• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    LnCu3(OH)6Cl3(Ln=Gd,Tb,Dy): Heavy lanthanides on spin-1/2 kagome magnets?

    2021-10-28 07:08:44YingFu付盈LianglongHuang黃良龍XuefengZhou周雪峰JianChen陳見XinyuanZhang張馨元PengyunChen陳鵬允ShanminWang王善民CaiLiu劉才DapengYu俞大鵬HaiFengLi李海峰LeWang王樂andJiaWeiMei梅佳偉
    Chinese Physics B 2021年10期
    關(guān)鍵詞:李海峰張馨陳鵬

    Ying Fu(付盈) Lianglong Huang(黃良龍) Xuefeng Zhou(周雪峰) Jian Chen(陳見) Xinyuan Zhang(張馨元)Pengyun Chen(陳鵬允) Shanmin Wang(王善民) Cai Liu(劉才) Dapeng Yu(俞大鵬)Hai-Feng Li(李海峰) Le Wang(王樂) and Jia-Wei Mei(梅佳偉)

    1Joint Key Laboratory of the Ministry of Education,Institute of Applied Physics and Materials Engineering,University of Macau,Avenida da Universidade,Taipa,Macao SAR 999078,China

    2Shenzhen Institute for Quantum Science and Engineering,and Department of Physics,Southern University of Science and Technology,Shenzhen 518055,China

    3Department of Physics,Southern University of Science and Technology,Shenzhen 518055,China

    4Institute of Functional Crystals,Tianjin University of Technology,Tianjin 300384,China

    5Institute of Resources Utilization and Rare-earth Development,Guangdong Academy of Sciences,Guangzhou 51065,China

    6Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices,Southern University of Science and Technology,Shenzhen 518055,China

    Keywords: kagome lattice,hydrothermal method,frustrated magnetism,spin-1/2

    1. Introduction

    The kagome antiferromagnet (KAFM) has been intensively investigated both theoretically and experimentally as a long-standing platform to search for quantum spin liquid (QSL),[1–5]which is highly entangled quantum matter and features fractional excitations and no symmetrybreaking down to absolute zero temperature. Two famous KAFMs,herbertsmithite(Cu3Zn(OH)6Cl2)[6,7]and Znbarlowite (Cu3Zn(OH)6FBr),[8,9]have been regarded as the prototype for QSL. Both of them show no phase transition down to low temperatures and exhibit fractional spinon excitations revealed by inelastic neutron scattering (INS) and nuclear magnetic resonance(NMR).Beyond QSL,additional interactions like Dzyaloshinskii–Moriya (DM) interactions and single-ion anisotropies may lead KAFM into other exotic ground states. For example, V3+(S= 1) ions in NaV6O11[10,11]build a kagome lattice and form spin-singlets.KFe3(OH)6(SO4)2(S=5/2)[12]presents a long-range order with positive chirality, while CdCu3(OH)6(NO3)2(S=1/2)forms 120°spin structure with negative chirality.[13,14]Theoretically, a suitable combination of geometric frustration,ferromagnetism, and spin–orbit interactions in kagome magnets would realize high-temperature fractional quantum hall states and superconducting state.[15–18]Experimentally, the Kondo physics scenario of non-magnetic impurities screened by spinons in QSL has been proposed according to the muon spin relaxation (μSR) study on ZnCu3(OH)6SO4,[19]analogous to the Kondo effect usually observed in 3d–4f heavy fermion metals, where local spins are screened by itinerant electrons.

    Recently,YCu3(OH)6Cl3with perfect Cu-kagome layers and free of the Y–Cu anti-site disorder has been proposed as an ideal quantum KAFM,[20]which has a“q=0”type(i.e.,the magnetic unit cell is identical to the structural unit cell with uniform chirality) antiferromagnetic (AFM) order with negative chirality due to a large DM interaction.[21,22]Replacing yttrium with light lanthanides,RCu3(OH)6Cl3(R=Nd,Sm,Eu)compounds still show strongly frustrated behaviors in despite of forming the canted AFM order with Neel temperatures(TN)ranging from 15 K to 20 K.[23,24]With expecting that the heavy rare earths may further affect the magnetic frustration,we synthesized the polycrystalline samples of LnCu3(OH)6Cl3(Ln= Gd, Tb, Dy) by a universal way. The magnetic susceptibilities and heat capacity were measured. We discussed the magnetic contributions of Cu-kagome lattice and heavy lanthanides. With these results, we conclude that the heavy lanthanides ions in LnCu3(OH)6Cl3have little impact on the intrinsic magnetism of kagome-Cu2+.

    2. Experimental details

    Although the structure of GdCu3(OH)6Cl3was reported by Sunet al.[23]with tiny crystals, the high-purity sample was not obtained for further investigation of magnetic properties. In this work,we efficiently synthesized LnCu3(OH)6Cl3(Ln = Gd, Tb, Dy) samples with high purity by a hydrothermal method. The starting reagents were GdCl3·6H2O(99.9%, Alfa Aesar), TbCl3·6H2O (99.99%, Energy Chemical), DyCl3·6H2O (99.99%, Energy Chemical), and CuO(99.9%, Alfa Aesar). LnCl3·6H2O was ground thoroughly with CuO in a ratio of 1:3, and the mixture was transferred into an autoclave and heated at 200°C for about 10 h. Finally, the blue polycrystallined powder of LnCu3(OH)6Cl3was obtained after washed repeatedly by alcohol.This method avoids impurities and is also suitable for the preparation of YCu3(OH)6Cl3,SmCu3(OH)6Cl3,and EuCu3(OH)6Cl3.

