• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electronic and magnetic properties of single-layer and double-layer VX2(X=Cl,Br)under biaxial stress?

    2021-10-28 07:02:32XingLi李興YanfengGe蓋彥峰JunLi李軍WenhuiWan萬(wàn)文輝andYongLiu劉永
    Chinese Physics B 2021年10期
    關(guān)鍵詞:李軍

    Xing Li(李興), Yanfeng Ge(蓋彥峰), Jun Li(李軍), Wenhui Wan(萬(wàn)文輝), and Yong Liu(劉永)

    State Key Laboratory of Metastable Materials Science and Technology&Key Laboratory for Microstructural Material Physics of Hebei Province,

    School of Science,Yanshan University,Qinhuangdao 066004,China

    Keywords: first-principles,biaxial tensile stress,phase transition,magnetic properties

    1. Introduction

    Since graphene[1]with weak interlayer van der Waals (vdW) interaction was successfully exfoliated, twodimensional (2D) materials have received extensive attention from scientists. Many 2D materials with excellent optical,[2,3]mechanical,[4]electrical,[5–7]and magnetic[8,9]properties have been widely studied, such as: phosphorene,[10,11]transition metal dichalcogenides (TMDs),[12,13]and CrI3.[14–16]Among them, 2D magnetic semiconductor materials have great potential in spintronic devices[17,18]due to their magnetic properties and ultra-thin thickness.

    The large area and outstanding stretchability of 2D materials allow its magnetic properties be tailored by external field. For example, when an external electric field[19]is applied to this CrI3,electrons transporting through the CrI3barriers will generate huge magnetoresistance[15,16,20]due to the spin filtering effect. Songet al.proposed that the perpendicular electric field can adjust the splitting energy and reverse the spin splitting direction in the vdW monolayer arsenene/FeCl2heterostructures.[21]On the other side, stress engineering is also a common method to control the magnetic properties of 2D materials. The stress on the 2D material can be realized by the methods of substrate effect[22–24]and piezoelectric actuators[25,26]in the experiments. Zhuet al.pointed that the magnetic anisotropy energy of the 2D vdW GeS/FeCl2multiferroic heterostructures can be increased by applying biaxial compressive strain.[27]Zhanget al.found that there is a strain-induced phase transition from half semiconductor to bipolar magnetic semiconductor in the Janus Cr2I3X3(X=Cl,Br)monolayer.[28]When a biaxial tensile stress of 3.5%is applied to the single-layer of MoS2doped with single Fe atom,its magnetic moment changes from 2.04μBto 4μB.[12]Besides,there are phase transitions between the FM state and the AFM state in 2D materials[29–31]when stress is applied. For instance, when a biaxial compressive stress is applied, single layer CrI3[29]has a phase transition from FM state to AFM state,and single layer MnPSe3[30]has a phase transition from AFM state to FM state.

    Inspired by the research of 2D material under external stress field, we put the research goal on 2D transition metal dihalides VX2(X= Cl, Br). There are three stable phases[13,32–34](T phase,H phase,and Tdphase)in the widely studied 2D TMDs.[35,36]Since 2D transition metal dihalides and TMDs differ only in non-metallic atoms, we also use the phases mentioned above to analyze 2D transition metal dihalide VX2. Several theoretical works[37,38]have displayed that the ground state of free-standing single-layer VX2in both 1H and 1T phases are AFM. In this work, we systematically investigated the mechanical, dynamic, electronic, and magnetic properties of single-layer and double-layer VX2under different stresses.Similar to previous work,[39]different stacking patterns are considered in constructing double-layer VX2.We find that the ground states of the single and double layer VX2are AFM semiconductors with T phase, and they are mechanically and kinetically stable. A phase transition from AFM state to FM state occurs when the biaxial tensile stress is applied. The mechanism of the magnetical phase transition is the competition between direct exchange and superexchange interactions. The band gaps increase and then turn to decreasing under biaxial tensile stress. Besides,applying stress to the VX2can increase the value ofTN.

    2. Theoretical method

    In the framework of density functional theory (DFT),the electronic structure and magnetic properties of materials were studied using the projector augmented wave (PAW)method, which was implemented in the Viennaab initiosimulation software package (VASP).[40,41]Perdew–Burke–Ernzerhof (PBE) was used to process the exchange relation function.[42]In this paper, a supercell size of 2×2×1 unit cells was used to study the magnetic structures in the calculations. A cutoff energy of 600 eV and aΓ-centered Monkhorst–Packk-points mesh of 9×9×1 for the Brillouin zone was found to be sufficient to obtain the convergence.The conjugate-gradient algorithm was employed for geometry optimization using convergence criterion of 10?6eV for the total energy and 0.01 eV/°A for Hellmann–Feynman force components. Using the density functional perturbation theory(DFPT)[43]to calculate the phonon spectrum,the convergence criterion of 10?10eV for the total energy and 10?5eV/°A for Hellmann–Feynman force components. We included the vdW correction in all the calculations using zero damping DFT-D3 method of Grimme.[44]

