• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SOME OSCILLATION CRITERIA FOR A CLASS OF HIGHER ORDER NONLINEAR DYNAMIC EQUATIONS WITH A DELAY ARGUMENT ON TIME SCALES?

    2021-10-28 05:44:08XinWU吳鑫

    Xin WU(吳鑫)

    School of Sciences,East China JiaoTong University,Nanchang 330013,China

    E-mail:wuxin8710180@163.com

    Abstract In this paper,we establish some oscillation criteria for higher order nonlinear delay dynamic equations of the formon an arbitrary time scale T with supT=∞,where n≥2,?(u)=|u|γsgn(u)for γ>0,ri(1≤i≤n)are positive rd-continuous functions and h∈Crd(T,(0,∞)).The function τ∈Crd(T,T)satis fies τ(t)≤t andτ(t)=∞and f∈C(R,R).By using a generalized Riccati transformation,we give sufficient conditions under which every solution of this equation is either oscillatory or tends to zero.The obtained results are new for the corresponding higher order differential equations and difference equations.In the end,some applications and examples are provided to illustrate the importance of the main results.

    Key words oscillation;nonlinear dynamic equations;higher order equation;delay dynamic equations;time scale

    1 Introduction

    During the past several decades,a great number of theoretical issues concerning dynamic equations on time scales have received considerable attention.Much of the focus has been on attempting to harmonize the oscillation theory for the continuous and the discrete,so the oscillation and nonoscillation of solutions of various equations has been investigated extensively;we refer the reader to the excellent monograph[3],the papers[1,7,9,10,20,23,30],and the references cited therein.Saker and Grace[21]studied the oscillation of the second-order quasilinear functional dynamic equation

    and established some new sufficient conditions which ensure that every solution oscillates or converges to zero.Deng et al.[4]established some new oscillation criteria for second order delay dynamic equations

    by means of the Riccati transformation technique.Zhou et al.[29]established necessary and sufficient conditions for the oscillation of second order strongly superlinear and strongly sublinear dynamic equations

    Baculikova[2]considered the second order noncanonical differential equation with a delay argument

    and established some sufficient conditions for the oscillation of(1.4).Karpuz[13]studied the asymptotic behaviour of the bounded solutions of a class of higher-order neutral dynamic equations

    Recently,Hassan and Kong[12]discussed the new asymptotics and oscillation criteria for the nth-order nonlinear dynamic equation

    with Laplacians and a deviating argument on a general time scale without any restrictions on g(t).For more results on dynamic equations,we refer the reader to the papers[6,8,11,14–17,22,24,26–28].

    Motivated by the aforementioned classical works,in this paper,we shall investigate the higher order nonlinear delay dynamic equation

    where ?(u)=|u|γsgn(u)for γ>0.Throughout this paper,we assume that T is an arbitrary time scale with supT=∞,and de fine the time scale interval[t0,∞)Tby[t0,∞)T:=[t0,∞)∩T.Furthermore,we assume that

    The purpose of this paper is to establish some new oscillation criteria for a higher order nonlinear delay dynamic equation(1.5)under very mild conditions.Compared with(1.2),the investigation of higher order equation(1.5)is more complicated.To overcome the corresponding difficulties,we will employ the generalized Riccati technique.We would like to mention that the Riccati transformation plays an important role in the study of oscillatory behavior for(1.5).In short,the obtained results here improve and unify many known results on the topic.

    The rest of this paper is organized as follows:in Section 2,we present our main results.In Section 3,we prove some useful lemmas and important estimates,which will be used in the proof of our main results.Later,we prove Theorems 2.1–2.3.In Section 4,we apply the oscillation criteria to different types of time scales to show that our results not only unify some of the known oscillation results for differential and difference equations,but can also be applied to other cases to determine oscillatory behavior.Finally,some examples are provided to illustrate the main results.

    2 Main Results

    For the convenience of our discussion,we de fine

    where ?(u)=|u|γsgn(u)for γ>0.