    The temperature-dependent powder x-ray diffraction(PXRD) was performed fromT=300 K to 4 K on Rigaku Smartlab-9 kW diffractometer with CuKαradiation (λKα1=1.54056 °A,λKα2=1.54439 °A,and intensity ratioIKα1:IKα2=2 : 1). The scanning step width of 0.01°was applied to record the patterns in a 2θrange of 10°–100°. The structures of LnCu3(OH)6Cl3were refined by Rietveld profile methods using the FULLPROF suite of programs.[25]The magnetic and specific heat measurements of LnCu3(OH)6Cl3were performed with Quantum Design (QD) magnetic property measurement system(MPMS)SQUID magnetometer and physical property measurement system(PPMS),respectively.

    3. Results and discussion

    3.1. Crystal structure

    The site disorder remains mired in controversy in this series of compounds. For YCu3(OH)6Cl3,single-crystal diffraction revealed a splitting disorder of Y3+and no anti-site disorder between Cu2+and Y3+.[20]However, the neutron scattering results[26]supported no splitting disorder for Y3+. The no site-splitting for the rare earth ions was also proposed for LnCu3(OH)6Cl3(Ln=Nd, Sm, Gd, Eu).[23,24]In this experiment,we found no obvious improvement for the refinements after taking into account the splitting disorder for the rare earth ions. Therefore,we performed Rietveld profile refinement on LnCu3(OH)6Cl3(Ln = Gd, Tb and Dy) without considering the site-splitting of Ln3+.

    Fig. 1. Powder XRD patterns and refinements for LnCu3(OH)6Cl3. (a)–(c) Refinements for PXRD at 300 K. (d)–(f) XRD patterns of LnCu3(OH)6Cl3 at T =300 K,100 K,4 K.

    As shown in Figs. 1(a)–1(c), the good refniements for LnCu3(OH)6Cl3in space groupP3m1(No.164)suggest that our powder sample is of high quality. The detailed lattice parameters are listed in Table 1.As excepted at 300 K,the lattice parameters decrease from Gd3+to Dy3+in coincidence with the decreasing of ion radius(r=1.053 °A,1.04 °A,1.027 °A for Gd3+, Tb3+, Dy3+, respectively). However, at 4 K,aandbshow a contrast behavior withc,which is associated with the anisotropic thermal expansion. The temperature-dependent XRD patterns, as shown in Figs. 1(d)–1(f), have no peaksplitting or new peaks appearing as the temperature decreases down to 4 K,suggesting that no structure transition happens to LnCu3(OH)6Cl3.

    Table 1. Comparison of lattice parameters at 300 K and 4 K forLnCu3(OH)6Cl3. LnCu3(OH)6Cl3 is abbreviated to LnCu3.

    As depicted in Fig. 2, each Cu2+is surrounded by four equivalent O2?and two Cl?, forming a distorted [CuO4Cl2]octahedron with the Cu–Cl bond (~2.82 °A) significantly longer than the Cu–O bond (~1.97 °A). The [CuO4Cl2] octahedrons connect to each other by sharing the O–Cl edges to build the Cu-kagome plane. Ln3+is 8-coordinated by six O2?and two Cl?to form[LnO6Cl2]dodecahedron and locates at the center of the Cu-hexagon to constitute a Ln-triangular lattice(Fig.2(c)).

    Fig. 2. Crystal structure of LnCu3(OH)6Cl3 (Ln = Gd, Tb, Dy) without considering the site-splitting of Ln3+ ions. (a)Unit cell structure. (b)Coordinations of Cu and Ln atoms. (c)The illustration of Cu-kagome lattice and Ln-triangular lattice.

    It is worth noting that analogous distorted octahedra[CuO4Cl2] in herbertsmithite and Y3Cu9(OH)19Cl8increase the splitting in the ligand-field of d orbitals and lower the energy level of dz2with a large d–d gap around 1–2 eV,unveiling the insulating nature of a charge transfer insulator,[27]which would be adapted to YCu3(OH)6Cl3and LnCu3(OH)6Cl3.

    The Cu–O–Cu super-exchange bond angles are 118.78(12)°for GdCu3(OH)6Cl3, 118.19(10)°for TbCu3(OH)6Cl3, and 117.7(4)°for DyCu3(OH)6Cl3, respectively.The values are comparable to the antiferromagnets like barlowite (117.4°)[28]and herbertsmithite (119°).[29]The Cu–Cu distances are 3.40330(11) °A for GdCu3(OH)6Cl3,3.39115(16) °A for TbCu3(OH)6Cl3, and 3.3830(3) °A for DyCu3(OH)6Cl3,equal to the corresponding Ln–Cu distance.

