• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    LnCu3(OH)6Cl3(Ln=Gd,Tb,Dy): Heavy lanthanides on spin-1/2 kagome magnets?

    2021-10-28 07:08:44YingFu付盈LianglongHuang黃良龍XuefengZhou周雪峰JianChen陳見XinyuanZhang張馨元PengyunChen陳鵬允ShanminWang王善民CaiLiu劉才DapengYu俞大鵬HaiFengLi李海峰LeWang王樂andJiaWeiMei梅佳偉
    Chinese Physics B 2021年10期
    關(guān)鍵詞:李海峰張馨陳鵬

    Ying Fu(付盈) Lianglong Huang(黃良龍) Xuefeng Zhou(周雪峰) Jian Chen(陳見) Xinyuan Zhang(張馨元)Pengyun Chen(陳鵬允) Shanmin Wang(王善民) Cai Liu(劉才) Dapeng Yu(俞大鵬)Hai-Feng Li(李海峰) Le Wang(王樂) and Jia-Wei Mei(梅佳偉)

    1Joint Key Laboratory of the Ministry of Education,Institute of Applied Physics and Materials Engineering,University of Macau,Avenida da Universidade,Taipa,Macao SAR 999078,China

    2Shenzhen Institute for Quantum Science and Engineering,and Department of Physics,Southern University of Science and Technology,Shenzhen 518055,China

    3Department of Physics,Southern University of Science and Technology,Shenzhen 518055,China

    4Institute of Functional Crystals,Tianjin University of Technology,Tianjin 300384,China

    5Institute of Resources Utilization and Rare-earth Development,Guangdong Academy of Sciences,Guangzhou 51065,China

    6Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices,Southern University of Science and Technology,Shenzhen 518055,China

    Keywords: kagome lattice,hydrothermal method,frustrated magnetism,spin-1/2

    1. Introduction

    The kagome antiferromagnet (KAFM) has been intensively investigated both theoretically and experimentally as a long-standing platform to search for quantum spin liquid (QSL),[1–5]which is highly entangled quantum matter and features fractional excitations and no symmetrybreaking down to absolute zero temperature. Two famous KAFMs,herbertsmithite(Cu3Zn(OH)6Cl2)[6,7]and Znbarlowite (Cu3Zn(OH)6FBr),[8,9]have been regarded as the prototype for QSL. Both of them show no phase transition down to low temperatures and exhibit fractional spinon excitations revealed by inelastic neutron scattering (INS) and nuclear magnetic resonance(NMR).Beyond QSL,additional interactions like Dzyaloshinskii–Moriya (DM) interactions and single-ion anisotropies may lead KAFM into other exotic ground states. For example, V3+(S= 1) ions in NaV6O11[10,11]build a kagome lattice and form spin-singlets.KFe3(OH)6(SO4)2(S=5/2)[12]presents a long-range order with positive chirality, while CdCu3(OH)6(NO3)2(S=1/2)forms 120°spin structure with negative chirality.[13,14]Theoretically, a suitable combination of geometric frustration,ferromagnetism, and spin–orbit interactions in kagome magnets would realize high-temperature fractional quantum hall states and superconducting state.[15–18]Experimentally, the Kondo physics scenario of non-magnetic impurities screened by spinons in QSL has been proposed according to the muon spin relaxation (μSR) study on ZnCu3(OH)6SO4,[19]analogous to the Kondo effect usually observed in 3d–4f heavy fermion metals, where local spins are screened by itinerant electrons.

    Recently,YCu3(OH)6Cl3with perfect Cu-kagome layers and free of the Y–Cu anti-site disorder has been proposed as an ideal quantum KAFM,[20]which has a“q=0”type(i.e.,the magnetic unit cell is identical to the structural unit cell with uniform chirality) antiferromagnetic (AFM) order with negative chirality due to a large DM interaction.[21,22]Replacing yttrium with light lanthanides,RCu3(OH)6Cl3(R=Nd,Sm,Eu)compounds still show strongly frustrated behaviors in despite of forming the canted AFM order with Neel temperatures(TN)ranging from 15 K to 20 K.[23,24]With expecting that the heavy rare earths may further affect the magnetic frustration,we synthesized the polycrystalline samples of LnCu3(OH)6Cl3(Ln= Gd, Tb, Dy) by a universal way. The magnetic susceptibilities and heat capacity were measured. We discussed the magnetic contributions of Cu-kagome lattice and heavy lanthanides. With these results, we conclude that the heavy lanthanides ions in LnCu3(OH)6Cl3have little impact on the intrinsic magnetism of kagome-Cu2+.

    2. Experimental details

    Although the structure of GdCu3(OH)6Cl3was reported by Sunet al.[23]with tiny crystals, the high-purity sample was not obtained for further investigation of magnetic properties. In this work,we efficiently synthesized LnCu3(OH)6Cl3(Ln = Gd, Tb, Dy) samples with high purity by a hydrothermal method. The starting reagents were GdCl3·6H2O(99.9%, Alfa Aesar), TbCl3·6H2O (99.99%, Energy Chemical), DyCl3·6H2O (99.99%, Energy Chemical), and CuO(99.9%, Alfa Aesar). LnCl3·6H2O was ground thoroughly with CuO in a ratio of 1:3, and the mixture was transferred into an autoclave and heated at 200°C for about 10 h. Finally, the blue polycrystallined powder of LnCu3(OH)6Cl3was obtained after washed repeatedly by alcohol.This method avoids impurities and is also suitable for the preparation of YCu3(OH)6Cl3,SmCu3(OH)6Cl3,and EuCu3(OH)6Cl3.

