久精品人妻少妇| 毛片女人毛片| 国产精品1区2区在线观看.| 一级二级三级毛片免费看| av在线老鸭窝| 男的添女的下面高潮视频| 久久久久九九精品影院| 九草在线视频观看| a级毛片免费高清观看在线播放| 99热这里只有是精品50| 3wmmmm亚洲av在线观看| 秋霞在线观看毛片| 麻豆久久精品国产亚洲av| av国产久精品久网站免费入址| 亚洲人与动物交配视频| 女的被弄到高潮叫床怎么办| 2021天堂中文幕一二区在线观| 国产成人aa在线观看| 国内精品一区二区在线观看| 欧美性猛交╳xxx乱大交人| 久久这里有精品视频免费| 最近最新中文字幕免费大全7| 精品久久久久久成人av| 哪个播放器可以免费观看大片| 99热6这里只有精品| 两个人的视频大全免费| 18禁裸乳无遮挡免费网站照片| 国产精品99久久久久久久久| 久久久久久大精品| 99热这里只有是精品50| av免费在线看不卡| 久久精品国产鲁丝片午夜精品| 午夜a级毛片| 极品教师在线视频| 久久国产乱子免费精品| 国产乱来视频区| 三级国产精品欧美在线观看| 日韩高清综合在线| av天堂中文字幕网| 成人午夜高清在线视频| 特级一级黄色大片| 舔av片在线| 小蜜桃在线观看免费完整版高清| 99热网站在线观看| 亚洲图色成人| 久久久久精品久久久久真实原创| 亚洲一区高清亚洲精品| 久久99精品国语久久久| 午夜激情欧美在线| 纵有疾风起免费观看全集完整版 | 欧美bdsm另类| 久久草成人影院| 亚洲欧美日韩无卡精品| 国产精品伦人一区二区| 日本与韩国留学比较| 国产精品美女特级片免费视频播放器| 国产精品一区二区性色av| 久久国内精品自在自线图片| 一级黄色大片毛片| 国产免费视频播放在线视频 | 美女脱内裤让男人舔精品视频| 成人午夜高清在线视频| 在线播放无遮挡| av又黄又爽大尺度在线免费看 | 午夜a级毛片| 日本黄色片子视频| 亚洲精品久久久久久婷婷小说 | 久久精品国产鲁丝片午夜精品| 在线观看一区二区三区| 中文字幕亚洲精品专区| 村上凉子中文字幕在线| 建设人人有责人人尽责人人享有的 | 亚洲国产成人一精品久久久| 97人妻精品一区二区三区麻豆| 99热6这里只有精品| 波多野结衣高清无吗| 午夜激情欧美在线| 天天躁夜夜躁狠狠久久av| 亚洲欧美中文字幕日韩二区| 边亲边吃奶的免费视频| 人妻少妇偷人精品九色| 91久久精品电影网| 国产麻豆成人av免费视频| 久久精品人妻少妇| 麻豆乱淫一区二区| 日产精品乱码卡一卡2卡三| 久久精品久久久久久久性| 村上凉子中文字幕在线| 欧美3d第一页| 亚洲精品日韩av片在线观看| 久久草成人影院| 亚洲精品成人久久久久久| 免费看av在线观看网站| 少妇人妻一区二区三区视频| 99久国产av精品| 看非洲黑人一级黄片| 亚洲久久久久久中文字幕| 久久这里只有精品中国| 国产精品久久电影中文字幕| 热99在线观看视频| 内地一区二区视频在线| 亚洲欧美成人综合另类久久久 | 亚洲精品成人久久久久久| 中文字幕制服av| 亚洲欧洲国产日韩| 国产av一区在线观看免费| 亚洲av男天堂| 真实男女啪啪啪动态图| 亚洲av免费在线观看| 免费观看精品视频网站| 九色成人免费人妻av| 夜夜爽夜夜爽视频| 麻豆国产97在线/欧美| 中文资源天堂在线| 一夜夜www| 国产伦在线观看视频一区| 综合色丁香网| 赤兔流量卡办理| 欧美性感艳星| 熟妇人妻久久中文字幕3abv| 91在线精品国自产拍蜜月| 亚洲色图av天堂| 一级毛片我不卡| 三级国产精品欧美在线观看| 午夜爱爱视频在线播放| 自拍偷自拍亚洲精品老妇| 又爽又黄无遮挡网站| 在线观看一区二区三区| 在线播放国产精品三级| 国产成年人精品一区二区| 国产精品野战在线观看| 我要搜黄色片| 看十八女毛片水多多多| 成人无遮挡网站| 亚洲欧美精品自产自拍| 狂野欧美白嫩少妇大欣赏| 久久99精品国语久久久| 日本黄色片子视频| 精华霜和精华液先用哪个| 免费黄网站久久成人精品| 最近最新中文字幕免费大全7| 午夜精品一区二区三区免费看| 国产精品一区二区三区四区久久| 久久精品熟女亚洲av麻豆精品 | 亚洲精品亚洲一区二区| 日韩亚洲欧美综合| 亚洲激情五月婷婷啪啪| 婷婷色av中文字幕| 亚洲欧美成人综合另类久久久 | 色综合亚洲欧美另类图片| 欧美一级a爱片免费观看看| 91久久精品国产一区二区三区| 久久久久久久久久成人| 嫩草影院入口| 欧美区成人在线视频| 能在线免费看毛片的网站| 永久免费av网站大全| 建设人人有责人人尽责人人享有的 | 青春草视频在线免费观看| 91久久精品国产一区二区三区| 一个人看视频在线观看www免费| 色播亚洲综合网| 天堂中文最新版在线下载 | 看免费成人av毛片| 国模一区二区三区四区视频| 日本黄大片高清| 国产中年淑女户外野战色| 免费观看a级毛片全部| 久久久a久久爽久久v久久| 色哟哟·www| 国产成人一区二区在线| 久久午夜福利片| 日韩欧美 国产精品| 亚洲一区高清亚洲精品| 草草在线视频免费看| 夜夜爽夜夜爽视频| 青春草亚洲视频在线观看| 九草在线视频观看| 一级毛片我不卡|