    3.2. Magnetic properties

    Figure 3 shows the temperature-dependent magnetizaion for LnCu3(OH)6Cl3(Ln=Gd,Tb,Dy),with YCu3(OH)6Cl3served as a reference.For YCu3(OH)6Cl3(Fig.3(a)),the magnetic susceptibilities increase suddenly at 15 K,which is associated with the negative-vector-chirality 120°magnetic structure, confirmed by the neutron scattering study.[22]Continuously lowering the temperature,the drops at 3–4 K correspond to possible spin-glass state.[21]Compared to the small magnetic moment of Cu in YCu3(OH)6Cl3, the magnetic susceptibilities of LnCu3(OH)6Cl3are much larger, suggesting that the dominant contribution to the magnetization arises from lanthanides, especially at low temperatures. As shown in Figs.3(b)–3(d),under low fields,LnCu3(OH)6Cl3compounds present similar temperature-dependent magnetization curves as YCu3(OH)6Cl3,with a rapid increase at about 16 K or 17 K and followed by a drop at lower temperatures. The zero fieldcooling(ZFC)and field-cooling(FC)data at 0.005 T begin to split after the rapid increase, which could be ascribed to the possible in-plane canted ferromagnetic component, as previously pronounced inRCu3(OH)6Cl3(R=Nd,Sm,Eu).[23,24]It indicates that the Cu-kagome lattice of LnCu3(OH)6Cl3may have the same physics as YCu3(OH)6Cl3, and form a magnetic structure atTN~16 K, which necessitates a neutron scattering study. In contrast to the robust magnetic order at 15 K in YCu3(OH)6Cl3, the magnetic phase transition of LnCu3(OH)6Cl3can not be identified easily with increasing field. WhetherTNwas suppressed by fields or the magnetic responses of Ln3+ions masked the magnetic order of Cu2+needs a further measurement of the specific heat.

    As shown in Fig.4,the high temperature behavior of the inverse magnetic susceptibility above 150 K was fit to the Curie–Weiss lawχ=C/(T ?θ) (whereCis the Curie constant, andθis the Weiss temperature) in red lines withC=9.52 K·emu·mol?1,13.76 K·emu·mol?1,16.05 K·emu·mol?1andθ=?13.98 K,?16.37 K,?13.72 K for Gd-, Tb-, and Dy-compounds, respectively. Considering the crystal-field splitting for Ln3+ions, we also applied the Curie–Weiss fitting between 20 K to 50 K, shown in black lines. The deducedθare?1.71 K,?4.24 K,?1.40 K for GdCu3(OH)6Cl3,TbCu3(OH)6Cl3, and DyCu3(OH)6Cl3, respectively. The absolute values ofθare smaller than those at high temperatures. The small Weiss temperatures are significant different from Nd-,Sm-,and Eu-analogues,[23,24]whoseθranges from?100 K to?300 K with a distinct spin frustration compared toTN~15 K.Two main reasons for the reduction ofθare proposed: One is that the Cu–Cu AFM-interaction is weakened by Ln3+; the other is that Ln3+ions form a FM-interaction that competes with the Cu–Cu AFM-interaction.

    Fig. 3. Temperature-dependent magnetization of YCu3(OH)6Cl3 and LnCu3(OH)6Cl3 (Ln = Gd, Tb, Dy) at selected fields. Inset in (a) is the zoom-in data,and insets in(b)–(d)are the ZFC and FC curves collected at 0.005 T.

    Fig. 4. Temperature dependence of inverse magnetic susceptibilities 1/χ under a field of 0.3 T.The red and black lines are the fitting-plots of Curie–Weiss law at high temperatures (150–300 K) and low temperatures (20–50 K),respectively.

    The field-dependent magnetization curves (M–H) of LnCu3(OH)6Cl3(Ln = Gd, Tb, Dy) are shown in Fig. 5,referred to YCu3(OH)6Cl3collected at 2 K. With decreasing temperature, the magnetization of LnCu3(OH)6Cl3increases and grows rapidly below a field of about 2 T. At 2 K, GdCu3(OH)6Cl3saturates to a large value of 7.69μBat 7 T, suggesting that spins of Gd3+ions are polarized.TbCu3(OH)6Cl3and DyCu3(OH)6Cl3seem to be saturated with a linear increase under higher fields, especially for DyCu3(OH)6Cl3,which could be ascribed to the temperatureindependent Van Vleck paramagnetism. It is noted that the magnetic moment of each Cu2+at 2 K is only 0.065μBin the strong frustrated material, YCu3(OH)6Cl3(μ0H= 7 T)(Fig.5(a)),which is two orders of magnitude smaller than that of LnCu3(OH)6Cl3. Thus, we deduce that lanthanide has a dominated magnetic contribution in LnCu3(OH)6Cl3at low temperatures and can easily dominate the magnetic response of the Cu-kagome lattice.

    Fig.5. Field-dependent magnetization of(a)YCu3(OH)6Cl3 at 2 K and(b)–(d)LnCu3(OH)6Cl3 (Ln=Gd,Tb,Dy)at selected temperatures.

    3.3. Specific heat

    Figure 6 shows the specific heat results of LnCu3(OH)6Cl3(Ln = Gd, Tb, Dy) and YCu3(OH)6Cl3.As shown in Fig. 6(a), under zero field, a shoulder anomaly is observed at around 15–17 K for each compound, consistent with the rapid increase of magnetic susceptibilities atTN,representing a formation of magnetic order for kagome-Cu2+.Moreover, the low temperature (below 10 K) specific heat of LnCu3(OH)6Cl3shows more features,in contrast to decaying to zero for YCu3(OH)6Cl3, relating to the low-temperature magnetic correlation of Ln3+ions.