    The temperature-dependent powder x-ray diffraction(PXRD) was performed fromT=300 K to 4 K on Rigaku Smartlab-9 kW diffractometer with CuKαradiation (λKα1=1.54056 °A,λKα2=1.54439 °A,and intensity ratioIKα1:IKα2=2 : 1). The scanning step width of 0.01°was applied to record the patterns in a 2θrange of 10°–100°. The structures of LnCu3(OH)6Cl3were refined by Rietveld profile methods using the FULLPROF suite of programs.[25]The magnetic and specific heat measurements of LnCu3(OH)6Cl3were performed with Quantum Design (QD) magnetic property measurement system(MPMS)SQUID magnetometer and physical property measurement system(PPMS),respectively.

    3. Results and discussion

    3.1. Crystal structure

    The site disorder remains mired in controversy in this series of compounds. For YCu3(OH)6Cl3,single-crystal diffraction revealed a splitting disorder of Y3+and no anti-site disorder between Cu2+and Y3+.[20]However, the neutron scattering results[26]supported no splitting disorder for Y3+. The no site-splitting for the rare earth ions was also proposed for LnCu3(OH)6Cl3(Ln=Nd, Sm, Gd, Eu).[23,24]In this experiment,we found no obvious improvement for the refinements after taking into account the splitting disorder for the rare earth ions. Therefore,we performed Rietveld profile refinement on LnCu3(OH)6Cl3(Ln = Gd, Tb and Dy) without considering the site-splitting of Ln3+.

    Fig. 1. Powder XRD patterns and refinements for LnCu3(OH)6Cl3. (a)–(c) Refinements for PXRD at 300 K. (d)–(f) XRD patterns of LnCu3(OH)6Cl3 at T =300 K,100 K,4 K.

    As shown in Figs. 1(a)–1(c), the good refniements for LnCu3(OH)6Cl3in space groupP3m1(No.164)suggest that our powder sample is of high quality. The detailed lattice parameters are listed in Table 1.As excepted at 300 K,the lattice parameters decrease from Gd3+to Dy3+in coincidence with the decreasing of ion radius(r=1.053 °A,1.04 °A,1.027 °A for Gd3+, Tb3+, Dy3+, respectively). However, at 4 K,aandbshow a contrast behavior withc,which is associated with the anisotropic thermal expansion. The temperature-dependent XRD patterns, as shown in Figs. 1(d)–1(f), have no peaksplitting or new peaks appearing as the temperature decreases down to 4 K,suggesting that no structure transition happens to LnCu3(OH)6Cl3.

    Table 1. Comparison of lattice parameters at 300 K and 4 K forLnCu3(OH)6Cl3. LnCu3(OH)6Cl3 is abbreviated to LnCu3.

    As depicted in Fig. 2, each Cu2+is surrounded by four equivalent O2?and two Cl?, forming a distorted [CuO4Cl2]octahedron with the Cu–Cl bond (~2.82 °A) significantly longer than the Cu–O bond (~1.97 °A). The [CuO4Cl2] octahedrons connect to each other by sharing the O–Cl edges to build the Cu-kagome plane. Ln3+is 8-coordinated by six O2?and two Cl?to form[LnO6Cl2]dodecahedron and locates at the center of the Cu-hexagon to constitute a Ln-triangular lattice(Fig.2(c)).

    Fig. 2. Crystal structure of LnCu3(OH)6Cl3 (Ln = Gd, Tb, Dy) without considering the site-splitting of Ln3+ ions. (a)Unit cell structure. (b)Coordinations of Cu and Ln atoms. (c)The illustration of Cu-kagome lattice and Ln-triangular lattice.

    It is worth noting that analogous distorted octahedra[CuO4Cl2] in herbertsmithite and Y3Cu9(OH)19Cl8increase the splitting in the ligand-field of d orbitals and lower the energy level of dz2with a large d–d gap around 1–2 eV,unveiling the insulating nature of a charge transfer insulator,[27]which would be adapted to YCu3(OH)6Cl3and LnCu3(OH)6Cl3.

    The Cu–O–Cu super-exchange bond angles are 118.78(12)°for GdCu3(OH)6Cl3, 118.19(10)°for TbCu3(OH)6Cl3, and 117.7(4)°for DyCu3(OH)6Cl3, respectively.The values are comparable to the antiferromagnets like barlowite (117.4°)[28]and herbertsmithite (119°).[29]The Cu–Cu distances are 3.40330(11) °A for GdCu3(OH)6Cl3,3.39115(16) °A for TbCu3(OH)6Cl3, and 3.3830(3) °A for DyCu3(OH)6Cl3,equal to the corresponding Ln–Cu distance.

