• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    AN EXTENSION OF ZOLOTAREV’S PROBLEM AND SOME RELATED RESULTS?

    2021-10-28 05:44:48TranLocHUNGPhanTriKIEN

    Tran Loc HUNG Phan Tri KIEN

    University of Finance and Marketing,77 Nguyen Kiem Street,Phu Nhuan District,Ho Chi Minh City,Vietnam

    E-mail:tlhung@ufm.edu.vn;phankien@ufm.edu.vn

    Abstract The main purpose of this paper is to extend the Zolotarev’s problem concerning with geometric random sums to negative binomial random sums of independent identically distributed random variables.This extension is equivalent to describing all negative binomial in finitely divisible random variables and related results.Using Trotter-operator technique together with Zolotarev-distance’s ideality,some upper bounds of convergence rates of normalized negative binomial random sums(in the sense of convergence in distribution)to Gamma,generalized Laplace and generalized Linnik random variables are established.The obtained results are extension and generalization of several known results related to geometric random sums.

    Key words Zolotarev’s problem;geometric random sum;negative binomial random sum;negative binomial in finitely divisibility;Trotter–operator technique

    1 Introduction

    An analogue of Zolotarev’s problem on geometric random sums originated by Klebanov et al.[12]is stated as follows:describe all random variables Y that for any p∈(0,1),there exists a random variable Xpsuch that

    where?pis a Bernoulli random variable having probability mass function

    In eq.(1.1)the random variables Y,Xpand?pare independent.In eq.(1.1)and from now on,the notationexpresses the equality in the sense of distributions.

    The solution of eq.(1.1)is a geometric random sum,de fined as follows

    where Xp,j,j≥1 are independent,identically distributed(i.i.d.)random variables and νpis a geometric random variable with mean p?1,(0

    Geometric random summations arise in many applied problems in physics,biology,economics,insurance mathematics,reliability,regenerative models,etc.Up to now,geometric random summations have been investigated by many authors like Klebanov et al.[12],Kruglov and Korolev[20],Kalashnikov[10],Sandhya and Pillai[25],Asmussen[2],Gnedenko and Kruglov[5],Lin[21],Kotz et al.[16],Kozubowski[18],Bon[3],Gamboa and Pamphile[4],Malinowski[23],Aly and Bouzar[1],Hung[6],and Korolev et al.[13–15],etc.

    It is worth pointing out that the convolution of k(k∈N)geometric random variables with common parameter p,p∈(0,1)will be a negative binomial random variable with two parameters p∈(0,1)and k∈N(see for instance[27]).We propose here some natural enlargements of the class of geometrically in finitely divisible random variables is due to Klebanov et al.([12],De finition 1,page 792).Let Np,kbe a negative binomial distributed random variable with two parameters p∈(0,1)and k∈N,denoted by Np,k~NB(p,k),whose probability mass function de fined as follows

    where x is an integer and x≥k(see[27],for more details).Recently,the negative binomial sums of i.i.d.random variables together with applications have been studies by Yakumiv[29],Sunklodas[27],Sheeja and Kumar[26],Jankovi′c[8],etc.It is clear that when k=1,the Np,1reduces to a geometric random variable νp~Geo(p),p∈(0,1).

    For any p∈(0,1)and k∈N,let{Xp,k,j,j≥1}be a sequence of random variables,independent of Np,k.Consider the so-called negative binomial random sum

    (see for instance[27]).It is plain that when k=1,the negative binomial random sum in(1.4)reduces to the geometric random sum de fined in(1.2).

    By an argument analogous to result of Klebanov et al.[12],the negative binomial random sums in eq.(1.4)will be considered as an extension of Zolotarev’s problem.This extension is equivalent to describing all negative binomial in finitely divisible random variables and related results.Using Trotter–operator technique[28]together with Zolotarev-distance’s ideality,some upper bounds of convergence rates of normalized negative binomial random sums(in the sense of convergence in distribution)to Gamma,generalized Laplace and generalized Linnik random variables are established.Note that when k=1,the well known results related to weak limit theorems for geometric random sums will be obtained as direct consequences of theorems in this article.

    This paper is organized as follows.Section 2 presents an extension of Zolotarev’s problem.Section 3 introduces the notion of a negative binomial in finitely divisible(NBID)random variable and related results.In Section 4,the accuracy of the approximations to the distributions of normalized negative binomial random sums are estimated.

    2 An Extension of Zolotarev’s Problem

    Let?pbe a Bernoulli random variable,de fined in eq.(1.1).The problem to be considered in this section is that of describing all random variablesYthat for any p∈(0,1)and k∈N,there are random variables Xp,kand Yjsuch that

    and

    where random variables Xp,k,Yjand?pare independent for j=1,2,···,k.

    The following theorem will be considered as an extension of well-known result originated by Klebanov et al.in[12].

    Theorem 2.1Let assumptions(2.1)and(2.2)hold.Then,the random variableYshould be de fined as a negative binomial random sum in the form

    From(2.4)we conclude that

    In the other hand,the relation(2.2)is equivalent to

    Therefore,from(2.5)we have

    It follows that

    where Xp,k,jare i.i.d.copied of Xp,kand they are independent of Np,k~NB(p,k).

    The proof is complete.

    Remark 2.2When k=1,Theorem 2.1 reduces to Zolotarev’s problem in[12].