    For further understanding the origin of the magnetic phase transition, we measured the specific heat with applied magnetic fields. Since the intrinsic nearest neighboring interaction in YCu3(OH)6Cl3is around 80 K,[30]the applied magnetic field (5 T) has little impact on the specific heat and entropy (see Figs. 6(b) and 6(c)), in line with previous report on YCu3(OH)6Cl3[21]and EuCu3(OH)6Cl3.[24]However, as shown in Figs.6(d)–6(f),Cp/Tof LnCu3(OH)6Cl3responses notably to the external magnetic field. For GdCu3(OH)6Cl3,the upturn ofCp/Tis generally evolved into a broad peak and pushed to high temperatures by field withTNkeeping constant. For TbCu3(OH)6Cl3and DyCu3(OH)6Cl3,the lowtemperature broad peak ofCp/Tis efficiently pushed to aboveTNby a field of 7 T and merges with the high-temperature broad peak induced by the magnetic phase transition. This behavior of driving the specific heat peak position to high temperatures by applied magnetic fields may indicate a formation of short-range ferromagnetic order belowTN.

    Considering that YCu3(OH)6Cl3forms a robustq= 0 type AFM order andRCu3(OH)6Cl3(R= Nd, Sm, Eu) enters a canted AFM phase belowTN,we speculated reasonably that LnCu3(OH)6Cl3(Ln = Gd, Tb, Dy) also has a canted AFM phase transition atTNwith a large ferromagnetic component. The ferromagnetic correlation is influenced obviously by fields and even screens the signal of AFM ordering in magnetic susceptibility, but the AFM phase indeed exists and is robust under large fields,like the case in YCu3(OH)6Cl3.

    Fig. 6. Specific heat for YCu3(OH)6Cl3 and LnCu3(OH)6Cl3 (Ln = Gd, Tb, Dy). (a)Cp/T for YCu3(OH)6Cl3 and LnCu3(OH)6Cl3 under zero field.(b) The Cp/T of YCu3(OH)6Cl3. The red solid line is phonon-contribution fitting. (c) Magnetic specific heat Cm/T of YCu3(OH)6Cl3 after subtracting phonon-contribution. Inset is magnetic entropy per Cu2+. (d)–(f)Temperature-dependent specific heat under different magnetic fields for GdCu3(OH)6Cl3,TbCu3(OH)6Cl3,and DyCu3(OH)6Cl3,respectively.

    3.4. Discussion and conclusion

    Theq=0 type magnetic structure with negative-chirality in YCu3(OH)6Cl3is interesting, which was also reported in other kapellasite-type compounds like CdCu3(OH)6(NO3)2withTN=4 K[14]and CaCu3(OH)6Cl2withTN=7.2 K.[31,32]As demonstrated recently,with light lanthanides(Sm and Eu)replacing yttrium, SmCu3(OH)6Cl3and EuCu3(OH)6Cl3still feature canted antiferromagnetic ordering with strong spin frustration.[23,24]The light lanthanides with small magnetic moment may have limited influence on the magnetism of Cukagome lattice.

    In our work,the magnetic and thermodynamic behaviors of LnCu3(OH)6Cl3(Ln = Gd, Tb, Dy) exhibit two significantly different characteristics: large magnetic moment compared with YCu3(OH)6Cl3and a ferromagnetic-like spin correlation belowTN. According to our experimental results,heavy lanthanides(Gd,Tb,Dy)probably modulate the DM interaction and induce a large ferromagnetic correlation, which can mask the intrinsic low-temperature magnetic properties of kagome-Cu2+, but can not prevent the AFM ordering of Cukagome as revealed in specific heat. The Curie–Weiss law no longer works for evaluating the intrinsic interactions. The spectroscopy technology, like electron spin resonance (ESR)orμSR,is hopeful to further detect the detailed magnetic interactions for LnCu3(OH)6Cl3(Ln = Nd, Sm, Eu, Gd, Tb,Dy).

    In summary, we have successfully synthesized the polycrystalline samples of LnCu3(OH)6Cl3(Ln = Gd, Tb and Dy). The heavy lanthanides significantly change the magnetic and thermodynamic behaviors,which keep the intrinsic magnetism of Cu-kagome lattice. LnCu3(OH)6Cl3(Ln=Nd,Sm,Eu, Gd, Tb, Dy) compounds provide a good platform to further investigate systemically the effect of lanthanides on the frustrated magnetism of Cu-kagome lattice.

    Acknowledgement

    We thank Dr. L.Zhang,Dr. J.M.Sheng,and Prof. L.S.Wu for useful discussion.