    3.2. Magnetic properties

    Figure 3 shows the temperature-dependent magnetizaion for LnCu3(OH)6Cl3(Ln=Gd,Tb,Dy),with YCu3(OH)6Cl3served as a reference.For YCu3(OH)6Cl3(Fig.3(a)),the magnetic susceptibilities increase suddenly at 15 K,which is associated with the negative-vector-chirality 120°magnetic structure, confirmed by the neutron scattering study.[22]Continuously lowering the temperature,the drops at 3–4 K correspond to possible spin-glass state.[21]Compared to the small magnetic moment of Cu in YCu3(OH)6Cl3, the magnetic susceptibilities of LnCu3(OH)6Cl3are much larger, suggesting that the dominant contribution to the magnetization arises from lanthanides, especially at low temperatures. As shown in Figs.3(b)–3(d),under low fields,LnCu3(OH)6Cl3compounds present similar temperature-dependent magnetization curves as YCu3(OH)6Cl3,with a rapid increase at about 16 K or 17 K and followed by a drop at lower temperatures. The zero fieldcooling(ZFC)and field-cooling(FC)data at 0.005 T begin to split after the rapid increase, which could be ascribed to the possible in-plane canted ferromagnetic component, as previously pronounced inRCu3(OH)6Cl3(R=Nd,Sm,Eu).[23,24]It indicates that the Cu-kagome lattice of LnCu3(OH)6Cl3may have the same physics as YCu3(OH)6Cl3, and form a magnetic structure atTN~16 K, which necessitates a neutron scattering study. In contrast to the robust magnetic order at 15 K in YCu3(OH)6Cl3, the magnetic phase transition of LnCu3(OH)6Cl3can not be identified easily with increasing field. WhetherTNwas suppressed by fields or the magnetic responses of Ln3+ions masked the magnetic order of Cu2+needs a further measurement of the specific heat.

    As shown in Fig.4,the high temperature behavior of the inverse magnetic susceptibility above 150 K was fit to the Curie–Weiss lawχ=C/(T ?θ) (whereCis the Curie constant, andθis the Weiss temperature) in red lines withC=9.52 K·emu·mol?1,13.76 K·emu·mol?1,16.05 K·emu·mol?1andθ=?13.98 K,?16.37 K,?13.72 K for Gd-, Tb-, and Dy-compounds, respectively. Considering the crystal-field splitting for Ln3+ions, we also applied the Curie–Weiss fitting between 20 K to 50 K, shown in black lines. The deducedθare?1.71 K,?4.24 K,?1.40 K for GdCu3(OH)6Cl3,TbCu3(OH)6Cl3, and DyCu3(OH)6Cl3, respectively. The absolute values ofθare smaller than those at high temperatures. The small Weiss temperatures are significant different from Nd-,Sm-,and Eu-analogues,[23,24]whoseθranges from?100 K to?300 K with a distinct spin frustration compared toTN~15 K.Two main reasons for the reduction ofθare proposed: One is that the Cu–Cu AFM-interaction is weakened by Ln3+; the other is that Ln3+ions form a FM-interaction that competes with the Cu–Cu AFM-interaction.

    Fig. 3. Temperature-dependent magnetization of YCu3(OH)6Cl3 and LnCu3(OH)6Cl3 (Ln = Gd, Tb, Dy) at selected fields. Inset in (a) is the zoom-in data,and insets in(b)–(d)are the ZFC and FC curves collected at 0.005 T.

    Fig. 4. Temperature dependence of inverse magnetic susceptibilities 1/χ under a field of 0.3 T.The red and black lines are the fitting-plots of Curie–Weiss law at high temperatures (150–300 K) and low temperatures (20–50 K),respectively.

    The field-dependent magnetization curves (M–H) of LnCu3(OH)6Cl3(Ln = Gd, Tb, Dy) are shown in Fig. 5,referred to YCu3(OH)6Cl3collected at 2 K. With decreasing temperature, the magnetization of LnCu3(OH)6Cl3increases and grows rapidly below a field of about 2 T. At 2 K, GdCu3(OH)6Cl3saturates to a large value of 7.69μBat 7 T, suggesting that spins of Gd3+ions are polarized.TbCu3(OH)6Cl3and DyCu3(OH)6Cl3seem to be saturated with a linear increase under higher fields, especially for DyCu3(OH)6Cl3,which could be ascribed to the temperatureindependent Van Vleck paramagnetism. It is noted that the magnetic moment of each Cu2+at 2 K is only 0.065μBin the strong frustrated material, YCu3(OH)6Cl3(μ0H= 7 T)(Fig.5(a)),which is two orders of magnitude smaller than that of LnCu3(OH)6Cl3. Thus, we deduce that lanthanide has a dominated magnetic contribution in LnCu3(OH)6Cl3at low temperatures and can easily dominate the magnetic response of the Cu-kagome lattice.

    Fig.5. Field-dependent magnetization of(a)YCu3(OH)6Cl3 at 2 K and(b)–(d)LnCu3(OH)6Cl3 (Ln=Gd,Tb,Dy)at selected temperatures.

    3.3. Specific heat

    Figure 6 shows the specific heat results of LnCu3(OH)6Cl3(Ln = Gd, Tb, Dy) and YCu3(OH)6Cl3.As shown in Fig. 6(a), under zero field, a shoulder anomaly is observed at around 15–17 K for each compound, consistent with the rapid increase of magnetic susceptibilities atTN,representing a formation of magnetic order for kagome-Cu2+.Moreover, the low temperature (below 10 K) specific heat of LnCu3(OH)6Cl3shows more features,in contrast to decaying to zero for YCu3(OH)6Cl3, relating to the low-temperature magnetic correlation of Ln3+ions.