    3 Negative Binomial In finitely Divisibility

    The following notion will be needed in the sequel.

    De finition 3.1A random variableYis said to be negative binomial in finitely divisible(NBID),if for any p∈(0,1)and for a fixed k∈N,there exists a sequence of i.i.d.random variables Xp,k,1,Xp,k,2,···such that

    where Np,k~NB(p,k),and Xp,k,1,Xp,k,2,···are independent of Np,kand Y.

    Remark 3.2The extension of Zolotarev’s problem,formulated in Section 2 is thus equivalent to describing all negative binomial in finitely divisible random variables.For a deeper discussion of de finition of negative binomial in finitely divisibility we refer the reader to[8]and[29].

    Remark 3.3When k=1 the de finition of NBID random variables reduces to the well known de finition of geometric in finitely divisible(GID)random variables,originated by Klebanov et al.[12].Results of this nature may be found in[1,8,16,19,21,23].

    The following theorem states that the weak limiting distribution of a negative binomial random summation is a NBID distribution.The symbolhereinafter denotes convergence in distribution.

    Theorem 3.4For fixed k∈N,let

    ThenYis a NBID random variable.

    ProofLet us denote by fXp,k(t)the common characteristic function of Xp,k,jfor j≥1.According to[7](Theorem 9.1,page 193),the characteristic function of a negative-binomial random sumis given by

    Thus,for fixed k,from(3.1),it follows that

    where fY(t)is characteristic function of the limit random variableYand

    It is clear that fk(t)is a characteristic function of limit distribution of a geometric random sum.

    According to[20](Theorem 8.1.2,page 243),the characteristic function f(t)must be GID.

    On the other hand,on account of Klebanov et al.[12](Theorem 2,page 792),it follows that

    is an in finitely divisible characteristic function.Therefore,we get

    where f(t)is an in finitely divisible characteristic function.

    From Theorem 2.1 the proof is complete.

    Remark 3.5It is worth noticing that the weak limit distribution of a geometric random sum will be GID distribution(see,for instance,[20],Theorem 8.1.2,page 243).It was deduced from Theorem 3.4 for case of k=1.

    Theorem 3.6A random variableYis NBID if and only if its characteristic function fY(t)is given by

    where ?(t)is a characteristic function of some in finitely divisible(ID)distribution.

    ProofWe first observe that,on account of Theorem 2.1,the random variableYis NBID if and only if both relations(2.1)and(2.2)hold.Evidently,the relation(2.1)holds if and only if all random variables Yj,j=1,2,···,k are geometrically in finitely divisible(see[12]for more details).According to Theorem 2 in[12],it follows that

    where ?(t)is an in finitely divisible characteristic function.

    In the other hand,the relation(2.2)is equivalent to

    According to(3.3),we conclude that,the random variableYis NBID if and only if

    where ?(t)is an in finitely divisible characteristic function.The proof is complete.

    Remark 3.7The similar result is due to Jankovi[8]and Yakumiv[29]with de finition of negative binomial in finitely divisible random variable in the form

    Remark 3.8When k=1,the relation(3.1)reduces to geometric in finitely divisible(GID)characteristic function that is

    where ?(t)is an in finitely divisible characteristic function(see[12],Theorem 2,page 792).Result of this nature also may be found in[20](Theorem 8.1.1,pages 241–242).

    Corollary 3.9(The Lvy–Khinchin type representation) A random variableYis NBID if and only if its characteristic function is given in the form

    where k∈N and γ is a real constant,G(x)is a bounded non-decreasing function.Note that the function under the integral sign is equal to?t2/2 at the point x=0.

    ProofAccording to Lvy–Khinchin formula(see[24],page 30,Theorem 1.16),the function ?(t)is an in finitely divisible characteristic function if and only if it admits the representation

    On account of Theorem 3.6,the random variableYis NBID if and only if

    Equivalently,

    The proof is complete.

    Remark 3.10When k=1,the relation(3.4)reduces to a geometric in finitely divisible(GID)characteristic function in form

    (See[12],Corollary 1,page 792).

    Some negative binomial in finitely divisible(NBID)random variables are shown as follows.

    Example 3.11LetGbe a Gamma distributed random variable with two parameters λ>0 and k∈N,denoted byG~Gamma(λ,k),whose characteristic function is given by

    It is clear thatGis a negative binomial in finitely divisible random variable.Indeed,we have

    Therefore,?(t)is an in finitely divisible characteristic function.By Theorem 3.4,we get the con firmation.

    According to[16],a random variable L is said to be classical Laplace distributed random variable with parameters zero and σ>0,denoted by L~Laplace(0,σ),if its characteristic function has the form

    Let L1,L2,···be a sequence of independent,classical Laplace distributed random variables with parameters zero and σ>0.For k∈N,write

    Then,the characteristic function of L is given by

    Extending the concept of classical Laplace distributed random variable,the generalized Laplace distributed random variable will be introduced as follows.

    De finition 3.12A random variable L is said to have generalized Laplace distribution,denoted by L~GLaplace(0,σ,k),if its characteristic function is de fined by

    For a deeper discussion of the generalized Laplace distributions and their properties we refer the reader to[9,11,13,16–18].

    Remark 3.13When k=1,the generalized Laplace distributed random variable reduces to the classical Laplace distributed random variable with parameters zero and σ>0.