    A time scale T is an arbitrary nonempty closed subset of real numbers which have a topology inherited from the real numbers with the standard topology.For t∈T,we de fine the forward jump operator σ:T→T by σ(t):=inf{s∈T:s>t},while the backward jump operator ρ:T→T is de fined by ρ(t):=sup{s∈T:sinf T and ρ(t)=t.The graininess functionμ:T→[0,∞)is de fined byμ(t):=σ(t)?t.The function f:T→R is called right-dense continuous on T if it is continuous at right-dense points in T,and its left-sided limits exist at left-dense points in T.The set of all rd-continuous functions f are denoted by Crd(T,R).By a solution of(1.5),we mean a nontrivial real-valued function x∈([Tx,∞)T)with Tx≥t0,which has the property that Sk(t,x(t))∈([Tx,∞)T)for 0≤k≤n,and which satis fies(1.5)on[Tx,∞)T,whereis the space of differentiable functions whose derivative is rd-continuous.The solutions vanishing in some neighborhood of in finity will be excluded from our consideration.A solution x(t)of(1.5)is said to be oscillatory if it is neither eventually positive nor eventually negative;otherwise it is called nonoscillatory.For more details on time scales,we refer the reader to Bohner and Peterson[3].

    For any t∈[t0,∞)T,we let

    Given T∈[t0,∞)Tsufficiently large,for any t≥T,we de fine

    and for any given function φ(t)>?1/rn(t)(t,T)such that rn(t)φ(t)is a?-differentiable function,and a positive?-differentiable function a(t),we assume that

    and

    Our main results on oscillation theorems for equation(1.5)can be stated as follows:

    Theorem 2.1Suppose that either

    holds.Furthermore,assume that there exist a function φ(t)satisfying φ(t)=0 for 0<γ<1,and a positive?-differentiable function a(t),such that,for a sufficiently large T∈[t0,∞)T,

    where T?∈(T,∞)Tand d+(t):=max{d(t),0}.Then,

    (i)every solution x(t)of(1.5)is oscillatory when n is odd;

    (ii)every solution x(t)of equation(1.5)is either oscillatory orx(t)=0 when n is even.

    For convenience,let Γ:={(t,s)∈T2:t0≤s≤σ(t),t,s∈[t0,∞)T}.For any function Q:T2→R,denote by QΔsthe partial derivative of Q(t,s)with respect to s.De fine

    Theorem 2.2Assume that either(2.3)or(2.4)is satis fied.Furthermore,suppose that there exist a function φ(t)satisfying φ(t)=0 for 0<γ<1,a positive?-differentiable function a(t)and Q∈X such that,for a sufficiently large T∈[t0,∞)T,

    where T?∈(T,∞)T.Then,

    (i)every solution x(t)of(1.5)is oscillatory when n is odd;

    (ii)every solution x(t)of equation(1.5)is either oscillatory orx(t)=0 when n is even.

    In order to obtain more oscillation results for(1.5),as in[1],one can de fine another class of functions as follows:U∈Y if U∈→R and satis fies U(t,t)=0,t≥t0,U(t,s)>0,t>s≥t0.Using the function U,we establish a similar oscillation result as to that of Theorem 2.2.

    Theorem 2.3Suppose that either(2.3)or(2.4)holds.Let U∈Y such that UΔs∈Crd(D,R)and UΔs≤0 on D,where D={(t,s):t≥s≥t0}.Furthermore,assume that there exist a function φ(t)satisfying φ(t)=0 for 0<γ<1,and a positive?-differentiable function a(t)such that,for a sufficiently large T∈[t0,∞)T,

    where T?∈(T,∞)T.Then,

    (i)every solution x(t)of(1.5)is oscillatory when n is odd;

    (ii)every solution x(t)of equation(1.5)is either oscillatory orx(t)=0 when n is even.