    For further understanding the origin of the magnetic phase transition, we measured the specific heat with applied magnetic fields. Since the intrinsic nearest neighboring interaction in YCu3(OH)6Cl3is around 80 K,[30]the applied magnetic field (5 T) has little impact on the specific heat and entropy (see Figs. 6(b) and 6(c)), in line with previous report on YCu3(OH)6Cl3[21]and EuCu3(OH)6Cl3.[24]However, as shown in Figs.6(d)–6(f),Cp/Tof LnCu3(OH)6Cl3responses notably to the external magnetic field. For GdCu3(OH)6Cl3,the upturn ofCp/Tis generally evolved into a broad peak and pushed to high temperatures by field withTNkeeping constant. For TbCu3(OH)6Cl3and DyCu3(OH)6Cl3,the lowtemperature broad peak ofCp/Tis efficiently pushed to aboveTNby a field of 7 T and merges with the high-temperature broad peak induced by the magnetic phase transition. This behavior of driving the specific heat peak position to high temperatures by applied magnetic fields may indicate a formation of short-range ferromagnetic order belowTN.

    Considering that YCu3(OH)6Cl3forms a robustq= 0 type AFM order andRCu3(OH)6Cl3(R= Nd, Sm, Eu) enters a canted AFM phase belowTN,we speculated reasonably that LnCu3(OH)6Cl3(Ln = Gd, Tb, Dy) also has a canted AFM phase transition atTNwith a large ferromagnetic component. The ferromagnetic correlation is influenced obviously by fields and even screens the signal of AFM ordering in magnetic susceptibility, but the AFM phase indeed exists and is robust under large fields,like the case in YCu3(OH)6Cl3.

    Fig. 6. Specific heat for YCu3(OH)6Cl3 and LnCu3(OH)6Cl3 (Ln = Gd, Tb, Dy). (a)Cp/T for YCu3(OH)6Cl3 and LnCu3(OH)6Cl3 under zero field.(b) The Cp/T of YCu3(OH)6Cl3. The red solid line is phonon-contribution fitting. (c) Magnetic specific heat Cm/T of YCu3(OH)6Cl3 after subtracting phonon-contribution. Inset is magnetic entropy per Cu2+. (d)–(f)Temperature-dependent specific heat under different magnetic fields for GdCu3(OH)6Cl3,TbCu3(OH)6Cl3,and DyCu3(OH)6Cl3,respectively.

    3.4. Discussion and conclusion

    Theq=0 type magnetic structure with negative-chirality in YCu3(OH)6Cl3is interesting, which was also reported in other kapellasite-type compounds like CdCu3(OH)6(NO3)2withTN=4 K[14]and CaCu3(OH)6Cl2withTN=7.2 K.[31,32]As demonstrated recently,with light lanthanides(Sm and Eu)replacing yttrium, SmCu3(OH)6Cl3and EuCu3(OH)6Cl3still feature canted antiferromagnetic ordering with strong spin frustration.[23,24]The light lanthanides with small magnetic moment may have limited influence on the magnetism of Cukagome lattice.

    In our work,the magnetic and thermodynamic behaviors of LnCu3(OH)6Cl3(Ln = Gd, Tb, Dy) exhibit two significantly different characteristics: large magnetic moment compared with YCu3(OH)6Cl3and a ferromagnetic-like spin correlation belowTN. According to our experimental results,heavy lanthanides(Gd,Tb,Dy)probably modulate the DM interaction and induce a large ferromagnetic correlation, which can mask the intrinsic low-temperature magnetic properties of kagome-Cu2+, but can not prevent the AFM ordering of Cukagome as revealed in specific heat. The Curie–Weiss law no longer works for evaluating the intrinsic interactions. The spectroscopy technology, like electron spin resonance (ESR)orμSR,is hopeful to further detect the detailed magnetic interactions for LnCu3(OH)6Cl3(Ln = Nd, Sm, Eu, Gd, Tb,Dy).

    In summary, we have successfully synthesized the polycrystalline samples of LnCu3(OH)6Cl3(Ln = Gd, Tb and Dy). The heavy lanthanides significantly change the magnetic and thermodynamic behaviors,which keep the intrinsic magnetism of Cu-kagome lattice. LnCu3(OH)6Cl3(Ln=Nd,Sm,Eu, Gd, Tb, Dy) compounds provide a good platform to further investigate systemically the effect of lanthanides on the frustrated magnetism of Cu-kagome lattice.

    Acknowledgement

    We thank Dr. L.Zhang,Dr. J.M.Sheng,and Prof. L.S.Wu for useful discussion.