    Example 3.14Let L~GLaplace(0,σ,k).Then,L is a NBID random variable.It is easily seen that for n∈N and t∈R,

    is an in finitely divisible characteristic function.According to Theorem 3.6,we have the con firmation.

    We follow the de finition used in[16].A random variable ξ is said to be symmetric Linnik distributed random variable with parameters α∈(0,2]and σ>0,denoted by ξ~Linnik(α,σ),if its characteristic function is given by

    Lin[21]proved that Linnik distributions is geometric in finitely divisible(GID)and there are no closed–form expressions for the distribution and density function for Linnik random variable except for α=2,which corresponds to the Laplace distribution.

    Let ξ1,ξ2,···be a sequence of independent,symmetric Linnik distributed random variables with parameters α∈(0,2]and σ>0.For any k∈N,set

    Then,the characteristic function of ζ has following form

    Extending the concept of symmetric Linnik distributed random variable,the generalized Linnik distributed random variable will be de fined as follows.

    De finition 3.15A random variable ζ is said to have generalized Linnik distribution,denoted by ζ~GLinnik(α,σ,k),if its characteristic function is given by

    For a deeper discussion of generalized Linnik distributions we refer reader to[11,13,16–18],and the references given there.

    Remark 3.16When k=1,the generalized Linnik distribution reduces to symmetric Linnik distribution.Moreover,for k=1 and α=2,we obtain the classical Laplace distribution(see for instance[16]).

    Example 3.17Let ζ~GLinnik(α,σ,k).Then,ζ is a NBID random variable.

    For n∈N and t∈R,we have

    is an in finitely divisible characteristic function.According to Theorem 3.6,we obtain the con firmation.

    Theorem 3.18Let{fm(t),m=1,2,···}be a sequence of NBID characteristic functions converging to some characteristic function f(t).Then,f(t)is a NBID characteristic function.

    ProofDue to{fm(t),m=1,2,···}is a sequence of NBID characteristic functions,according to Theorem 3.6,there exists a sequence of in finitely divisible characteristic functions{?m(t),m=1,2,···}such that

    Letting m→∞,then fm(t)converges to the characteristic function f(t),hence ?m(t)will converge to the characteristic function ?(t),and

    According to Lemma 1.20([24],page 30),?(t)is an in finitely divisible characteristic function.Therefore,on account of Theorem 3.6,it follows that f(t)is a NBID characteristic function.This completes the proof.

    Remark 3.19When k=1,the Theorem 3.6 deduces to GID characteristic function as a limiting characteristic function of sequence of GID characteristic functions(see,for example,[12],Theorem 1,page 792).

    Theorem 3.20Every NBID characteristic function is in finitely divisible.

    ProofLet f(t)be a arbitrary NBID characteristic function.According to Theorem 3.6,we have

    where ?(t)is an in finitely divisible characteristic function.It is plain that,

    where ?(t)=e?ψ(t)is an in finitely divisible characteristic function.To complete the proof it remains to show that f(t)is an in finitely divisible characteristic function.

    First,we attempt to show that

    is an in finitely divisible characteristic function.According to Lukacs[22](Theorem 12.2.3,page 320),for any a>1 and g(t)is an arbitrary characteristic function,thenis an in finitely divisible characteristic function.For n≥1,taking

    we have

    On the other hand,by Taylor series expansion,we obtain

    On account of Petrov[24](Lemma 1.20,page 30),the limit of a sequence of in finitely divisible characteristic functions is in finitely divisible.Therefore,the function h(t)is de fined by(3.8)is in finitely divisible.According to[22](Theorem 5.3.2,page 109),the characteristic function f(t)in(3.7),is the product of k in finitely divisible characteristic functions.Thus,f(t)is an in finitely divisible characteristic function.The proof is complete.

    Remark 3.21It is to be noticed that every GID characteristic function is in finitely divisible(see,for instance,[20],page 242).It was deduced from Theorem 3.18 for k=1.

    4 Bounds of the Accuracy of the Approximations to the Distributions of Negative Binomial Random Sums

    We follow the notation used in[28].The symbol C(R)will denote the set of all bounded uniformly continuous functions on R with norm

    Lemma 4.1Let{Xj,j≥1}and{Yj,j≥1}be two sequences of i.i.d.random variables with E|X1|r<+∞,E|Y1|r<+∞(r∈N).Assume that the following condition

    holds for m=1,2,···,r?1(r∈N).Suppose that N is a positive integer–valued random variable,independent of all Xjand Yj(j≥1).Further,assume that E(N)<+∞.Then

    where f∈Cr(R)and‖f(r)‖=

    ProofUsing Taylor series expansion formula with Lagrange remainder for f∈Cr(R),we can assert that

    where θ∈(0,1)and x∈R.From this,for X and Y are random variables and f∈Cr(R),we conclude that

    Since|f(r)(x)|≤‖f(r)‖for any x∈R,from(4.1)it follows that

    Based on Trotter–operator’s properties[28]and applying the inequality(4.2)to sequences{Xj,j≥1}and{Yj,j≥1}of i.i.d.random variables,we obtain

    Let N be a positive integer–valued random variable,independent of all Xjand Yjfor j≥1,with E(N)<+∞.Then

    The proof is complete.