    3. Results and discussion

    The present work explores single-layer and double-layer VX2(X= Cl, Br) with the three most common phases in TMDs,namely T,H,and Tdphases.[13,32,34]Since the singlelayer and double-layer materials can be constructed by peeling off one or two layers from bulk materials, we need to construct the bulk structures at first. For the single-layer T-phase structure, there are three unequal positions (named A, B, C)in the c-axis direction, which are the position of one V atom and the positions of twoXatoms. And the single-layer Hphase structure has two unequal positions (named A, B) in thec-axis direction. Therefore, we could consider different stackings for the bulk structures. For example, AA stacking,AB stacking, and ABC stacking (stacking here only considers the different stacking methods of V atoms) are shown in Fig. 1 and Figs. A1–A3 in Appendix A: Supplemental material(See supplemental material for more details on the structures constructed, antiferromagnetic configurations of singlelayer structure, phonon spectrums, the formula for calculating the exchange correlation constant of double layer materials,and the exchange correlation constant of the ground-state single-layer and double-layer VX2). The bulk T-phase structure (ABC stacking) has hexagonal lattice, which belongs to theR3mspace group(166). In calculations,the non-magnetic(NM),FM,and AFM states are considered,by optimizing the atomic position and lattice constant to fnid the lowest energy states. The structures of Tdphase and T′phase would turn to the corresponding stacking forms of T phase when magnetism is considered, and the only difference between Td-phase and T′-phase structures is the stacking. In the following calculations,we only consider the T-phase and H-phase structures.

    Fig.1. The schematic diagrams of the ground-state structure of the bulk transition metal dihalide VX2 (X =Cl, Br) in the c direction(a)and a direction(b). The ground-state AFM configurations of single-layer (c) and doublelayer (d) transition metal dihalide VX2 (X =Cl, Br), respectively. J1 and J2 represent the exchange correlation constant of the nearest neighbor and next-nearest neighbor in the layer,and J3 represents the exchange correlation constant of the third nearest neighbor between the layers.

    The cleavage energy is the energy required to cleave the bulk materials in two halves,[45]which is a criterion for judging whether the bulk material is easy to peel off. The formula used to calculate the cleavage energy givesEc=Es?Et,whereEsdenotes the total energy of two separate parts andEtdenotes the total energy of the bulk. We find that the cleavage energy(see Table 1)of all structures considered in the article are less than that of graphene[46](0.36 J/m2), so they are easy to be peel off. Furthermore,the formation energy determine the difficulty for sythesision of VX2. For the binary compound VX2,the expression for the formation energy can be written as

    whereE(V),E(X),andE(VX2)are the normalized energy of the stable bulk bcc-V, gas phases (Cl2, Br2), and bulk VX2,respectively. See Table 1, since the formation energies of all stuctures considered in this paper have negative values,which are experimentally stable.

    Table 1. A summary table of the formation and cleavage energy of bulk VCl2 and VBr2. Ec stands for cleavage energy and Ef stands for formation energy.

    In order to determine the most stable phases in all structures, one NM, one FM, and four AFM configurations are considered for the single-layer structure. For the double-layer structure,one NM,one FM,and seven AFM configurations[47]are considered. We find that the T-phase of the single-layer structure has lower formation energies, and the ground state magnetic order (named AFM2) is shown in Fig. 1(c) which is consistent with previous work.[37,38]The ABC stacking double-layer structure with T phase is more stable, and the ground-state AFM configuration is shown in Fig.1(d). In Table 2,the NM state has higher energy than the magnetic state,only the corresponding AFM configuration of the ground state is considered in the following calculations. Furthermore, in order to test the dynamic stability of the ground state singlelayer and double-layer structures,we provide the corresponding phonon spectrums in Fig.A5. There is no imaginary frequencies,implying the kinetic stability of the single-layer and double-layer VX2.

    Figure 2 shows the electronic band structures and project density of states(PDOS)of the ground-state phases(the structure shown in Fig. 1). The indirect band gaps of the doublelayer VX2(1.0276 eV forX=Cl, 1.0170 eV forX=Br)is smaller than that of the single-layer VX2(1.0713 eV forX=Cl, 1.0472 eV forX=Br). Further, the electronic band structure of the double-layer structure is different from that of the single-layer structure in theKtoΓrange. The electrons of the d orbital of the V atom that play a major role to the band structure in this range. Due to the coupling between the layers, the electrons are not only localized in the plane, but also a small amount of electrons in a small range close to the plane, which leads to the difference in the band structure betweenKandΓ. The density of states (DOS) of all materials near the Fermi energy is reduced to zero,make these materials semi-conductivity.

    Table 2. The normalized energy table of the ground state(AFM state),FM state,and NM state of single-layer and double-layer VX2 (X =Cl,Br). s-T represents single-layer T-phase structure,and d-T represents double-layer T-phase structure.