    猜你喜歡
    李海峰張馨陳鵬
    “烤”驗
    Comparing simulated and experimental spectral line splitting in visible spectroscopy diagnostics in the HL-2A tokamak
    A NEW SUFFICIENT CONDITION FOR SPARSE RECOVERY WITH MULTIPLE ORTHOGONAL LEAST SQUARES*
    陳鵬
    Temperature-dependent structure and magnetization of YCrO3 compound
    涂布率在再造煙草綜合品質(zhì)中的重要性分析
    人生舞臺
    向日葵
    快樂的班隊課
    張馨予
    午夜福利乱码中文字幕| 国产日韩欧美在线精品| 久久久久国产精品人妻一区二区| 午夜久久久在线观看| 欧美黄色片欧美黄色片| 亚洲欧美日韩另类电影网站| 亚洲人成77777在线视频| 深夜精品福利| 午夜福利一区二区在线看| 久久国产精品男人的天堂亚洲| 超色免费av| 老汉色av国产亚洲站长工具| 亚洲国产看品久久| 丰满饥渴人妻一区二区三| 嫩草影视91久久| 丝袜脚勾引网站| 日本av免费视频播放| 如日韩欧美国产精品一区二区三区| 十八禁高潮呻吟视频| 悠悠久久av| 我要看黄色一级片免费的| 久久 成人 亚洲| 搡老乐熟女国产| 777米奇影视久久| 大片电影免费在线观看免费| 人妻久久中文字幕网| 国产免费av片在线观看野外av| 国产日韩欧美在线精品| 三上悠亚av全集在线观看| a级毛片黄视频| 国产99久久九九免费精品| 美女扒开内裤让男人捅视频| 午夜影院在线不卡| 飞空精品影院首页| 久久久久久免费高清国产稀缺| 人妻人人澡人人爽人人| 咕卡用的链子| 日日夜夜操网爽| 高清在线国产一区| 国产成人啪精品午夜网站| 国产欧美日韩一区二区精品| 欧美精品一区二区免费开放| 欧美在线一区亚洲| 18禁国产床啪视频网站| 精品亚洲成国产av| 91字幕亚洲| 久久久久久免费高清国产稀缺| 日韩 亚洲 欧美在线| 一区二区三区乱码不卡18| av天堂久久9| 国产男女内射视频| av天堂久久9| 搡老乐熟女国产| 国产亚洲欧美精品永久| 欧美日韩福利视频一区二区| 国产1区2区3区精品| 天天操日日干夜夜撸| 亚洲成人免费av在线播放| 日韩欧美国产一区二区入口| 99热全是精品| 精品国产超薄肉色丝袜足j| 男人舔女人的私密视频| 男人添女人高潮全过程视频| 精品视频人人做人人爽| 另类亚洲欧美激情| 在线天堂中文资源库| 人人妻,人人澡人人爽秒播| 欧美日韩亚洲高清精品| 欧美精品亚洲一区二区| 又黄又粗又硬又大视频| 免费一级毛片在线播放高清视频 | 久久天躁狠狠躁夜夜2o2o| 1024视频免费在线观看| 久久女婷五月综合色啪小说| kizo精华| 极品少妇高潮喷水抽搐| 亚洲精品成人av观看孕妇| 亚洲专区字幕在线| 亚洲欧美一区二区三区久久| 日本av手机在线免费观看| 久久久精品94久久精品| 国产男女内射视频| 国产亚洲欧美精品永久| 老司机午夜十八禁免费视频| 嫁个100分男人电影在线观看| tocl精华| a级毛片在线看网站| 麻豆av在线久日| 国产极品粉嫩免费观看在线| 首页视频小说图片口味搜索| 国产精品免费大片| 国产人伦9x9x在线观看| 午夜福利视频精品| 亚洲自偷自拍图片 自拍| 一级黄色大片毛片| 蜜桃国产av成人99| 嫩草影视91久久| 男女午夜视频在线观看| 久久精品aⅴ一区二区三区四区| 国产伦理片在线播放av一区| 中文字幕人妻丝袜一区二区| 国产成人精品在线电影| 亚洲一码二码三码区别大吗| 99精品久久久久人妻精品| 成人国产av品久久久| 久久精品成人免费网站| 汤姆久久久久久久影院中文字幕| 亚洲国产av影院在线观看| 777米奇影视久久| 天堂8中文在线网| 国产成+人综合+亚洲专区| 十八禁网站免费在线| 90打野战视频偷拍视频| 18在线观看网站| 18禁裸乳无遮挡动漫免费视频| 青青草视频在线视频观看| 午夜福利影视在线免费观看| 亚洲成人免费电影在线观看| 黑人巨大精品欧美一区二区蜜桃| 免费黄频网站在线观看国产| 91精品三级在线观看| 男女下面插进去视频免费观看| 日韩大码丰满熟妇| 性少妇av在线| 久久久国产一区二区| 国产高清videossex| 亚洲av片天天在线观看| 日韩中文字幕欧美一区二区| 十八禁高潮呻吟视频| 亚洲,欧美精品.