    Theorem 4.2Let X1,X2,···be a sequence of non–negative i.i.d.random variables with positive mean EX1=μ>0 and finite variance 0

    where f∈C2(R).

    ProofAccording to Example 3.11,theGis a NBID random variable.Let{Zj,j≥1}be a sequence of independent,exponential distributed random variables with parameterμ?1,independent of Np,k.It is easily seen that the characteristic function of random variables Zjis given by

    According to[7](Theorem 9.1,page 193),the characteristic function of the negative-binomial sums(p/k)is de fined by

    On account of the continuity theorem([7],Theorem 9.1,page 257),the Gamma distributed random variableGadmits the following presentation

    It is immediate that

    Applying Lemma 4.1 for r=2,we obtain

    This completes the proof.

    Remark 4.3The following results are direct consequences of Theorem 4.2.

    1.Let k∈N be a fixed number.A limit theorem for negative binomial sums of i.i.d.random variables is stated as follows

    Here and subsequently,the symbolstands for the convergence in distribution.

    2.When k=1,the Gamma distributed random variableGreduces toEμ~Exp(μ?1),an exponential distributed random variable with meanμ>0.Then

    where νp~Geo(p).Moreover,the R′enyi’s limit theorem for geometric sums of i.i.d.random variables(see e.g[20],Theorem 8.1.5,page 246)is stated as follows

    Theorem 4.4Let{Xj,j≥1}be a sequence of i.i.d.random variables with EX1=0,E()=σ2and E|X1|3=.Let Np,k~NB(p,k),independent of all Xj,j≥1.Assume that L~GLaplacewith σ>0.Then

    where f∈C3(R).

    ProofOn account of Example 3.14,L~GLaplaceis a NBID random variable.Analysis similar to that in the proof of Theorem 4.2 shows that

    where{Lj,j≥1}is a sequence of independent identically Laplace distributed random variables,independent of Np,k.It is clear that the characteristic function of Ljis given by

    According to Kotz et al.([16],page 20),since L1~Laplace,it is a simple matter to

    The proof is complete.

    Remark 4.5As immediate consequences of Theorem 4.4,we have

    1.For fixed k∈N the weak limit theorem for negative binomial sums of i.i.d.random variables is stated as follows

    2.When k=1,then

    It is worth pointing out that the Lemma 4.1 could not apply to the negative binomial sumsXj(0<α≤2),because its weak limiting distribution is Linnik law,whose absolute moments of order r are finite for 0

    where x,y∈R.For any f∈F,we have the following lemma.

    Lemma 4.6Let{Xj,j≥1}and{Yj,j≥1}be two sequences of i.i.d.random variables with E|X1|<+∞and E|Y1|<+∞.Assume that N is a positive integer-valued random variable,independent of all Xjand Yjfor j≥1.Assume that E(N)<+∞.Then,for any c0 and f∈F,there exists a positive constant M such that

    ProofSince f∈F,one has by the Taylor series expansion

    where 0<η<1 and x∈R.Since|f′(x)|≤‖f′‖for any x∈R and f∈F,for random variables X and Y with E|X|<+∞,E|Y|<+∞,we have

    According to Zolotarev-distance’s ideality(see[30]for more details),from(4.3),we obtain

    This completes the proof.

    Theorem 4.7Let{Xj,j≥1}be a sequence of i.i.d.random variables with E|X1|=ρ<+∞.Assume that Np,k~NB(p,k),independent of all Xjfor j≥1.Then,for any f∈F,there exists a positive constant M such that

    where ζ~GLinnik(α,σk?1/α,k)and 1<α<2.

    ProofOn account of Example 3.17,ζ~GLinnik(α,σk?1/α,k)is a NBID random variable.Let{ξj,j≥1}be a sequence of independent,Linnik distributed random variables with two parameters σ>0 and α∈(0,2].It is obvious that the characteristic function of ξjis given by

    Assume that Np,kis independent of all ξjfor j≥1.By an analogous to Theorem 4.2 we have

    According to Kotz et al.([16],Proposition 4.3.18,p.212),since ξ1~Linnik(α,σ),we have

    The proof is complete.

    Remark 4.8Under the assumptions of Theorem 4.7 it follows that

    1.Let k∈N be a fixed.Then

    2.When k=1 we have

    Moreover,the weak limit theorem for geometric random sum is stated as follows

    Concluding remarksWe conclude this paper with the following comments.

    1.In this paper,an extension of Zolotarev’s problem in[12]is discussed.The solution of the considered is a so-called negative binomial random sum that is equivalent to describing of negative binomial in finitely divisible(NBID)random variables.Some well known NBID distributions like Gamma,generalized Laplace and generalized Linnik distributions are shown as research examples.Estimate of convergence rates of normalized negative binomial random sums(in the sense of convergence in distribution)to Gamma,generalized Laplace and generalized Linnik random variables is also research objective of this article.The obtained results are extension and generalization of several known ones related to geometric random summations of i.i.d.random variables.The mathematical tool used in study of estimates of convergence rates is Trotter-operator technique together with Zolotarev-distance’s ideality.Some analogous notions and de finitions in this paper may be found in references[13–18].

    2.An analogous result for the first point of Remark 4.7 is due to Korolev et al.in[13],using different way of proving.Theorem 6([13],page 13)is stated that

    where Nn,ν~NB(1/n,ν),ν>0,independent of Xjfor j≥1.Note that the first parameter p of NB(p,ν)is taken as p=1/n and p→0+as n→∞.