    猜你喜歡
    李海峰張馨陳鵬
    “烤”驗
    Comparing simulated and experimental spectral line splitting in visible spectroscopy diagnostics in the HL-2A tokamak
    A NEW SUFFICIENT CONDITION FOR SPARSE RECOVERY WITH MULTIPLE ORTHOGONAL LEAST SQUARES*
    陳鵬
    Temperature-dependent structure and magnetization of YCrO3 compound
    涂布率在再造煙草綜合品質(zhì)中的重要性分析
    人生舞臺
    向日葵
    快樂的班隊課
    張馨予
    黄频高清免费视频| 久久国产亚洲av麻豆专区| 超碰成人久久| 一个人免费看片子| 在线天堂中文资源库| 国产熟女欧美一区二区| 操出白浆在线播放| 久久国产亚洲av麻豆专区| 亚洲熟女毛片儿| 在线观看免费视频网站a站| 女性生殖器流出的白浆| 成人手机av| 精品午夜福利在线看| 国产免费视频播放在线视频| 国产欧美日韩一区二区三区在线| 不卡视频在线观看欧美| 国产 一区精品| 多毛熟女@视频| 天天躁日日躁夜夜躁夜夜| 中文字幕制服av| 欧美黑人精品巨大| 国产伦人伦偷精品视频| 各种免费的搞黄视频| e午夜精品久久久久久久| 热99久久久久精品小说推荐| 天美传媒精品一区二区| 国产男人的电影天堂91| 午夜激情久久久久久久| 国产精品三级大全| 欧美国产精品一级二级三级| 成人影院久久| 久久久久久久精品精品| 少妇猛男粗大的猛烈进出视频| 毛片一级片免费看久久久久| 精品少妇内射三级| 女人爽到高潮嗷嗷叫在线视频| 欧美国产精品va在线观看不卡| 久久久久网色| 久久人人爽人人片av| 亚洲美女搞黄在线观看| 波野结衣二区三区在线| 女人精品久久久久毛片| 久久精品亚洲熟妇少妇任你| 久久精品熟女亚洲av麻豆精品| 中文字幕人妻丝袜制服| 啦啦啦在线观看免费高清www| 久久精品国产综合久久久| 如何舔出高潮| 看十八女毛片水多多多| 久久久久精品久久久久真实原创| 国精品久久久久久国模美| 超碰97精品在线观看| 久久亚洲国产成人精品v| 色精品久久人妻99蜜桃| 伦理电影免费视频| 妹子高潮喷水视频| 91精品三级在线观看| 免费人妻精品一区二区三区视频| 久久久久久久精品精品| 久久久久久久国产电影| 岛国毛片在线播放| 国产麻豆69| 91精品伊人久久大香线蕉| 欧美 日韩 精品 国产| 亚洲久久久国产精品| av在线观看视频网站免费| av一本久久久久| 97人妻天天添夜夜摸| 一区福利在线观看| av在线观看视频网站免费| 精品第一国产精品| www.自偷自拍.com| 欧美激情高清一区二区三区 | 亚洲精品国产av成人精品| 国产日韩欧美亚洲二区| 满18在线观看网站| 亚洲欧洲精品一区二区精品久久久 | 老司机靠b影院| 亚洲久久久国产精品| 波多野结衣一区麻豆| 亚洲精品久久午夜乱码| 人人妻,人人澡人人爽秒播 | 免费高清在线观看视频在线观看| 久久99热这里只频精品6学生| 国产无遮挡羞羞视频在线观看| 一本一本久久a久久精品综合妖精| 国产极品天堂在线| 丁香六月欧美| 人人妻,人人澡人人爽秒播 | 中文字幕人妻熟女乱码| 精品国产国语对白av| 国产精品麻豆人妻色哟哟久久| 亚洲,欧美,日韩| 久久精品亚洲av国产电影网| xxxhd国产人妻xxx| 成年av动漫网址| 久久久久久久久久久免费av| 国产成人91sexporn| 精品一区二区三区av网在线观看 | 久久精品国产亚洲av涩爱| 亚洲色图 男人天堂 中文字幕| 午夜免费鲁丝| 亚洲精品一区蜜桃| 男女之事视频高清在线观看 | 黄片播放在线免费| 久久久久久人人人人人| 国产伦人伦偷精品视频| 欧美少妇被猛烈插入视频| 美女主播在线视频| 午夜免费鲁丝| 精品亚洲乱码少妇综合久久| 亚洲中文av在线| 亚洲av欧美aⅴ国产| 18禁裸乳无遮挡动漫免费视频| 欧美久久黑人一区二区| 国产精品久久久久久精品电影小说| 精品一品国产午夜福利视频| 成人黄色视频免费在线看| 我的亚洲天堂| videos熟女内射| 国产伦人伦偷精品视频| 国产亚洲午夜精品一区二区久久| 悠悠久久av| 亚洲精品美女久久久久99蜜臀 | 亚洲成人av在线免费| 亚洲欧美成人综合另类久久久| 亚洲成人手机| 日韩电影二区| 亚洲国产欧美一区二区综合| 亚洲精品久久午夜乱码| 