| 90打野战视频偷拍视频| 又大又爽又粗| 亚洲国产av影院在线观看| 久久影院123| 一区二区三区四区激情视频| 色老头精品视频在线观看| 成人国产一区最新在线观看| a级片在线免费高清观看视频| 日韩视频一区二区在线观看| 精品福利永久在线观看| e午夜精品久久久久久久| 9色porny在线观看| 水蜜桃什么品种好| 国产亚洲精品第一综合不卡| 国产成人精品在线电影| 亚洲天堂av无毛| 高清在线国产一区| 亚洲va日本ⅴa欧美va伊人久久 | 久久久欧美国产精品| 肉色欧美久久久久久久蜜桃| 日韩有码中文字幕| 久久国产精品人妻蜜桃| a级毛片黄视频| 国产深夜福利视频在线观看| 久久狼人影院| 国产伦人伦偷精品视频| 国产黄频视频在线观看| 免费久久久久久久精品成人欧美视频| 中国国产av一级| 一本综合久久免费| 每晚都被弄得嗷嗷叫到高潮| av视频免费观看在线观看| 性色av乱码一区二区三区2| 99香蕉大伊视频| 欧美一级毛片孕妇| 久久99热这里只频精品6学生| 老熟妇乱子伦视频在线观看 | 欧美激情极品国产一区二区三区| 天天操日日干夜夜撸| 亚洲国产av新网站| 黄片播放在线免费| 亚洲国产精品成人久久小说| 亚洲国产欧美日韩在线播放| tube8黄色片| 美女高潮喷水抽搐中文字幕| 成年美女黄网站色视频大全免费| tocl精华| 日本猛色少妇xxxxx猛交久久| 夜夜骑夜夜射夜夜干| 狠狠精品人妻久久久久久综合| 男女无遮挡免费网站观看| 国产一区二区三区在线臀色熟女 | 欧美人与性动交α欧美精品济南到| 黑人猛操日本美女一级片| 亚洲精品国产av成人精品| 18禁观看日本| 欧美变态另类bdsm刘玥| 免费高清在线观看日韩| 成年人黄色毛片网站| 亚洲成国产人片在线观看| 亚洲av男天堂| 亚洲国产中文字幕在线视频| 国产国语露脸激情在线看| 亚洲精品国产色婷婷电影| 亚洲va日本ⅴa欧美va伊人久久 | kizo精华| 免费观看人在逋| 一进一出抽搐动态| 精品少妇久久久久久888优播| 97精品久久久久久久久久精品| 午夜影院在线不卡| 女性生殖器流出的白浆| 丝袜人妻中文字幕| 免费久久久久久久精品成人欧美视频| 午夜福利影视在线免费观看| 国产欧美日韩一区二区三区在线| 日韩精品免费视频一区二区三区| 黄色视频,在线免费观看| 亚洲精品久久久久久婷婷小说| 欧美另类一区| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲性夜色夜夜综合| 视频区图区小说| 黄色怎么调成土黄色| 国产精品一二三区在线看| 国产精品国产av在线观看| 久久精品国产亚洲av高清一级| 18禁裸乳无遮挡动漫免费视频| 欧美日韩国产mv在线观看视频| 999久久久国产精品视频| 人妻一区二区av| 桃红色精品国产亚洲av| 国产高清国产精品国产三级| 欧美精品亚洲一区二区| 美女福利国产在线| 悠悠久久av| 亚洲国产日韩一区二区| 视频区图区小说| 男男h啪啪无遮挡| 日本91视频免费播放| 精品国产一区二区三区久久久樱花| 国产欧美日韩综合在线一区二区| 欧美一级毛片孕妇| 99国产精品99久久久久| 嫩草影视91久久| 日韩欧美免费精品| 视频区图区小说| 丝袜美足系列| 99国产极品粉嫩在线观看| 久久久水蜜桃国产精品网| 免费在线观看黄色视频的| 久久青草综合色| 亚洲全国av大片| 午夜福利在线免费观看网站| 婷婷丁香在线五月| 亚洲精品成人av观看孕妇| 亚洲久久久国产精品| 国产麻豆69| 色播在线永久视频| 老汉色∧v一级毛片| 久久中文看片网| 成人手机av| 一区二区三区四区激情视频| 纯流量卡能插随身wifi吗| 男女床上黄色一级片免费看| 国产色视频综合| 欧美久久黑人一区二区| 亚洲熟女毛片儿| 国产一卡二卡三卡精品| 亚洲七黄色美女视频| 自拍欧美九色日韩亚洲蝌蚪91| 精品卡一卡二卡四卡免费| 黑人巨大精品欧美一区二区蜜桃| 亚洲国产日韩一区二区| 99精品久久久久人妻精品| 日日摸夜夜添夜夜添小说| 亚洲全国av大片| 视频区欧美日本亚洲| 热99re8久久精品国产| av不卡在线播放| 国产成人系列免费观看| 亚洲国产欧美一区二区综合| 精品久久蜜臀av无| 色婷婷久久久亚洲欧美| 久久久精品免费免费高清| 一级,二级,三级黄色视频| 欧美大码av| 国产日韩欧美视频二区| 深夜精品福利| 国产av又大| 日日爽夜夜爽网站| av线在线观看网站| 肉色欧美久久久久久久蜜桃| 熟女少妇亚洲综合色aaa.