    Fig.2. The ground-state electronic band structures and project density of states(PDOS)of(a)s-T-VCl2,(b)d-T-VCl2,(c)s-T-VBr2,and(d)d-T-VBr2.

    For the 2D material VX2(X=Cl, Br), the microscopic mechanisms of VX2,which determine the magnetic properties,contain two parts: (i) direct AFM exchange interaction between two V atoms;(ii)FM superexchange interaction among V–Cl(Br)–V with an anionic mediation Cl(Br). The competition between AFM and FM may lead to different magnetic ground state. When the direct exchange interaction between two V atoms is stronger than the superexchange interaction between V–Cl(Br)–V,the ground state of the material shows AFM, otherwise it is FM. Here, the direct exchange interaction between V atoms is dominant in these systems. For AFM materials,the N′eel temperature(TN)[48,49]refers to a parameter of the temperature at which the AFM phase of the antiparallel magnetic order changes to the NM phase. We use the Ising model in the Monte Carlo method to calculate it. The Hamiltonian[50]can be written in the following form:

    whereJijrepresents the exchange interactions of over all neighbor V–V pairs,Sirepresents the spin of the atomi.For the single-layer structure, this paper considers the nearest neighbor and the next nearest neighbor interaction,and the third nearest neighbor interaction between the layers is also considered for the double-layer structure. To calculateJ, we write the energy of the single-layer VX2in the FM, AFM2,and AFM4 configurations(shown in Fig.A4)in the following form:

    whereJ1andJ2(shown in Fig. 1(c)) represent the exchange correlation constant of the nearest neighbor and the next nearest neighbor,andE0is the energy of a single-layer VX2without spin polarization andS=3/2.[51]Through calculations,the absolute value ofJ1for all materials is much greater thanJ2(J3),and the value ofJ1is negative(in the Table A1),which further verifies the antiferromagnetism of the ground states.We use the Metropolis algorithm and a 32×32 2D supercell with periodic boundary conditions to computeTN,and the calculations are implemented in mcsolver software.[52]Besides,because 2D materials have excellent stretchability, the pressure factor is also taken into account in the calculations. Figure 3 shows that the Monte Carlo simulations ofTNof the single-layer and double-layer VX2with pressure. When no stress is applied,theTNof single-layer and double-layer VCl2is 62 K and 96 K, and the value of single-layer and doublelayer VBr2is 32 K and 144 K.Compared with the single-layer VX2, theTNof the double-layer VX2are higher. In Table 2,the normalized energy of the double-layer structure is lower than that of the single-layer structure, so the coupling effect between the layers makes the double-layer systems more stable and higherTN. When stress is applied to the materials,as the stress increases,theTNof all materials tend to increase.

    Further,we calculate the Curie temperature(Tc)of the ferromagnetic state under a tensile stress of 8%,theTcof singlelayer and double-layer VCl2is 53 K and 24 K, respectively.Due to the 8% stress is close to the phase transition point of single-layer and double-layer VCl2, the small exchange correlation constant results in a low Curie temperature. TheTcof single-layer and double-layer VBr2is 175 K and 293 K,respectively. The latter one is close to the room temperature.

    Fig.3. (a) The N′eel temperature of single-layer and double-layer VCl2 and VBr2 under stress. (b) The Curie temperature of single-layer and doublelayer VCl2 and VBr2 under 8% biaxial tensile stress, m represents the total magnetic moment per V atom.

    We also explore the magnetic state, magnetic moment and band gap depends of biaxial stress. From Fig. 4(a), the ground states of all materials change from an AFM state to an FM state when the biaxial tensile stress reaches the corresponding critical point. Meanwhile, there are no phase transitions under biaxial compressive stress. The stress of the phase transition points of the single-layer and double-layer VCl2are 6.65%and 7.64%,while the single-layer and doublelayer VBr2are 4.49%and 5.32%. For the same material, the phase transition stress for a double-layer structure is greater than that of a single-layer structure. See Fig. 4(b), the band gaps also changes under by applying biaxial stress. When applying pressure, the band gaps of all materials gradually decrease. However, when stress increases, the band gaps of all materials firstly become larger and then turn smaller. Noted that the band gaps decrease rapidly near the phase transition point. In Fig. 4(c), we find that the magnetic moment gradually decreases and increases under biaxial compressive and tensile stress, respectively. As the spin-polarized charges of VX2(X=Cl and Br)mainly arise from the localized nonbonding V-3d electrons,the increase of tensile stress reduces the covalent interaction between V and Cl or Br atoms. As a result,the number of nonbonding V-3d electrons increases, so that the magnetic moment of V atomic increases.[53]On the other side,compressive stress has the opposite effect. Moreover,the magnetic moment jumps at the phase transition points,and becomes insensitive to stress after the phase transition points.

    Fig.4. (a)Magnetic ground state,(b)band gap,and(c)magnetic moment of single-layer and double-layer VCl2 and VBr2 under biaxial stress.