极品少妇高潮喷水抽搐| 色精品久久人妻99蜜桃| 人人妻人人添人人爽欧美一区卜| 亚洲伊人色综图| 欧美日韩一区二区视频在线观看视频在线| 亚洲精品国产色婷婷电影| 一区二区三区激情视频| 亚洲中文av在线| 一级毛片 在线播放| 我的亚洲天堂| 一边摸一边做爽爽视频免费| 国产精品国产三级国产专区5o| 欧美精品亚洲一区二区| 韩国精品一区二区三区| 男人添女人高潮全过程视频| 国产欧美亚洲国产| 精品福利永久在线观看| 制服诱惑二区| 国产精品人妻久久久影院| av一本久久久久| 亚洲欧美一区二区三区久久| 日韩中文字幕欧美一区二区 | 一区福利在线观看| 色94色欧美一区二区| 黄片无遮挡物在线观看| 99久久99久久久精品蜜桃| tube8黄色片| 亚洲激情五月婷婷啪啪| 精品国产国语对白av| 久久狼人影院| 免费观看a级毛片全部| 咕卡用的链子| 18禁国产床啪视频网站| 亚洲免费av在线视频| a级毛片黄视频| 亚洲成人国产一区在线观看 | 午夜日韩欧美国产| av视频免费观看在线观看| 欧美精品一区二区免费开放| 色婷婷久久久亚洲欧美| 国产探花极品一区二区| 大码成人一级视频| 国产亚洲一区二区精品| 国产熟女欧美一区二区| 黄片播放在线免费| 日韩 欧美 亚洲 中文字幕| 十八禁人妻一区二区| 久久精品久久精品一区二区三区| 日本欧美视频一区| 波多野结衣一区麻豆| 亚洲综合精品二区| 欧美黑人欧美精品刺激| 亚洲成国产人片在线观看| 国产精品免费视频内射| 啦啦啦 在线观看视频| 欧美97在线视频| 亚洲成av片中文字幕在线观看| 色精品久久人妻99蜜桃| 午夜激情久久久久久久| 中文字幕精品免费在线观看视频| 亚洲国产欧美日韩在线播放| 国产不卡av网站在线观看| 国产福利在线免费观看视频| 久久久精品区二区三区| 免费黄频网站在线观看国产| av有码第一页| 一级,二级,三级黄色视频| 爱豆传媒免费全集在线观看| 黄色毛片三级朝国网站| 婷婷成人精品国产| 国产伦理片在线播放av一区| 午夜福利网站1000一区二区三区| 大码成人一级视频| 啦啦啦在线免费观看视频4| 亚洲色图 男人天堂 中文字幕| 男女国产视频网站| 大片免费播放器 马上看| 久久久久久久大尺度免费视频| 久久精品aⅴ一区二区三区四区| 国产成人精品久久久久久| 亚洲伊人久久精品综合| 亚洲成人手机| 精品少妇一区二区三区视频日本电影 | av电影中文网址| 亚洲av男天堂| 精品久久蜜臀av无| 亚洲精品乱久久久久久| 亚洲,一卡二卡三卡| 成人国语在线视频| 成人漫画全彩无遮挡| 人妻人人澡人人爽人人| 久久人人爽人人片av| 新久久久久国产一级毛片| 1024香蕉在线观看| 老司机影院毛片| 18在线观看网站| 爱豆传媒免费全集在线观看| 中文字幕av电影在线播放| 国产乱来视频区| 国产日韩欧美在线精品| av有码第一页| 视频在线观看一区二区三区| 可以免费在线观看a视频的电影网站 | 久久人人爽人人片av| 午夜免费男女啪啪视频观看| 欧美xxⅹ黑人| av网站在线播放免费| 亚洲自偷自拍图片 自拍| www.自偷自拍.com| 90打野战视频偷拍视频| 日本一区二区免费在线视频| 两个人看的免费小视频| 亚洲精品中文字幕在线视频| 欧美黄色片欧美黄色片| 国产黄色免费在线视频| 国产成人啪精品午夜网站| 亚洲四区av| 国产一区有黄有色的免费视频| 中文字幕另类日韩欧美亚洲嫩草| 免费在线观看黄色视频的| 看免费av毛片| 亚洲国产成人一精品久久久| 亚洲久久久国产精品| 国产熟女午夜一区二区三区| 黄色怎么调成土黄色| 日韩中文字幕欧美一区二区 | 天天躁狠狠躁夜夜躁狠狠躁| 人体艺术视频欧美日本| 日韩制服骚丝袜av| 欧美日韩国产mv在线观看视频| 天天躁夜夜躁狠狠躁躁| 女性生殖器流出的白浆| 日本色播在线视频| 日本av手机在线免费观看| 美女视频免费永久观看网站| 亚洲在久久综合| 久久精品国产亚洲av涩爱| 国产精品久久久久久人妻精品电影 | 两个人看的免费小视频| 亚洲国产中文字幕在线视频| 纯流量卡能插随身wifi吗| 国产精品二区激情视频| www.精华液| 男人舔女人的私密视频| 精品国产一区二区三区久久久樱花| 精品一区二区免费观看| 丝袜脚勾引网站| 国产在线免费精品| 久久综合国产亚洲精品| 国产成人午夜福利电影在线观看| 大片电影免费在线观看免费| 日韩 亚洲 欧美在线| av有码第一页| www.