    Remark 2.4The results in this paper are expressed in a form with a high degree of generality.With an appropriate choice of the functions φ(t)and a(t)in Theorems 2.1–2.3,Q(t,s)in Theorem 2.2 and U(t,s)in Theorem 2.3,we can see that[25,Theorems 3.1–3.2]are special cases of Theorem 2.2–2.3.

    Remark 2.5To conclude this section,we propose the following open problem:fi nd sufficient conditions for every solution of(1.5)to be oscillatory when n is even.

    3 The Proof of Main Results

    3.1 Some useful lemmas

    It is easy to prove the following lemma(see also Sun et al.[22,Lemma 2.1]):.

    Lemma 3.1Let 1≤μ≤n.Then,

    Lemma 3.2Let x(t)be an eventually positive solution of equation(1.5).Then there exist a T∈[t0,∞)Tand an integer 0≤κ≤n with n+κ being even such that

    (i)κ≤n?1 implies(?1)κ+iSi(t,x(t))>0 on[T,∞)Tfor any κ≤i≤n?1;

    (ii)κ>0 implies Si(t,x(t))>0 on[T,∞)Tfor any 0≤i≤κ?1.

    ProofSupposing that x(t)is an eventually positive solution of equation(1.5),there exists t1∈[t0,∞)Tsuch that x(t)>0 and x(τ(t))>0 on[t1,∞)T.In a fashion similar to the proof of[26,Lemma 2.2],it is not difficult to obtain the desired results.

    Lemma 3.3Assume that(2.3)or(2.4)holds.Let x(t)be an eventually positive solution of equation(1.5).Then there exists T∈[t0,∞)Tsufficiently large such that Sn(t,x(t))>0 for any t∈[T,∞)T.Moreover,

    holds when n is odd and either(3.1)holds or=0 when n is even.

    ProofSince x(t)is an eventually positive solution of equation(1.5),that is,there exists t1∈[t0,∞)Tsuch that x(t)>0 and x(τ(t))>0 on[t1,∞)T,it follows from Lemma 3.2 that there exists an integer 0≤κ≤n satisfying that κ+n is even such that(?1)κ+iSi(t,x(t))>0 for t∈[t1,∞)Tand κ≤i≤n.

    When n is odd,κ must be an odd integer and xΔ(t)=S1(t,x(t))/r1(t)>0 for t∈[t1,∞)T.Consequently,

    In this case,we claim that κ=n.If we were to assume that this is not the case,then we would have Sn?1(t,x(t))<0 and Sn?2(t,x(t))>0 for t∈[t1,∞)T.By(3.2),it is not difficult to get that there exists t2∈[t1,∞)Tand a constant c>0 such that x(τ(t))≥c on[t2,∞)T.From(1.5),we have

    on[t2,∞)T.If(2.3)holds,integrating the above inequality from t2to t,we obtain that for t∈[t2,∞)T,

    This is in contradiction to the fact that Sn(t,x(t))>0 for t∈[t1,∞)T.Thus,κ=n,and(3.2)holds.

    If(2.4)holds,integrating(3.3)from t to∞,we get that,for t∈[t2,∞)T,

    Then,it follows from Sn?1(t,x(t))<0 that

    Again,integrating the above inequality from t2to t,we conclude from Sn?1(t,x(t))>0 that

    which is in contradiction to the fact that Sn?2(t,x(t))>0 on[t1,∞)T.Hence,κ=n,and(3.2)holds.

    When n is even,we infer from Lemma 3.2 that κ is an even integer.Thus,S1(t,x(t))>0 or S1(t,x(t))<0,which indicates thatx(t)≥0.We claim thatx(t)0 implies that κ=n.By a similar argument as to that above,we get a result that is in contradiction to(2.3)or(2.4).This ends the proof.

    Lemma 3.4Assume that either(2.3)or(2.4)holds.Let x(t)be a solution of equation(1.5)satisfying(3.1)for t∈[T,∞)Twith some T∈[t0,∞)T.Then,for t∈[T,∞)T,we getand

    ProofWithout loss of generality,we can assume that T is sufficiently large such that x(τ(t))>0 on[T,∞)T.By(1.5),it is obvious that Sn(t,x(t))is decreasing on[T,∞)T.Then it follows that,for t∈[T,∞)T,

    This finishes the proof.