    4. Conclusion

    In summary, we explore the ground state phases among the possible structures of single-layer and double-layer VX2(X=Cl, Br)based on first-principles calculations. The electronic and magnetic properties of the corresponding phase under biaxial stress are systematically investigated. The ground states of single-layer and double-layer VX2are all AFM semiconductors with T phase, and are dynamically and mechanically stable. All ground-state structures only have one phase transition from AFM to FM under biaxial tensile stress. The mechanism of the magnetic phase transition is the competition between direct exchange and superexchange interactions.The band gaps increase and then turn to decreasing under biaxial tensile stress.TNof the single-layer are lower than that of double-layer VX2according to Monte Carlo simulations,which may be caused by the coupling effect between the layers. Besides,applying stress to the VX2can increase the value ofTNand the magnetic moment increases as the biaxial tensile stress increases. In 2015,Lvet al.[54]summarized controlled synthesis of 2D TMDs using wet chemical approaches,chemical exfoliation,and chemical vapor deposition(CVD).Meanwhile,it is possible to control the number of layers when synthesizing these materials. Our results show that single-layer and double-layer VX2(X=Cl, Br) would possess potential applications in spintronic devices. We also hope that our theoretical research will be helpful to the further experiment.

    Acknowledgment

    Thanks to the teachers and classmates who have helped me,and thanks to my parents and friends for their supports.

    Appendix A:Supplemental material

    In order to better understand and explain the descriptions in the main text, some figures, formulas, and table are given below.

    Fig.A1. The schematic diagrams of the bulk T-phase VX2(X=Cl,Br)of(a)AA stacking and(b)AB stacking.

    Fig. A2. The schematic diagrams of the bulk H-phase VX2 (X =Cl, Br) of(a)AA stacking and(b)AB stacking.

    Fig.A3.The schematic diagrams of the bulk VX2(X=Cl,Br)of(a)T′-phase and(b)Td-phase.

    Table A1. The exchange correlation constants of the ground-state singlelayer and double-layer VX2.

    Fig. A4. The antiferromagnetic configurations of single-layer VX2 of (a)AFM1,(b)AFM3,and(c)AFM4.

    Fig.A5. Phonon spectrum of the ground-state single-layer and double-layer(a)VCl2 and(b)VBr2.

    Fig.A6. Phonon spectrum of the ground-state single-layer and double-layer(a)VCl2 and(b)VBr2 under 10%tensile stress.

    The formulas for calculating the exchange correlation constants of double layer materials are given below:

    猜你喜歡
    李軍
    木棉花開
    人民之聲(2022年3期)2022-04-12 12:00:14
    Superconductivity in octagraphene
    Soliton,breather,and rogue wave solutions for solving the nonlinear Schr¨odinger equation using a deep learning method with physical constraints?
    A physics-constrained deep residual network for solving the sine-Gordon equation
    Flow structures and hydrodynamics of unsteady cavitating flows around hydrofoil at various angles of attack *
    Mechanical Behavior of Plastic PiPe Reinforced by Cross-Winding Steel Wire Subject to Foundation Settlement
    滬港通一周成交概況
    李軍書法藝術(shù)簡(jiǎn)介
    散文百家(2014年11期)2014-08-21 07:16:04
    MULTI-OBJECTIVE PROGRAMMING FOR AIRPORT GATE REASSIGNMENT
    AIRCRAFT CONCEPT EVALUATION AND EFFECTIVENESS-BASED DECISION-MAKING
    tocl精华| 亚洲欧美精品自产自拍| 九色亚洲精品在线播放| 午夜免费鲁丝| 中国美女看黄片| 国产黄色免费在线视频| 十八禁网站免费在线| 久久人人97超碰香蕉20202| 国产精品久久久久久精品电影小说| 亚洲色图综合在线观看| 十分钟在线观看高清视频www| 亚洲国产中文字幕在线视频| 精品国产乱子伦一区二区三区 | 国产精品99久久99久久久不卡| 老汉色∧v一级毛片| 国产日韩欧美亚洲二区| 巨乳人妻的诱惑在线观看| 久久精品国产亚洲av香蕉五月 | 国产亚洲一区二区精品| 丝袜美足系列| 老司机亚洲免费影院| 亚洲成人免费电影在线观看| 欧美日韩黄片免| www.自偷自拍.com| 精品一区二区三卡| 男人添女人高潮全过程视频| 亚洲国产欧美日韩在线播放| 亚洲av成人一区二区三| 精品久久久精品久久久| 久久国产亚洲av麻豆专区| 正在播放国产对白刺激| 老司机午夜福利在线观看视频 | 黄色视频不卡| 亚洲视频免费观看视频| 国产xxxxx性猛交| 精品人妻一区二区三区麻豆| 三上悠亚av全集在线观看| 欧美日韩视频精品一区| 波多野结衣一区麻豆| 久久九九热精品免费| 日本vs欧美在线观看视频| 国产精品 欧美亚洲| 窝窝影院91人妻| 色老头精品视频在线观看| 欧美 日韩 精品 国产| 巨乳人妻的诱惑在线观看| 国产免费现黄频在线看| 在线看a的网站| 国产色视频综合| 亚洲一区二区三区欧美精品| 亚洲国产欧美一区二区综合| 精品国产一区二区三区久久久樱花| 在线观看免费高清a一片| 色视频在线一区二区三区| 亚洲av电影在线观看一区二区三区| 母亲3免费完整高清在线观看| 69av精品久久久久久 | 久久青草综合色| 99国产精品99久久久久| 又紧又爽又黄一区二区| 夜夜骑夜夜射夜夜干| 在线观看舔阴道视频| 日韩免费高清中文字幕av| 搡老熟女国产l中国老女人| 9色porny在线观看| 18禁裸乳无遮挡动漫免费视频| 男女边摸边吃奶| 久久久久久久久久久久大奶| 久久天躁狠狠躁夜夜2o2o| 美女高潮到喷水免费观看| 黄片小视频在线播放| 欧美激情 高清一区二区三区| 精品人妻在线不人妻| 日本五十路高清| 飞空精品影院首页| 丝袜喷水一区| 亚洲,欧美精品.| 久久精品国产亚洲av香蕉五月 | 香蕉国产在线看| 久久精品国产亚洲av高清一级| 少妇被粗大的猛进出69影院| av在线app专区| 丁香六月天网| 热re99久久精品国产66热6| 色婷婷久久久亚洲欧美| 一级毛片女人18水好多| 午夜日韩欧美国产| 亚洲精品av麻豆狂野| 欧美国产精品一级二级三级| 高清av免费在线| av又黄又爽大尺度在线免费看| 亚洲人成电影观看| 老司机影院毛片| 男人添女人高潮全过程视频| 久久久久久久精品精品| 午夜激情久久久久久久| 国产男人的电影天堂91| 精品国产一区二区久久| 十八禁人妻一区二区| 久久精品亚洲av国产电影网| 精品熟女少妇八av免费久了| 欧美变态另类bdsm刘玥| 成人影院久久| 亚洲avbb在线观看| 午夜久久久在线观看| 精品欧美一区二区三区在线| 成人国产av品久久久| 一个人免费看片子| 久久亚洲精品不卡| 永久免费av网站大全| 国产区一区二久久| 在线观看舔阴道视频| www.