    3.The necessary and sufficient conditions of the convergence of distributions of random sums of i.i.d.random variables with finite variance to the Linnik distribution may be found in[14](Theorem 4,page 13)and[15](Theorem 4,page 9).

    AcknowledgementsThe authors are greatly indebted to Professor Kozubowski,Tomaz J.from University of Nevada(US)for providing some his publications related to Geometric In finitely Divisible(GID)laws.

    国模一区二区三区四区视频| 日韩强制内射视频| 日本免费在线观看一区| 日韩视频在线欧美| 国产精品一区www在线观看| 美女xxoo啪啪120秒动态图| 国产精品秋霞免费鲁丝片| 欧美三级亚洲精品| 熟女av电影| 亚洲av在线观看美女高潮| 国产 精品1| 偷拍熟女少妇极品色| 黄色一级大片看看| 伊人久久国产一区二区| 女性被躁到高潮视频| 噜噜噜噜噜久久久久久91| 日本午夜av视频| 永久网站在线| 日韩在线高清观看一区二区三区| 亚洲精品乱码久久久v下载方式| 下体分泌物呈黄色| 久久青草综合色| 在线观看三级黄色| 深夜a级毛片| 国产精品无大码| 老司机影院毛片| 精品久久久噜噜| 国产精品蜜桃在线观看| 老司机亚洲免费影院| 综合色丁香网| 亚州av有码| 国产精品福利在线免费观看| 肉色欧美久久久久久久蜜桃| 国产伦理片在线播放av一区| 亚洲国产毛片av蜜桃av| 啦啦啦啦在线视频资源| 热99国产精品久久久久久7| 99九九在线精品视频 | 久久国内精品自在自线图片| 自拍欧美九色日韩亚洲蝌蚪91 | 久久 成人 亚洲| 日韩精品有码人妻一区| 女人久久www免费人成看片| av在线老鸭窝| 熟女人妻精品中文字幕| 色哟哟·www| 久久热精品热| 亚洲国产精品999| 91精品国产九色| 黄色毛片三级朝国网站 | 欧美精品亚洲一区二区| 黄色视频在线播放观看不卡| 精品一区二区三区视频在线| 亚洲国产最新在线播放| 在线观看免费高清a一片| 久久ye,这里只有精品| 五月玫瑰六月丁香| 搡女人真爽免费视频火全软件| 亚洲av中文av极速乱| 久久99一区二区三区| .国产精品久久| 久久精品国产亚洲av涩爱| 日韩欧美一区视频在线观看 | 久久免费观看电影| 老司机影院毛片| 亚洲久久久国产精品| 国产色婷婷99| 精品亚洲成a人片在线观看| 亚洲精品国产av蜜桃| 国产精品久久久久久精品古装| av女优亚洲男人天堂| 99久久综合免费| 一区二区三区四区激情视频| 久久影院123| 大片电影免费在线观看免费| 成人国产麻豆网| 久久99精品国语久久久| 22中文网久久字幕| 两个人的视频大全免费| 交换朋友夫妻互换小说| 国产 一区精品| 观看av在线不卡| 亚洲怡红院男人天堂| 男女边摸边吃奶| 国产精品一区二区三区四区免费观看| 18+在线观看网站| 欧美97在线视频| 高清黄色对白视频在线免费看 | 亚洲欧洲日产国产| 十分钟在线观看高清视频www | 亚洲欧洲精品一区二区精品久久久 | 少妇高潮的动态图| 欧美+日韩+精品| 国产探花极品一区二区| 99久久精品一区二区三区| 国产免费又黄又爽又色| 国产高清三级在线| 中文字幕免费在线视频6| 免费看日本二区| 国产日韩欧美视频二区| 亚洲四区av| 国产免费一区二区三区四区乱码| 国产高清有码在线观看视频| 成人漫画全彩无遮挡| 丰满乱子伦码专区| 日日啪夜夜撸| 欧美区成人在线视频| 国产在线视频一区二区| 人妻一区二区av| 国产在线免费精品| 波野结衣二区三区在线| 欧美+日韩+精品| 国产毛片在线视频| 日韩在线高清观看一区二区三区| 国产av一区二区精品久久| 欧美精品高潮呻吟av久久| 国产乱人偷精品视频| 丝瓜视频免费看黄片| 国产深夜福利视频在线观看| 内地一区二区视频在线| 如何舔出高潮| 中文字幕亚洲精品专区| 18禁动态无遮挡网站| 一级av片app| 男人狂女人下面高潮的视频| 丝袜在线中文字幕| 亚洲av综合色区一区| 99热全是精品| 欧美成人午夜免费资源| 亚洲欧美中文字幕日韩二区| 日韩欧美精品免费久久| 视频中文字幕在线观看| 国产亚洲欧美精品永久| 