| 欧美成人午夜精品| 人妻一区二区av| 69精品国产乱码久久久| 脱女人内裤的视频| 日韩欧美国产一区二区入口| 肉色欧美久久久久久久蜜桃| 亚洲精品国产一区二区精华液| 狂野欧美激情性bbbbbb| 他把我摸到了高潮在线观看 | 高清黄色对白视频在线免费看| 亚洲成国产人片在线观看| 97人妻天天添夜夜摸| 欧美午夜高清在线| 如日韩欧美国产精品一区二区三区| 99国产精品99久久久久| 91成人精品电影| 国产伦人伦偷精品视频| 国产亚洲欧美精品永久| 国产精品国产三级国产专区5o| 99re6热这里在线精品视频| 69精品国产乱码久久久| 亚洲中文日韩欧美视频| 久久国产精品男人的天堂亚洲| 视频在线观看一区二区三区| 精品国产乱子伦一区二区三区 | 亚洲一区二区三区欧美精品| 久久影院123| 欧美日韩黄片免| 欧美黑人精品巨大| 国产色视频综合| 中文字幕高清在线视频| 丝袜喷水一区| 亚洲一区二区三区欧美精品| 高潮久久久久久久久久久不卡| 国产精品影院久久| 亚洲七黄色美女视频| 亚洲精品国产一区二区精华液| 777久久人妻少妇嫩草av网站| 美女高潮喷水抽搐中文字幕| 女警被强在线播放| 免费日韩欧美在线观看| 国产一区有黄有色的免费视频| 国产精品久久久久久人妻精品电影 | 99久久人妻综合| 男女免费视频国产| 夫妻午夜视频| 亚洲国产欧美日韩在线播放| 亚洲九九香蕉| 国产激情久久老熟女| 亚洲专区国产一区二区| 国产欧美日韩精品亚洲av| 爱豆传媒免费全集在线观看| 欧美日韩av久久| 一本一本久久a久久精品综合妖精| 国产欧美日韩综合在线一区二区| 亚洲专区字幕在线| avwww免费| 久久精品亚洲av国产电影网| 久久国产亚洲av麻豆专区| av线在线观看网站| 性色av乱码一区二区三区2| 啦啦啦中文免费视频观看日本| av天堂在线播放| 在线看a的网站| 国产人伦9x9x在线观看| 国产深夜福利视频在线观看| 亚洲精品中文字幕一二三四区 | 久久久精品94久久精品| 老汉色∧v一级毛片| 亚洲人成77777在线视频| av又黄又爽大尺度在线免费看| 少妇 在线观看| 老汉色av国产亚洲站长工具| 女人精品久久久久毛片| 欧美亚洲 丝袜 人妻 在线| 青春草亚洲视频在线观看| 91字幕亚洲| 天天操日日干夜夜撸| av国产精品久久久久影院| 午夜影院在线不卡| 色精品久久人妻99蜜桃| 欧美另类一区| 国产深夜福利视频在线观看| 亚洲一区二区三区欧美精品| 精品少妇久久久久久888优播| 欧美av亚洲av综合av国产av| 嫁个100分男人电影在线观看| 女人爽到高潮嗷嗷叫在线视频| 他把我摸到了高潮在线观看 | 制服诱惑二区| 亚洲精品国产av成人精品| 日韩欧美一区二区三区在线观看 | 丝袜脚勾引网站| 亚洲国产日韩一区二区| 久久久久国产一级毛片高清牌| 亚洲国产欧美日韩在线播放| 久久人妻福利社区极品人妻图片| 淫妇啪啪啪对白视频 | 久久中文字幕一级| 精品一区在线观看国产| 欧美 日韩 精品 国产| 中文字幕另类日韩欧美亚洲嫩草| 欧美少妇被猛烈插入视频| 日韩制服丝袜自拍偷拍| 人成视频在线观看免费观看| 日日夜夜操网爽| 精品一区二区三卡| 亚洲色图 男人天堂 中文字幕| 中文字幕精品免费在线观看视频| 91精品三级在线观看| 人妻久久中文字幕网| 国产高清视频在线播放一区 | 99国产精品99久久久久| 久久久精品免费免费高清| bbb黄色大片| 亚洲欧美清纯卡通| 亚洲视频免费观看视频| 最黄视频免费看| 亚洲va日本ⅴa欧美va伊人久久 | 狠狠狠狠99中文字幕| 久久久久久久精品精品| 国产野战对白在线观看| 亚洲人成电影观看| 搡老熟女国产l中国老女人| 精品人妻熟女毛片av久久网站| 国产男人的电影天堂91| 亚洲专区国产一区二区| 国产精品一区二区在线观看99| 久久久久精品国产欧美久久久 | 90打野战视频偷拍视频| 亚洲欧洲精品一区二区精品久久久| 自线自在国产av| 最近最新免费中文字幕在线| 美国免费a级毛片| 十八禁网站网址无遮挡| 精品久久久久久电影网| 亚洲五月色婷婷综合| 老司机影院毛片| 久久久精品94久久精品| 精品人妻一区二区三区麻豆| 久久九九热精品免费| 大片免费播放器 马上看| 两个人免费观看高清视频| 热99re8久久精品国产| 欧美日韩精品网址| 久久国产精品大桥未久av| 欧美大码av| 国产主播在线观看一区二区| 亚洲人成电影免费在线| 欧美日韩精品网址| 亚洲国产看品久久| 久久香蕉激情| 丝袜脚勾引网站| av有码第一页| 国产日韩一区二区三区精品不卡| 日韩欧美国产一区二区入口| 国产黄频视频在线观看| 色婷婷久久久亚洲欧美| 久久久久精品人妻al黑| 国产激情久久老熟女| 丝袜喷水一区| 99久久精品国产亚洲精品| 国产精品久久久久久精品古装| 中亚洲国语对白在线视频| 午夜福利影视在线免费观看| 国产一区二区三区综合在线观看| √禁漫天堂资源中文www| 国产一区有黄有色的免费视频| 