    Lemma 3.10Assume that either(2.3)or(2.4)holds.Let x(t)be a solution of equation(1.5)satisfying(3.1)for t∈[T,∞)Twith some T∈[t0,∞)T.Then,this satis fies that

    3.2 Proof of Theorem 2.1

    Suppose that equation(1.5)has a nonoscillatory solution x(t)on[t0,∞)T.Without loss of generality,we may assume that x(t)is eventually positive.Then,there is a sufficiently large T∈[t0,∞)Tsuch that x(t)>0 and x(τ(t))>0 on[T,∞)T.Moreover,by Lemma 3.3,(3.1)holds.

    When n is odd,we de fine a generalized Riccati substitution as follows:

    3.3 Proof of Theorem 2.2

    Suppose that equation(1.5)has a nonoscillatory solution x(t)on[t0,∞)T.Without loss of generality,we may assume that x(t)is eventually positive.Then there is a sufficiently large T∈[t0,∞)Tsuch that x(t)>0 and x(τ(t))>0 on[T,∞)T.Moreover,by Lemma 3.3,(3.1)holds.

    When n is odd,we proceed as in the proof of Theorem 2.1 to obtain that

    Multiplying both sides of(3.24)with t replaced by s,by Q(σ(t),σ(s))and integrating with respect to s from T?to t,where t∈[T?,∞)Twith T?∈(T0,∞)T,one gets

    By dividing Q(σ(t),T?)and taking the limsup on both sides as t→∞,we obtain a contradiction to(2.6).Therefore,every solution x(t)of(1.5)is oscillatory.

    When n is even,we can derive from Lemma 3.3 that either(3.1)holds orx(t)=0.If(3.1)holds,then we can show that equation(1.5)is oscillatory,and hence omit its proof.This completes the proof of Theorem 2.2.

    3.4 Proof of Theorem 2.3

    Suppose that equation(1.5)has a nonoscillatory solution x(t)on[t0,∞)T.Without loss of generality,we may assume that x(t)is eventually positive.Then there is a sufficiently large T∈[t0,∞)Tsuch that x(t)>0 and x(τ(t))>0 on[T,∞)T.Moreover,by Lemma 3.3,(3.1)holds.

    When n is odd,we proceed as in the proof of Theorem 2.1 to obtain(3.24).Then,from(3.24),we obtain that

    for all s∈[T0,∞)T.Multiplying both sides of the above inequality by U(σ(t),σ(s))and integrating with respect to s from T?to σ(t),where σ(t)∈[T?,∞)Twith T?∈(T0,∞)T,we get

    In view of(3.29),(3.30)and U(σ(t),σ(t))=0,we conclude that

    which contradicts(2.7).Hence,every solution x(t)of(1.5)is oscillatory.

    When n is even,we infer from Lemma 3.3 that either(3.1)holds orx(t)=0.If(3.1)holds,then we see that equation(1.5)is oscillatory.We omit the details.This completes the proof.

    4 Applications on Particular Time Scales

    In this section,we apply Theorems 2.1–2.3 to different types of time scales.We start with the case of when T=R,and(1.5)becomes the nonlinear delay differential equation

    Applying Theorems 2.1–2.3 to equation(4.1),we get the following results:

    Corollary 4.1Suppose that either

    (i)every solution x(t)of(4.1)is oscillatory when n is odd;

    (ii)every solution x(t)of equation(4.1)is either oscillatory orx(t)=0 when n is even.