久久久久精品久久久久真实原创| 久久久亚洲精品成人影院| 伦理电影大哥的女人| 97超碰精品成人国产| 丝袜喷水一区| 国产亚洲一区二区精品| 亚洲精品日本国产第一区| 少妇猛男粗大的猛烈进出视频| 国产视频首页在线观看| 2018国产大陆天天弄谢| 久久久久久伊人网av| 大码成人一级视频| 成人特级av手机在线观看| 精品午夜福利在线看| 九色成人免费人妻av| 日本猛色少妇xxxxx猛交久久| 久久久久人妻精品一区果冻| 国产精品女同一区二区软件| 嫩草影院新地址| 成人无遮挡网站| 老司机影院成人| 秋霞在线观看毛片| 纯流量卡能插随身wifi吗| 涩涩av久久男人的天堂| 精品视频人人做人人爽| 国产成人午夜福利电影在线观看| 在线精品无人区一区二区三| 国产成人精品福利久久| 高清午夜精品一区二区三区| 成人毛片a级毛片在线播放| 伊人亚洲综合成人网| 深夜a级毛片| www.色视频.com| 国产国拍精品亚洲av在线观看| 2018国产大陆天天弄谢| 我要看日韩黄色一级片| 人人妻人人添人人爽欧美一区卜| 在线观看美女被高潮喷水网站| 啦啦啦视频在线资源免费观看| 少妇猛男粗大的猛烈进出视频| 成人无遮挡网站| 精品人妻熟女av久视频| 韩国av在线不卡| 80岁老熟妇乱子伦牲交| 永久网站在线| 一区二区av电影网| √禁漫天堂资源中文www| 成人18禁高潮啪啪吃奶动态图 | 日韩成人伦理影院| 成年人免费黄色播放视频 | 国产一区二区在线观看日韩| 日本vs欧美在线观看视频 | 国产在线一区二区三区精| 国产免费又黄又爽又色| 少妇的逼水好多| 久久亚洲国产成人精品v| 国产成人精品福利久久| av福利片在线观看| 男女免费视频国产| 天天操日日干夜夜撸| 免费人妻精品一区二区三区视频| 久久精品久久久久久噜噜老黄| 各种免费的搞黄视频| 97在线视频观看| av在线播放精品| 插阴视频在线观看视频| 久久久久国产精品人妻一区二区| 另类精品久久| videos熟女内射| 国产av一区二区精品久久| 欧美激情极品国产一区二区三区 | 亚洲情色 制服丝袜| 久久ye,这里只有精品| 啦啦啦视频在线资源免费观看| 成人无遮挡网站| 香蕉精品网在线| 嘟嘟电影网在线观看| 香蕉精品网在线| 中文字幕人妻熟人妻熟丝袜美| 男女无遮挡免费网站观看| 国产探花极品一区二区| 91午夜精品亚洲一区二区三区| 男的添女的下面高潮视频| 这个男人来自地球电影免费观看 | av卡一久久| 王馨瑶露胸无遮挡在线观看| 热re99久久国产66热| 亚洲婷婷狠狠爱综合网| 亚洲va在线va天堂va国产| 亚洲av免费高清在线观看| 免费观看的影片在线观看| 亚洲美女搞黄在线观看| 日日摸夜夜添夜夜添av毛片| 大话2 男鬼变身卡| 国产午夜精品久久久久久一区二区三区| 少妇丰满av| 伦理电影免费视频| 亚洲国产最新在线播放| 国产视频内射| 国产免费又黄又爽又色| 欧美激情极品国产一区二区三区 | 国模一区二区三区四区视频| 人妻系列 视频| 免费黄频网站在线观看国产| 国产又色又爽无遮挡免| 国产av精品麻豆| 深夜a级毛片| 日本猛色少妇xxxxx猛交久久| 黄色毛片三级朝国网站 | 精品国产露脸久久av麻豆| 欧美日韩在线观看h| 日韩伦理黄色片| 久久精品久久久久久噜噜老黄| 最新中文字幕久久久久| 又大又黄又爽视频免费| 黑人猛操日本美女一级片| 王馨瑶露胸无遮挡在线观看| 久久精品久久久久久久性| 免费黄频网站在线观看国产| 99国产精品免费福利视频| 全区人妻精品视频| 最新的欧美精品一区二区| 成人国产av品久久久| 精品久久久久久电影网| 成人特级av手机在线观看| 午夜老司机福利剧场| 三级国产精品片| 免费黄频网站在线观看国产| 免费看光身美女| 国产免费福利视频在线观看| 精品国产乱码久久久久久小说| 欧美另类一区| 夜夜骑夜夜射夜夜干| 三级国产精品片| 夜夜爽夜夜爽视频| 国产黄片美女视频| 国产精品成人在线| 少妇的逼好多水| av卡一久久| 亚洲av综合色区一区| 久久这里有精品视频免费| 黄色日韩在线| 国产精品福利在线免费观看| 少妇的逼好多水| 久久午夜福利片| 国产69精品久久久久777片| 人人妻人人添人人爽欧美一区卜| 亚洲av免费高清在线观看| 狠狠精品人妻久久久久久综合| 久久这里有精品视频免费| 九九在线视频观看精品| av福利片在线| av一本久久久久| 亚洲av免费高清在线观看| 亚洲四区av| 欧美成人精品欧美一级黄| 国产又色又爽无遮挡免| 亚洲av日韩在线播放| 亚洲伊人久久精品综合| 成人影院久久| 春色校园在线视频观看| 91精品国产九色| 亚洲欧美成人精品一区二区| 