熟女人妻精品国产| 国产欧美日韩一区二区三区在线| 欧美精品一区二区免费开放| 婷婷色综合www| 国产一区二区激情短视频 | 亚洲国产av影院在线观看| 美国免费a级毛片| 亚洲少妇的诱惑av| av福利片在线| 国产片特级美女逼逼视频| 99re6热这里在线精品视频| 少妇人妻 视频| 丰满饥渴人妻一区二区三| videosex国产| 日日爽夜夜爽网站| 免费少妇av软件| 十八禁人妻一区二区| 咕卡用的链子| 黑丝袜美女国产一区| 国产激情久久老熟女| 97在线人人人人妻| 天天操日日干夜夜撸| 99久久精品国产亚洲精品| 成年人午夜在线观看视频| 精品国产一区二区三区四区第35| 日韩大片免费观看网站| 亚洲欧美一区二区三区久久| 免费在线观看完整版高清| 男女边吃奶边做爰视频| 人人妻人人澡人人爽人人夜夜| 麻豆av在线久日| 激情五月婷婷亚洲| 久久精品熟女亚洲av麻豆精品| 午夜日本视频在线| 老司机在亚洲福利影院| 性高湖久久久久久久久免费观看| 久久人人爽av亚洲精品天堂| 国产日韩欧美亚洲二区| 中文字幕人妻熟女乱码| 国产精品一区二区精品视频观看| 国产成人精品在线电影| 免费观看性生交大片5| 精品亚洲成国产av| 久久这里只有精品19| 一边摸一边做爽爽视频免费| 亚洲av日韩在线播放| 国产精品女同一区二区软件| 久久毛片免费看一区二区三区| 国产国语露脸激情在线看| 久久精品久久久久久久性| 美女脱内裤让男人舔精品视频| 综合色丁香网| 欧美av亚洲av综合av国产av | 在线免费观看不下载黄p国产| 免费观看人在逋| 久久99热这里只频精品6学生| 久久久欧美国产精品| 国产一区二区在线观看av| 晚上一个人看的免费电影| 交换朋友夫妻互换小说| 亚洲国产最新在线播放| 亚洲国产日韩一区二区| 久久久久精品国产欧美久久久 | 欧美xxⅹ黑人| 国产成人av激情在线播放| 一区福利在线观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美一区二区三区国产| 日韩av不卡免费在线播放| 无限看片的www在线观看| 99国产综合亚洲精品| 伦理电影免费视频| 国产精品久久久人人做人人爽| 色婷婷av一区二区三区视频| 欧美日韩亚洲高清精品| 久久精品亚洲av国产电影网| 久久久久久免费高清国产稀缺| 满18在线观看网站| 亚洲欧美中文字幕日韩二区| 九草在线视频观看| 啦啦啦在线免费观看视频4| 久久狼人影院| 丝袜美腿诱惑在线| av在线观看视频网站免费| 亚洲免费av在线视频| 久久久精品94久久精品| 美国免费a级毛片| 悠悠久久av| 免费在线观看完整版高清| 最近中文字幕2019免费版| 大码成人一级视频| 少妇精品久久久久久久| 亚洲伊人久久精品综合| 无遮挡黄片免费观看| 男人操女人黄网站| 亚洲,一卡二卡三卡| 亚洲精品国产区一区二| 中文欧美无线码| 久久人人爽人人片av| 亚洲精品aⅴ在线观看| 亚洲四区av| 老司机影院毛片| 桃花免费在线播放| 99热全是精品| 国产男女超爽视频在线观看| 久久综合国产亚洲精品| 久久鲁丝午夜福利片| 天美传媒精品一区二区| 老司机深夜福利视频在线观看 | 如何舔出高潮| 伦理电影大哥的女人| 一级毛片电影观看| 激情视频va一区二区三区| avwww免费| 伊人亚洲综合成人网| 国精品久久久久久国模美| 国产成人精品福利久久| 日韩精品有码人妻一区| 99久久综合免费| √禁漫天堂资源中文www| 国产一区二区 视频在线| 999久久久国产精品视频| 精品国产露脸久久av麻豆| 日本av免费视频播放| 十分钟在线观看高清视频www| 一区二区三区激情视频| 亚洲成av片中文字幕在线观看| 成年女人毛片免费观看观看9 | 午夜福利乱码中文字幕| 亚洲精品aⅴ在线观看| 黄色毛片三级朝国网站| 丁香六月天网| 亚洲精品aⅴ在线观看| 久久97久久精品| videos熟女内射| 波多野结衣一区麻豆| 美女福利国产在线| 日韩电影二区| 男女边摸边吃奶| 一边亲一边摸免费视频| 国产老妇伦熟女老妇高清| 国产免费又黄又爽又色| 日韩大码丰满熟妇| 亚洲精品国产一区二区精华液| av电影中文网址| 成年动漫av网址| 欧美亚洲 丝袜 人妻 在线| 麻豆乱淫一区二区| 电影成人av| 国产日韩欧美视频二区| 香蕉丝袜av| 热re99久久国产66热| 五月开心婷婷网| 天美传媒精品一区二区| 国产免费现黄频在线看| 啦啦啦在线免费观看视频4| 老司机影院毛片| 免费在线观看视频国产中文字幕亚洲 | 我的亚洲天堂| 精品一区二区三卡| 国产精品 欧美亚洲| 国产精品久久久人人做人人爽| 日本猛色少妇xxxxx猛交久久| 1024香蕉在线观看| 国产精品一区二区在线不卡| 捣出白浆h1v1| 伦理电影免费视频| 天天影视国产精品| 搡老乐熟女国产| 