自偷自拍.com| 国产在线视频一区二区| 国产av又大| 亚洲欧洲精品一区二区精品久久久| 国产精品久久久久久精品电影小说| 精品人妻一区二区三区麻豆| 国产欧美日韩精品亚洲av| 欧美日韩视频精品一区| 国产成人啪精品午夜网站| 脱女人内裤的视频| 美女国产高潮福利片在线看| 国产在线观看jvid| 叶爱在线成人免费视频播放| 精品国产乱码久久久久久男人| 69av精品久久久久久 | 亚洲av日韩精品久久久久久密| 午夜福利,免费看| 18禁国产床啪视频网站| 国产精品久久久人人做人人爽| 免费日韩欧美在线观看| 99国产极品粉嫩在线观看| 久久人人97超碰香蕉20202| 亚洲伊人色综图| 精品少妇黑人巨大在线播放| 制服诱惑二区| 窝窝影院91人妻| 在线十欧美十亚洲十日本专区| 悠悠久久av| 国产av一区二区精品久久| 色94色欧美一区二区| 国产熟女午夜一区二区三区| 久久久精品94久久精品| 天堂俺去俺来也www色官网| 伊人久久大香线蕉亚洲五| 精品国产一区二区久久| 少妇裸体淫交视频免费看高清 | 激情视频va一区二区三区| 可以免费在线观看a视频的电影网站| 欧美精品一区二区大全| 欧美日韩中文字幕国产精品一区二区三区 | 性高湖久久久久久久久免费观看| videos熟女内射| 亚洲av成人一区二区三| svipshipincom国产片| 精品国产乱码久久久久久小说| 啪啪无遮挡十八禁网站| 性高湖久久久久久久久免费观看| 美女高潮喷水抽搐中文字幕| 一区二区日韩欧美中文字幕| 丝瓜视频免费看黄片| 一进一出抽搐动态| 久久人妻福利社区极品人妻图片| 国产精品香港三级国产av潘金莲| 80岁老熟妇乱子伦牲交| 免费少妇av软件| 搡老岳熟女国产| 男女无遮挡免费网站观看| 精品亚洲成国产av| 黄色 视频免费看| 亚洲精品中文字幕在线视频| 超碰97精品在线观看| 999精品在线视频| 中文字幕人妻熟女乱码| 日本精品一区二区三区蜜桃| 美女主播在线视频| 一级片免费观看大全| 成年美女黄网站色视频大全免费| 曰老女人黄片| 人人澡人人妻人| 99久久99久久久精品蜜桃| 啦啦啦中文免费视频观看日本| 91老司机精品| av又黄又爽大尺度在线免费看| 亚洲精品国产av蜜桃| 亚洲成国产人片在线观看| 黄片大片在线免费观看| 久久中文字幕一级| 欧美老熟妇乱子伦牲交| 久久精品国产综合久久久| av网站免费在线观看视频| 亚洲精品国产精品久久久不卡| 亚洲第一青青草原| 久久久久久免费高清国产稀缺| 曰老女人黄片| 丰满少妇做爰视频| 久久综合国产亚洲精品| 久久久久久久久久久久大奶| 美女高潮到喷水免费观看| 十八禁网站网址无遮挡| 日韩欧美国产一区二区入口| 建设人人有责人人尽责人人享有的| 色播在线永久视频| 国产伦人伦偷精品视频| 他把我摸到了高潮在线观看 | 在线观看免费视频网站a站| 亚洲成人免费电影在线观看| 无限看片的www在线观看| 免费av中文字幕在线| 国产成人av教育| 久久久久久久久久久久大奶| 久久国产精品男人的天堂亚洲| 亚洲精品国产区一区二| 午夜91福利影院| av天堂久久9| 菩萨蛮人人尽说江南好唐韦庄| 欧美精品一区二区大全| 精品久久久久久久毛片微露脸 | 日韩 亚洲 欧美在线| 91大片在线观看| 亚洲成国产人片在线观看| 欧美日韩一级在线毛片| 免费看十八禁软件| 久久人妻熟女aⅴ| 国产一区二区三区综合在线观看| av在线老鸭窝| 狠狠精品人妻久久久久久综合| 亚洲国产成人一精品久久久| 女性被躁到高潮视频| 一级毛片女人18水好多| 夫妻午夜视频| 国产精品亚洲av一区麻豆| 精品国产乱码久久久久久小说| 欧美日韩成人在线一区二区| 久久久国产精品麻豆| 成年动漫av网址| 国产精品麻豆人妻色哟哟久久| 亚洲国产欧美日韩在线播放| 国产精品一区二区精品视频观看| 美国免费a级毛片| 免费日韩欧美在线观看| 9热在线视频观看99| 午夜免费成人在线视频| 国产精品久久久人人做人人爽| 亚洲第一青青草原| 亚洲中文av在线| 亚洲性夜色夜夜综合| 99国产综合亚洲精品| 久久99一区二区三区| 大陆偷拍与自拍| 电影成人av| 国产福利在线免费观看视频| 国产精品av久久久久免费| 91国产中文字幕| 如日韩欧美国产精品一区二区三区| 久久九九热精品免费| 一区二区av电影网| 多毛熟女@视频| 老司机福利观看| 午夜免费鲁丝| 夜夜骑夜夜射夜夜干| 成人影院久久| 咕卡用的链子| av不卡在线播放| 岛国在线观看网站| 欧美日韩av久久| 久久久精品区二区三区| 欧美97在线视频| 黄色视频不卡| 人人妻人人澡人人爽人人夜夜| 中文字幕另类日韩欧美亚洲嫩草| 国产成人精品无人区| 国产精品成人在线| 99热国产这里只有精品6| 国产97色在线日韩免费| 伦理电影免费视频| 