    Corollary 4.2Suppose that either the condition(4.2)or the condition(4.3)holds.Let U∈Y such that,where D={(t,s):t≥s≥t0}.Furthermore,assume that there exist a function φ(t)satisfying φ(t)=0 for 0<γ<1,and a positive differentiable function a(t)such that for a sufficiently large T∈[t0,∞)R,

    where T?∈(T,∞)R.Then,

    (i)every solution x(t)of(4.1)is oscillatory when n is odd;

    (ii)every solution x(t)of equation(4.1)is either oscillatory orx(t)=0 when n is even.

    Then we have,from Theorems 2.1–2.3,the following oscillation results for equation(4.4):

    Corollary 4.3Suppose that either

    holds.Furthermore,assume that there exist a sequence φ(t)satisfying φ(t)=0 for 0<γ<1,and a positive sequence a(t),such that,for a sufficiently large N∈N,

    where N?>N.Then,

    (i)every solution x(t)of(4.4)is oscillatory when n is odd;

    (ii)every solution x(t)of equation(4.4)is either oscillatory orx(t)=0 when n is even.

    Corollary 4.4Assume that either(4.5)or(4.6)is satis fied.Furthermore,assume that there exist a sequence φ(t)satisfying φ(t)=0 for 0<γ<1,a positive sequence a(t)and Q∈X such that,for a sufficiently large N∈N,

    where Θ1(n,k)=[?ps((n+1)p,kp)+Q((n+1)p,(k+1)p)Λ(kp)]+and N?>N.Then,

    (i)every solution x(t)of(4.4)is oscillatory when n is odd;

    (ii)every solution x(t)of equation(4.4)is either oscillatory orx(t)=0 when n is even.

    Corollary 4.5Suppose that either(4.5)or(4.6)holds.Let U∈Y such that?psU≤0 on D,where D={(n,k):n≥k≥n0}.Furthermore,assume that there exist a sequence φ(t)satisfying φ(t)=0 for 0<γ<1,and a positive sequence a(t)such that for a sufficiently large N∈N,

    Now,we give our oscillation results for(4.7).

    Corollary 4.6Suppose that either

    holds.Furthermore,assume that there exist a sequence φ(t)satisfying φ(t)=0 for 0<γ<1,and a positive sequence a(t),such that,for a sufficiently large N∈N,

    where N?>N.Then,

    (i)every solution x(t)of(4.7)is oscillatory when n is odd;

    (ii)every solution x(t)of equation(4.7)is either oscillatory orx(t)=0 when n is even.

    Corollary 4.7Assume that either(4.8)or(4.9)is satis fied.Furthermore,assume that there exist a sequence φ(t)satisfying φ(t)=0 for 0<γ<1,a positive sequence a(t)and Q∈X such that,for a sufficiently large N∈N,

    where Υ1(n,k)=[(qn+1,qk)+Q(qn+1,qk+1)Λ(qk)]+and N?>N.Then,

    (i)every solution x(t)of(4.7)is oscillatory when n is odd;

    (ii)every solution x(t)of equation(4.7)is either oscillatory orx(t)=0 when n is even.

    Corollary 4.8Suppose that either(4.8)or(4.9)holds.Let U∈Y such that?qsU≤0 on D,where D={(n,k):n≥k≥n0}.Furthermore,assume that there exist a sequence φ(t)satisfying φ(t)=0 for 0<γ<1,and a positive sequence a(t)such that,for a sufficiently large N∈N,

    where Υ2(n,k)=and N?>N.Then,

    (i)every solution x(t)of(4.7)is oscillatory when n is odd;

    (ii)every solution x(t)of equation(4.7)is either oscillatory orx(t)=0 when n is even.

    5 Numerical Examples

    Example 5.1Let p,L,γ be positive constants,let 0<γ<1,and let the time scale be T=pZ.Consider the dynamic equation

    By Theorem 2.2,every solution x(t)of(5.2)is oscillatory when n is odd,and every solution x(t)of equation(5.1)is either oscillatory orx(t)=0 when n is even.