男女免费视频国产| 亚洲伊人久久精品综合| 精品少妇久久久久久888优播| 在线免费观看不下载黄p国产| 一个人免费看片子| 久久久久久久久久人人人人人人| 久久热精品热| 极品人妻少妇av视频| av一本久久久久| 亚洲综合精品二区| 在线观看www视频免费| 亚洲国产精品国产精品| 美女中出高潮动态图| 女性生殖器流出的白浆| 91午夜精品亚洲一区二区三区| 九九久久精品国产亚洲av麻豆| 91久久精品国产一区二区三区| 一级毛片我不卡| 日本欧美视频一区| 国产精品一区二区在线观看99| 国产免费福利视频在线观看| 亚洲欧美精品专区久久| 日本猛色少妇xxxxx猛交久久| 一级毛片我不卡| 国产日韩欧美在线精品| h日本视频在线播放| 国产 一区精品| 色视频在线一区二区三区| 国产中年淑女户外野战色| 国产日韩欧美在线精品| 免费观看av网站的网址| 色吧在线观看| 亚洲va在线va天堂va国产| 国产亚洲av片在线观看秒播厂| 久久久久久久久久人人人人人人| 人人妻人人澡人人看| 精品少妇久久久久久888优播| 99热这里只有是精品在线观看| 男人添女人高潮全过程视频| 肉色欧美久久久久久久蜜桃| 成人国产av品久久久| 亚洲综合色惰| 久久午夜福利片| 精品人妻一区二区三区麻豆| 成人亚洲精品一区在线观看| 看非洲黑人一级黄片| 久久久久久久精品精品| 亚洲av综合色区一区| 欧美变态另类bdsm刘玥| 日韩欧美 国产精品| 国产亚洲午夜精品一区二区久久| 曰老女人黄片| 夜夜爽夜夜爽视频| 精品熟女少妇av免费看| 日韩不卡一区二区三区视频在线| 美女福利国产在线| 国产亚洲av片在线观看秒播厂| 交换朋友夫妻互换小说| 青春草亚洲视频在线观看| 国产成人aa在线观看| 日韩一区二区视频免费看| 免费av不卡在线播放| 九九久久精品国产亚洲av麻豆| 热re99久久国产66热| 久久精品国产亚洲av天美| av天堂中文字幕网| www.色视频.com| 一本久久精品| 99热这里只有是精品50| 大话2 男鬼变身卡| 少妇的逼好多水| 国产精品99久久99久久久不卡 | 一级毛片电影观看| 国产中年淑女户外野战色| 日韩在线高清观看一区二区三区| 蜜臀久久99精品久久宅男| 丰满迷人的少妇在线观看| 国产69精品久久久久777片| 99国产精品免费福利视频| av福利片在线| 91精品国产国语对白视频| 高清毛片免费看| 99视频精品全部免费 在线| 十分钟在线观看高清视频www | 国产一级毛片在线| 国产在线免费精品| 国产一区二区在线观看av| 午夜福利影视在线免费观看| 国产高清三级在线| av网站免费在线观看视频| 男女国产视频网站| 日本黄色片子视频| 欧美变态另类bdsm刘玥| 在线观看av片永久免费下载| 多毛熟女@视频| 色视频www国产| 免费大片黄手机在线观看| av福利片在线| 一区二区三区免费毛片| 国产高清三级在线| 国产永久视频网站| 久久综合国产亚洲精品| 亚洲精品国产av蜜桃| 尾随美女入室| av网站免费在线观看视频| 国产高清国产精品国产三级| 免费看日本二区| 看十八女毛片水多多多| 色婷婷av一区二区三区视频| 日韩亚洲欧美综合| 成人午夜精彩视频在线观看| av在线观看视频网站免费| 亚洲欧美日韩卡通动漫| 涩涩av久久男人的天堂| 亚洲av欧美aⅴ国产| 偷拍熟女少妇极品色| 久久久久久人妻| av.在线天堂| a级毛片免费高清观看在线播放| 亚洲欧美日韩另类电影网站| 久久久久久久久久成人| 亚洲怡红院男人天堂| 在线 av 中文字幕| 97超碰精品成人国产| 精品国产乱码久久久久久小说| 一区二区三区乱码不卡18| 日韩一区二区视频免费看| 国产一区二区三区av在线| 国产精品久久久久久av不卡| 一级爰片在线观看| 亚洲精品自拍成人| 免费观看性生交大片5| 老女人水多毛片| 亚洲精品亚洲一区二区| 国产av国产精品国产| 99热这里只有是精品50| 免费高清在线观看视频在线观看| 啦啦啦视频在线资源免费观看| 亚洲国产毛片av蜜桃av| 汤姆久久久久久久影院中文字幕| 91久久精品国产一区二区成人| 国产午夜精品一二区理论片| 免费人妻精品一区二区三区视频| 精品少妇久久久久久888优播| 中文字幕免费在线视频6| 国产高清不卡午夜福利| 观看美女的网站| 久久久国产欧美日韩av| 久久久久久久久久人人人人人人| 久久久久久久久大av| 亚洲国产精品成人久久小说| 免费看不卡的av| 3wmmmm亚洲av在线观看| 国产免费视频播放在线视频| 一个人免费看片子| 91午夜精品亚洲一区二区三区| 久久综合国产亚洲精品| 自线自在国产av| 日本黄大片高清| 国国产精品蜜臀av免费| 