亚洲国产欧美网| av免费在线观看网站| 韩国高清视频一区二区三区| 九色亚洲精品在线播放| 妹子高潮喷水视频| 精品人妻1区二区| 欧美在线黄色| 成人免费观看视频高清| 国产成人精品久久二区二区91| 香蕉国产在线看| 麻豆av在线久日| 免费久久久久久久精品成人欧美视频| 丰满迷人的少妇在线观看| 亚洲欧美一区二区三区久久| 一区二区三区乱码不卡18| 日本av手机在线免费观看| 国产精品一区二区在线不卡| 一区二区三区乱码不卡18| 99热全是精品| 嫩草影视91久久| 久久久国产精品麻豆| 男女边摸边吃奶| 亚洲国产av新网站| 国产日韩一区二区三区精品不卡| 午夜日韩欧美国产| 欧美精品啪啪一区二区三区 | 91麻豆av在线| 一级毛片电影观看| 成人影院久久| 亚洲欧美一区二区三区久久| 亚洲精品在线美女| 亚洲熟女毛片儿| 欧美激情久久久久久爽电影 | 日本一区二区免费在线视频| 午夜激情久久久久久久| xxxhd国产人妻xxx| 五月天丁香电影| www.自偷自拍.com| 国产欧美日韩一区二区三 | 黑人巨大精品欧美一区二区蜜桃| 亚洲综合色网址| 亚洲 欧美一区二区三区| 久久久久国产精品人妻一区二区| 国产在线观看jvid| 精品人妻一区二区三区麻豆| 成年人午夜在线观看视频| 亚洲av电影在线观看一区二区三区| 久久性视频一级片| 日韩大码丰满熟妇| 热99re8久久精品国产| 老司机影院毛片| 亚洲精品国产精品久久久不卡| 久久国产精品大桥未久av| 国产精品国产av在线观看| 欧美+亚洲+日韩+国产| 欧美另类一区| 我要看黄色一级片免费的| 成人av一区二区三区在线看 | 一二三四社区在线视频社区8| 肉色欧美久久久久久久蜜桃| 亚洲第一青青草原| 天堂中文最新版在线下载| 欧美大码av| 九色亚洲精品在线播放| 国产淫语在线视频| 69av精品久久久久久 | 久久久国产精品麻豆| 免费黄频网站在线观看国产| 欧美日韩亚洲综合一区二区三区_| 日本wwww免费看| 亚洲精品国产色婷婷电影| 午夜福利视频精品| 国产精品久久久人人做人人爽| 亚洲精品日韩在线中文字幕| 欧美一级毛片孕妇| 91精品国产国语对白视频| 嫩草影视91久久| 午夜福利免费观看在线| 日韩中文字幕视频在线看片| 老司机在亚洲福利影院| 欧美日本中文国产一区发布| 夜夜夜夜夜久久久久| 欧美精品亚洲一区二区| 久久久久精品人妻al黑| 午夜老司机福利片| 黄色视频在线播放观看不卡| 99re6热这里在线精品视频| 国产精品.久久久| 亚洲第一av免费看| 宅男免费午夜| 久久久久国内视频| 欧美中文综合在线视频| 99九九在线精品视频| 国产不卡av网站在线观看| 国产成人精品无人区| 各种免费的搞黄视频| 国产有黄有色有爽视频| 一级毛片女人18水好多| 97精品久久久久久久久久精品| 日韩欧美一区二区三区在线观看 | 国产精品久久久久久精品电影小说| 99国产精品一区二区三区| 黄片小视频在线播放| 亚洲精品久久久久久婷婷小说| 伦理电影免费视频| 9热在线视频观看99| 欧美精品高潮呻吟av久久| 久久99一区二区三区| 香蕉国产在线看| 午夜激情久久久久久久| 99九九在线精品视频| av免费在线观看网站| 另类精品久久| avwww免费| 久久精品熟女亚洲av麻豆精品| 午夜福利,免费看| 大香蕉久久网| 欧美xxⅹ黑人| 亚洲国产欧美一区二区综合| 日韩三级视频一区二区三区| 一级片免费观看大全| 欧美日韩成人在线一区二区| 久久ye,这里只有精品| 欧美人与性动交α欧美软件| 日日摸夜夜添夜夜添小说| 亚洲欧洲精品一区二区精品久久久| 黑人巨大精品欧美一区二区mp4| 午夜福利视频在线观看免费| 欧美日本中文国产一区发布| 精品人妻1区二区| 日本91视频免费播放| 久久毛片免费看一区二区三区| 欧美xxⅹ黑人| 欧美日韩视频精品一区| 久久久久久久精品精品| 成年人午夜在线观看视频| av视频免费观看在线观看| 精品免费久久久久久久清纯 | 国内毛片毛片毛片毛片毛片| 女警被强在线播放| 午夜免费鲁丝| 亚洲精品中文字幕在线视频| 久久亚洲国产成人精品v| 欧美在线一区亚洲| 在线av久久热| 国产成+人综合+亚洲专区| 国产亚洲精品第一综合不卡| 国产欧美亚洲国产| 亚洲色图 男人天堂 中文字幕| 青春草亚洲视频在线观看| 丝袜脚勾引网站| 91精品伊人久久大香线蕉| 久久午夜综合久久蜜桃| 国产精品免费视频内射| 成人国产一区最新在线观看| 日韩欧美一区视频在线观看| 永久免费av网站大全| 老司机影院毛片| 国产色视频综合| 一本—道久久a久久精品蜜桃钙片| 99国产精品一区二区三区| 亚洲精品久久成人aⅴ小说| 啪啪无遮挡十八禁网站| 正在播放国产对白刺激| 亚洲精品第二区| 午夜免费观看性视频| 岛国毛片在线播放| 精品国产一区二区久久| 在线观看舔阴道视频| 巨乳人妻的诱惑在线观看| 久久精品成人免费网站| 亚洲精品av麻豆狂野| av线在线观看网站| 