国产一区二区三区在线臀色熟女 | 国产精品一区二区免费欧美 | 午夜久久久在线观看| 女人高潮潮喷娇喘18禁视频| 欧美成狂野欧美在线观看| 欧美激情久久久久久爽电影 | 好男人电影高清在线观看| 日本av免费视频播放| 老熟妇乱子伦视频在线观看 | 最新在线观看一区二区三区| 老汉色∧v一级毛片| 亚洲精品自拍成人| 在线 av 中文字幕| 午夜福利免费观看在线| 久久综合国产亚洲精品| 欧美变态另类bdsm刘玥| 成人三级做爰电影| 乱人伦中国视频| 69精品国产乱码久久久| 欧美日韩黄片免| 亚洲国产欧美一区二区综合| 一边摸一边抽搐一进一出视频| 黑丝袜美女国产一区| 国产高清国产精品国产三级| avwww免费| 国产精品免费大片| 欧美av亚洲av综合av国产av| 精品一区二区三区四区五区乱码| 飞空精品影院首页| 交换朋友夫妻互换小说| av在线播放精品| 波多野结衣av一区二区av| 最新的欧美精品一区二区| 高清在线国产一区| 欧美成人午夜精品| 亚洲国产精品999| 亚洲人成电影观看| 亚洲欧美成人综合另类久久久| 国产成人免费无遮挡视频| 国产成人欧美| 欧美在线一区亚洲| 在线观看舔阴道视频| 亚洲精品美女久久av网站| 日韩制服骚丝袜av| 国产成人欧美| 亚洲五月婷婷丁香| 久久人人爽人人片av| a级毛片在线看网站| 老司机影院成人| 欧美日韩亚洲综合一区二区三区_| av国产精品久久久久影院| 亚洲av美国av| 久久影院123| 久久毛片免费看一区二区三区| 大片电影免费在线观看免费| 无遮挡黄片免费观看| 日本一区二区免费在线视频| 亚洲欧美日韩另类电影网站| 天天操日日干夜夜撸| av电影中文网址| 日韩视频一区二区在线观看| 丁香六月欧美| 亚洲国产日韩一区二区| 50天的宝宝边吃奶边哭怎么回事| avwww免费| 亚洲综合色网址| 亚洲第一av免费看| 少妇的丰满在线观看| 国产亚洲精品第一综合不卡| 操美女的视频在线观看| av线在线观看网站| 热99re8久久精品国产| 纯流量卡能插随身wifi吗| 超色免费av| 亚洲精品成人av观看孕妇| 国产黄色免费在线视频| 亚洲午夜精品一区,二区,三区| 成年美女黄网站色视频大全免费| 欧美乱码精品一区二区三区| 天天添夜夜摸| 人妻人人澡人人爽人人| 黄色视频,在线免费观看| 国产免费视频播放在线视频| 国产欧美亚洲国产| 亚洲 欧美一区二区三区| 亚洲精品粉嫩美女一区| 亚洲 欧美一区二区三区| 久久久久精品人妻al黑| 我的亚洲天堂| 亚洲第一青青草原| 伦理电影免费视频| 国产又色又爽无遮挡免| 精品一区在线观看国产| 久久精品国产亚洲av香蕉五月 | 久久精品aⅴ一区二区三区四区| 色综合欧美亚洲国产小说| 亚洲第一av免费看| 精品久久蜜臀av无| 成年动漫av网址| 一级毛片电影观看| 少妇被粗大的猛进出69影院| 久久ye,这里只有精品| 人人妻人人爽人人添夜夜欢视频| 精品一区二区三区av网在线观看 | 久久精品国产a三级三级三级| 国产成人av教育| 韩国精品一区二区三区| 视频区图区小说| 十八禁高潮呻吟视频| e午夜精品久久久久久久| av在线app专区| 成人国语在线视频| 欧美精品高潮呻吟av久久| 777米奇影视久久| 久久亚洲精品不卡| 免费av中文字幕在线| 欧美变态另类bdsm刘玥| 9色porny在线观看| 日韩,欧美,国产一区二区三区| 久久青草综合色| 欧美日韩中文字幕国产精品一区二区三区 | 欧美激情久久久久久爽电影 | 久久精品熟女亚洲av麻豆精品| 法律面前人人平等表现在哪些方面 | 国产男女超爽视频在线观看| 91九色精品人成在线观看| 日韩熟女老妇一区二区性免费视频| 99久久综合免费| 少妇裸体淫交视频免费看高清 | 久久精品成人免费网站| 动漫黄色视频在线观看| 成人黄色视频免费在线看| 悠悠久久av| 99久久精品国产亚洲精品| 欧美精品高潮呻吟av久久| 欧美另类亚洲清纯唯美| 国产精品国产av在线观看| 搡老乐熟女国产| 啦啦啦 在线观看视频| 天天躁日日躁夜夜躁夜夜| 满18在线观看网站| 九色亚洲精品在线播放| 黄片大片在线免费观看| 亚洲精品国产av蜜桃| 性少妇av在线| 搡老岳熟女国产| 久久久精品94久久精品| 亚洲久久久国产精品| 久久人妻福利社区极品人妻图片| 亚洲情色 制服丝袜| 19禁男女啪啪无遮挡网站| 亚洲国产精品一区三区| 精品一区二区三卡| 亚洲欧洲日产国产| 亚洲国产精品999| 91精品国产国语对白视频| 亚洲九九香蕉| 国产精品一区二区精品视频观看| 超色免费av| 伊人久久大香线蕉亚洲五| 各种免费的搞黄视频| 久久毛片免费看一区二区三区| av国产精品久久久久影院|