    最近最新中文字幕大全电影3 | 美女午夜性视频免费| 一级毛片电影观看| 国产免费现黄频在线看| 99久久人妻综合| 国产精品熟女久久久久浪| 国产成人啪精品午夜网站| 桃红色精品国产亚洲av| 国产精品自产拍在线观看55亚洲 | 人人妻,人人澡人人爽秒播| av电影中文网址| 国产精品一区二区免费欧美| 国产极品粉嫩免费观看在线| 久久精品成人免费网站| 精品福利永久在线观看| 国产有黄有色有爽视频| 国产男女超爽视频在线观看| 无遮挡黄片免费观看| 一二三四在线观看免费中文在| 久久人人爽av亚洲精品天堂| 老司机福利观看| 国产极品粉嫩免费观看在线| 久久99一区二区三区| 黄色视频,在线免费观看| 国产精品.久久久| 黄片播放在线免费| 亚洲精品自拍成人| 考比视频在线观看| 12—13女人毛片做爰片一| 老司机亚洲免费影院| 午夜91福利影院| 久久精品成人免费网站| 丁香六月天网| 亚洲精品在线美女| www日本在线高清视频| 国产成人精品久久二区二区免费| xxxhd国产人妻xxx| av一本久久久久| 中文字幕色久视频| 中文字幕人妻熟女乱码| 中文字幕人妻丝袜制服| 色94色欧美一区二区| 亚洲熟妇熟女久久| 国产av国产精品国产| 亚洲国产欧美一区二区综合| 久久精品熟女亚洲av麻豆精品| 久久精品亚洲精品国产色婷小说| 男人操女人黄网站| 91成人精品电影| xxxhd国产人妻xxx| 久久久精品国产亚洲av高清涩受| 亚洲久久久国产精品| 男女无遮挡免费网站观看| 亚洲伊人色综图| 亚洲熟女毛片儿| 国产精品国产高清国产av | 久久精品国产99精品国产亚洲性色 | 国产黄频视频在线观看| 精品一品国产午夜福利视频| 亚洲专区字幕在线| 女人精品久久久久毛片| 亚洲一码二码三码区别大吗| 国产精品国产av在线观看| 亚洲少妇的诱惑av| 欧美精品亚洲一区二区| 侵犯人妻中文字幕一二三四区| 99riav亚洲国产免费| 欧美亚洲日本最大视频资源| 国产成人免费观看mmmm| 国产不卡av网站在线观看| 窝窝影院91人妻| 久久精品国产亚洲av高清一级| 麻豆乱淫一区二区| 国产成人av教育| 亚洲久久久国产精品| 国产亚洲一区二区精品| 国产区一区二久久| 日本黄色日本黄色录像| 老司机亚洲免费影院| 国产成人av教育| 天天躁狠狠躁夜夜躁狠狠躁| 伦理电影免费视频| 日韩一卡2卡3卡4卡2021年| 日本wwww免费看| 精品国产乱码久久久久久小说| 一区在线观看完整版| 欧美乱妇无乱码| 亚洲精华国产精华精| 丝袜人妻中文字幕| 99精品欧美一区二区三区四区| 天天躁夜夜躁狠狠躁躁| 精品福利观看| 热99国产精品久久久久久7| 亚洲专区字幕在线| 老司机深夜福利视频在线观看| 亚洲精品久久午夜乱码| 国产精品欧美亚洲77777| 色综合欧美亚洲国产小说| 亚洲国产欧美在线一区| 桃花免费在线播放| 日韩大片免费观看网站| 亚洲精品乱久久久久久| 最新在线观看一区二区三区| 国产国语露脸激情在线看| 男人操女人黄网站| 国产欧美日韩综合在线一区二区| 精品国产乱码久久久久久小说| 肉色欧美久久久久久久蜜桃| 久久国产精品男人的天堂亚洲| 女人爽到高潮嗷嗷叫在线视频| 精品熟女少妇八av免费久了| 国内毛片毛片毛片毛片毛片| 国产精品香港三级国产av潘金莲| 不卡av一区二区三区| 免费不卡黄色视频| 国产免费福利视频在线观看| 