精品人妻一区二区三区麻豆| 一级片'在线观看视频| 午夜免费观看性视频| 国产男女内射视频| 欧美老熟妇乱子伦牲交| 精品一区二区三区av网在线观看 | 一本色道久久久久久精品综合| 天天躁夜夜躁狠狠躁躁| 国产精品亚洲av一区麻豆 | 99精品久久久久人妻精品| 人人妻,人人澡人人爽秒播 | 国产男人的电影天堂91| 亚洲精品一二三| 亚洲精品久久午夜乱码| 女人久久www免费人成看片| 国语对白做爰xxxⅹ性视频网站| 久久久国产精品麻豆| 我要看黄色一级片免费的| 日韩人妻精品一区2区三区| 国产片特级美女逼逼视频| 丝袜人妻中文字幕| 黄网站色视频无遮挡免费观看| 日韩伦理黄色片| 午夜福利视频在线观看免费| 少妇的丰满在线观看| 日韩欧美一区视频在线观看| 十分钟在线观看高清视频www| 欧美在线黄色| 激情五月婷婷亚洲| 热99久久久久精品小说推荐| 一二三四中文在线观看免费高清| 国产高清不卡午夜福利| 亚洲一区中文字幕在线| 亚洲精品,欧美精品| 999精品在线视频| 操美女的视频在线观看| 国产亚洲精品第一综合不卡| 国产片内射在线| 国产成人精品福利久久| 丝袜美足系列| 亚洲国产欧美一区二区综合| 在现免费观看毛片| 成人毛片60女人毛片免费| 亚洲欧美激情在线| 久久99精品国语久久久| 老熟女久久久| 大片电影免费在线观看免费| avwww免费| 日本av手机在线免费观看| 亚洲久久久国产精品| 精品久久久精品久久久| 亚洲成人av在线免费| 男人爽女人下面视频在线观看| 制服诱惑二区| 亚洲国产精品国产精品| 夫妻午夜视频| 久久久久精品人妻al黑| 一二三四中文在线观看免费高清| 天天操日日干夜夜撸| 亚洲欧美中文字幕日韩二区| 婷婷色综合大香蕉| 巨乳人妻的诱惑在线观看| 午夜激情久久久久久久| 欧美日本中文国产一区发布| 一二三四中文在线观看免费高清| 国产精品av久久久久免费| 精品少妇一区二区三区视频日本电影 | 国产 一区精品| 亚洲精品中文字幕在线视频| 狂野欧美激情性xxxx| 日韩视频在线欧美| 国产99久久九九免费精品| 在线看a的网站| 国产乱来视频区| 久久这里只有精品19| 99久久人妻综合| 亚洲综合色网址| 99国产精品免费福利视频| 亚洲 欧美一区二区三区| 在线看a的网站| 国产精品蜜桃在线观看| 日本vs欧美在线观看视频| 亚洲精品在线美女| av免费观看日本| 中文字幕制服av| 亚洲av成人精品一二三区| 十八禁高潮呻吟视频| 如日韩欧美国产精品一区二区三区| 亚洲成人av在线免费| 精品久久久精品久久久| 国产av码专区亚洲av| 嫩草影院入口| 国产毛片在线视频| 91精品国产国语对白视频| 国产高清不卡午夜福利| 精品第一国产精品| 午夜福利,免费看| 亚洲情色 制服丝袜| 国产xxxxx性猛交| 在线观看三级黄色| 伊人久久大香线蕉亚洲五| av网站免费在线观看视频| 亚洲国产精品成人久久小说| 亚洲国产日韩一区二区| 最近中文字幕高清免费大全6| 秋霞伦理黄片| 操美女的视频在线观看| 中文字幕制服av| 中文天堂在线官网| 国产精品女同一区二区软件| 久久久欧美国产精品| 美女扒开内裤让男人捅视频| 另类精品久久| 国产伦人伦偷精品视频| 国产精品久久久久久精品电影小说| 日韩伦理黄色片| 国产午夜精品一二区理论片| 看免费av毛片| 母亲3免费完整高清在线观看| 嫩草影视91久久| 欧美日韩亚洲国产一区二区在线观看 | 久久青草综合色| 人体艺术视频欧美日本| 五月天丁香电影| 国产一区二区三区av在线| 伊人久久国产一区二区| 欧美国产精品一级二级三级| 男人添女人高潮全过程视频| 热re99久久国产66热| 国产精品国产三级专区第一集| 波多野结衣av一区二区av| 男女国产视频网站| 你懂的网址亚洲精品在线观看| 黄色 视频免费看| xxx大片免费视频| 久久av网站| 久久精品亚洲熟妇少妇任你| 亚洲av国产av综合av卡| 亚洲国产毛片av蜜桃av| 久久国产亚洲av麻豆专区| 男女下面插进去视频免费观看| 黑人巨大精品欧美一区二区蜜桃| 欧美精品av麻豆av| 国产探花极品一区二区| 97人妻天天添夜夜摸| 色吧在线观看| 久久久欧美国产精品| 亚洲四区av| bbb黄色大片| 日韩精品免费视频一区二区三区| 亚洲婷婷狠狠爱综合网| 欧美在线一区亚洲| 亚洲一区中文字幕在线| 国产女主播在线喷水免费视频网站| 亚洲精品自拍成人| 黄色视频在线播放观看不卡| 这个男人来自地球电影免费观看 | 国产欧美亚洲国产| 中文字幕av电影在线播放| 天堂中文最新版在线下载| 五月天丁香电影| 麻豆av在线久日| 久久久久久久国产电影|