1024香蕉在线观看| 国产欧美亚洲国产| 99久久精品国产亚洲精品| 天天躁日日躁夜夜躁夜夜| 国产精品久久久av美女十八| 叶爱在线成人免费视频播放| 一区二区三区精品91| 国产成人啪精品午夜网站| 精品国产国语对白av| 久久精品成人免费网站| √禁漫天堂资源中文www| 激情视频va一区二区三区| 亚洲专区中文字幕在线| 黄色视频在线播放观看不卡| 亚洲伊人色综图| 日韩视频一区二区在线观看| 欧美黄色淫秽网站| 国产精品熟女久久久久浪| 少妇 在线观看| 久热这里只有精品99| 一级,二级,三级黄色视频| 爱豆传媒免费全集在线观看| 午夜福利视频精品| www.999成人在线观看| 三级毛片av免费| 手机成人av网站| 美女高潮到喷水免费观看| 在线观看免费午夜福利视频| 成人18禁高潮啪啪吃奶动态图| 少妇粗大呻吟视频| 深夜精品福利| 国产成人免费观看mmmm| 亚洲精品国产av成人精品| 亚洲国产毛片av蜜桃av| 一级,二级,三级黄色视频| 国产成人一区二区三区免费视频网站| 免费日韩欧美在线观看| 90打野战视频偷拍视频| 婷婷丁香在线五月| 99热全是精品| 99精品欧美一区二区三区四区| 午夜福利在线观看吧| 一区在线观看完整版| 精品一区二区三区av网在线观看 | 精品人妻一区二区三区麻豆| www.av在线官网国产| 在线观看免费午夜福利视频| 国产男女内射视频| 9热在线视频观看99| 国产亚洲av片在线观看秒播厂| 国产一区二区激情短视频 | 欧美精品人与动牲交sv欧美| 亚洲欧洲日产国产| 国产精品久久久久久精品古装| 91成年电影在线观看| 午夜激情久久久久久久| 精品国产乱子伦一区二区三区 | 日本欧美视频一区| 国产精品国产av在线观看| 亚洲人成电影观看| 亚洲av日韩精品久久久久久密| 国产一区二区三区在线臀色熟女 | 亚洲精品久久成人aⅴ小说| 丝袜人妻中文字幕| 亚洲精品av麻豆狂野| 男女午夜视频在线观看| 亚洲国产精品一区二区三区在线| 久久久久久久久免费视频了| 狂野欧美激情性bbbbbb| 99国产极品粉嫩在线观看| 一个人免费在线观看的高清视频 | 免费av中文字幕在线| 夫妻午夜视频| 少妇粗大呻吟视频| 午夜福利在线免费观看网站| 法律面前人人平等表现在哪些方面 | 国产男女超爽视频在线观看| e午夜精品久久久久久久| 精品少妇久久久久久888优播| 国产精品国产三级国产专区5o| 啦啦啦视频在线资源免费观看| 自线自在国产av| 天天添夜夜摸| 色综合欧美亚洲国产小说| 国产成人免费无遮挡视频| 午夜免费观看性视频| 一进一出抽搐动态| a 毛片基地| 蜜桃在线观看..| 亚洲av国产av综合av卡| e午夜精品久久久久久久| 9热在线视频观看99| a级片在线免费高清观看视频| 欧美亚洲 丝袜 人妻 在线| 黄色毛片三级朝国网站| 精品人妻在线不人妻| 久久精品久久久久久噜噜老黄| 欧美日韩av久久| 国产精品.久久久| 久久久久精品国产欧美久久久 | 夜夜夜夜夜久久久久| 天堂中文最新版在线下载| 操出白浆在线播放| 国产免费一区二区三区四区乱码| 欧美老熟妇乱子伦牲交| 菩萨蛮人人尽说江南好唐韦庄| 亚洲专区字幕在线| 亚洲,欧美精品.| 精品国产一区二区久久| 亚洲专区字幕在线| 日韩精品免费视频一区二区三区| 99国产精品免费福利视频| 夜夜夜夜夜久久久久| 国产精品1区2区在线观看. | 国产精品一区二区在线不卡| 亚洲av成人不卡在线观看播放网 | 在线观看免费日韩欧美大片| 少妇猛男粗大的猛烈进出视频| 99热全是精品| 亚洲成人免费av在线播放| 国产精品一区二区在线观看99| 国产精品一区二区免费欧美 | 精品人妻熟女毛片av久久网站| 国产免费av片在线观看野外av| 一级,二级,三级黄色视频| 精品少妇内射三级| 99久久人妻综合| a在线观看视频网站| 久久综合国产亚洲精品| 免费在线观看影片大全网站| 亚洲欧美色中文字幕在线| 天堂中文最新版在线下载| 亚洲国产精品一区二区三区在线| 制服诱惑二区| 亚洲精品国产av成人精品| 高清视频免费观看一区二区| 两人在一起打扑克的视频| 蜜桃国产av成人99| 这个男人来自地球电影免费观看| 伊人久久大香线蕉亚洲五| 狂野欧美激情性xxxx| 啦啦啦免费观看视频1| 色视频在线一区二区三区| 精品久久久久久久毛片微露脸 | 狠狠精品人妻久久久久久综合| 老司机福利观看| 欧美黄色片欧美黄色片| 丁香六月欧美| 欧美激情高清一区二区三区| 国产精品免费视频内射| 人人妻人人澡人人看| 在线观看免费视频网站a站| 国产av国产精品国产| 亚洲一码二码三码区别大吗| 蜜桃国产av成人99| 中文字幕色久视频| 久久av网站| 国产成+人综合+亚洲专区| 久久性视频一级片| 91成人精品电影| 久久国产精品大桥未久av| 国产精品一区二区免费欧美 | 午夜视频精品福利| cao死你这个sao货| 在线观看免费日韩欧美大片|