极品教师在线视频| 欧美最新免费一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91 | 国产成人精品福利久久| 交换朋友夫妻互换小说| 丰满人妻一区二区三区视频av| 国产乱来视频区| 欧美区成人在线视频| 一级二级三级毛片免费看| 日日啪夜夜爽| 日产精品乱码卡一卡2卡三| 91久久精品国产一区二区成人| 久久久国产欧美日韩av| 如日韩欧美国产精品一区二区三区 | 欧美丝袜亚洲另类| 精品国产露脸久久av麻豆| 国产综合精华液| 亚洲图色成人| 最新的欧美精品一区二区| 人妻人人澡人人爽人人| 久久亚洲国产成人精品v| 99久久中文字幕三级久久日本| 麻豆乱淫一区二区| 国产av码专区亚洲av| 日本猛色少妇xxxxx猛交久久| 国产69精品久久久久777片| 你懂的网址亚洲精品在线观看| 国产精品免费大片| 久久久久久久久久久丰满| 亚洲一区二区三区欧美精品| 伦理电影免费视频| 狂野欧美激情性bbbbbb| 久久女婷五月综合色啪小说| 日韩中字成人| 欧美日韩国产mv在线观看视频| 久久av网站| 国产成人精品婷婷| 亚洲精品国产av蜜桃| 91午夜精品亚洲一区二区三区| 国语对白做爰xxxⅹ性视频网站| 国产av一区二区精品久久| 亚洲欧洲国产日韩| 免费在线观看成人毛片| 亚洲av日韩在线播放| 中文字幕精品免费在线观看视频 | 中文乱码字字幕精品一区二区三区| 国产精品久久久久久久电影| 美女福利国产在线| 内射极品少妇av片p| 伦理电影免费视频| 两个人免费观看高清视频 | av在线app专区| 成人国产麻豆网| 国产精品蜜桃在线观看| 国产真实伦视频高清在线观看| 99热这里只有是精品在线观看| 男女啪啪激烈高潮av片| 在线 av 中文字幕| 你懂的网址亚洲精品在线观看| 午夜91福利影院| 波野结衣二区三区在线| 卡戴珊不雅视频在线播放| 国产在线免费精品| 丰满迷人的少妇在线观看| 欧美老熟妇乱子伦牲交| 亚洲国产精品一区三区| 91精品一卡2卡3卡4卡| 国产亚洲午夜精品一区二区久久| 久久久国产欧美日韩av| 日韩不卡一区二区三区视频在线| 欧美3d第一页| 只有这里有精品99| 亚洲人与动物交配视频| 大话2 男鬼变身卡| 一级毛片我不卡| 亚洲经典国产精华液单| 国产黄片视频在线免费观看| 国产午夜精品一二区理论片| 高清av免费在线| 亚洲国产毛片av蜜桃av| 少妇人妻久久综合中文| 久久久久久久国产电影| 国产 一区精品| 丰满饥渴人妻一区二区三| 日本-黄色视频高清免费观看| 好男人视频免费观看在线| av有码第一页| 久久99热这里只频精品6学生| 国产又色又爽无遮挡免| 精品久久国产蜜桃| 日韩视频在线欧美| 国产精品人妻久久久影院| 涩涩av久久男人的天堂| 亚洲怡红院男人天堂| 午夜精品国产一区二区电影| 国产 一区精品| 妹子高潮喷水视频| 在线观看免费日韩欧美大片 | 日韩亚洲欧美综合| 日本-黄色视频高清免费观看| 国语对白做爰xxxⅹ性视频网站| 黄色日韩在线| 91精品伊人久久大香线蕉| 大香蕉久久网| 免费观看无遮挡的男女| 国产欧美亚洲国产| 最近中文字幕高清免费大全6| 久久久久久久久久成人| 久久综合国产亚洲精品| 尾随美女入室| 9色porny在线观看| 久久久久久久久久成人| 久久综合国产亚洲精品| 久久av网站| 天堂8中文在线网| 久久亚洲国产成人精品v| 久久午夜综合久久蜜桃| 日韩在线高清观看一区二区三区| 精品一区在线观看国产| 免费看不卡的av| 青春草亚洲视频在线观看| 久久亚洲国产成人精品v| 青春草亚洲视频在线观看| a级片在线免费高清观看视频| 精品一区在线观看国产| 蜜桃在线观看..| 欧美性感艳星| 精品人妻熟女毛片av久久网站| 国产精品女同一区二区软件| 亚洲,欧美,日韩| 天美传媒精品一区二区| 久久鲁丝午夜福利片| 国产av国产精品国产| av有码第一页| videossex国产| 国产有黄有色有爽视频| 亚洲四区av| 亚洲精品aⅴ在线观看| 欧美精品亚洲一区二区| 只有这里有精品99| 中文字幕免费在线视频6| 丰满人妻一区二区三区视频av| 亚洲婷婷狠狠爱综合网| 99re6热这里在线精品视频| 最近中文字幕高清免费大全6| 成年人免费黄色播放视频 | 亚洲欧美日韩另类电影网站| 日产精品乱码卡一卡2卡三| 另类精品久久| 久久精品久久久久久噜噜老黄| av线在线观看网站| 女人精品久久久久毛片| 免费少妇av软件| 欧美国产精品一级二级三级 | 亚洲av福利一区| 久久久精品免费免费高清| 国产日韩一区二区三区精品不卡 | 韩国高清视频一区二区三区| 欧美日韩视频精品一区|