日本精品一区二区三区蜜桃| 精品亚洲成国产av| 免费看a级黄色片| 久久国产精品男人的天堂亚洲| 巨乳人妻的诱惑在线观看| 国产在线观看jvid| h视频一区二区三区| 考比视频在线观看| www.999成人在线观看| 亚洲熟妇熟女久久| 亚洲av日韩在线播放| 久久99一区二区三区| 国产一区二区三区在线臀色熟女 | 久久久国产精品麻豆| 午夜福利免费观看在线| 久久av网站| 午夜福利视频精品| 日韩免费高清中文字幕av| 一级黄色大片毛片| 日韩免费av在线播放| 亚洲 欧美一区二区三区| 久久香蕉激情| 日本vs欧美在线观看视频| 桃红色精品国产亚洲av| 99香蕉大伊视频| 国内毛片毛片毛片毛片毛片| 国产视频一区二区在线看| 国产精品自产拍在线观看55亚洲 | 久久久国产一区二区| 免费在线观看完整版高清| 欧美精品亚洲一区二区| 在线av久久热| 脱女人内裤的视频| 精品第一国产精品| 久久国产精品人妻蜜桃| 正在播放国产对白刺激| 一级毛片电影观看| 亚洲欧洲精品一区二区精品久久久| 在线播放国产精品三级| 美女扒开内裤让男人捅视频| 亚洲精品国产色婷婷电影| 国产高清videossex| av天堂久久9| 色视频在线一区二区三区| 亚洲情色 制服丝袜| 精品久久久精品久久久| 亚洲欧美一区二区三区久久| 超碰成人久久| 精品福利观看| www.自偷自拍.com| 国产精品香港三级国产av潘金莲| 国产伦理片在线播放av一区| 欧美激情极品国产一区二区三区| 亚洲七黄色美女视频| 免费人妻精品一区二区三区视频| 国产精品亚洲av一区麻豆| 精品福利永久在线观看| 最近最新免费中文字幕在线| 国产精品 国内视频| 欧美日韩成人在线一区二区| 人人妻人人澡人人看| 老司机午夜福利在线观看视频 | 国产精品免费大片| 久久久国产一区二区| 黄片播放在线免费| 美国免费a级毛片| 国产精品免费视频内射| 亚洲国产成人一精品久久久| tube8黄色片| 另类亚洲欧美激情| 久久国产精品大桥未久av| 麻豆av在线久日| 精品国产乱码久久久久久小说| av网站在线播放免费| 亚洲精品久久午夜乱码| a级毛片黄视频| 狠狠精品人妻久久久久久综合| 一本综合久久免费| 99久久99久久久精品蜜桃| 国产亚洲午夜精品一区二区久久| 三级毛片av免费| 亚洲人成电影免费在线| 久久久久久久久久久久大奶| 精品人妻熟女毛片av久久网站| 免费少妇av软件| av线在线观看网站| 在线永久观看黄色视频| 在线观看免费视频网站a站| 国产欧美日韩一区二区三| 国产三级黄色录像| 日韩人妻精品一区2区三区| 操出白浆在线播放| 欧美成人免费av一区二区三区 | 久久精品人人爽人人爽视色| 51午夜福利影视在线观看| 成人黄色视频免费在线看| 色尼玛亚洲综合影院| 国产成人av激情在线播放| 黑人欧美特级aaaaaa片| 精品国内亚洲2022精品成人 | 欧美激情 高清一区二区三区| 亚洲,欧美精品.| 午夜福利,免费看| 日韩欧美三级三区| 天堂动漫精品| 女人久久www免费人成看片| 露出奶头的视频| 精品免费久久久久久久清纯 | 亚洲精品中文字幕一二三四区 | 高清欧美精品videossex| 黄色成人免费大全| 亚洲国产成人一精品久久久| 国产一区有黄有色的免费视频| 精品一品国产午夜福利视频| 久久中文看片网| 国产成人精品在线电影| 亚洲七黄色美女视频| 国产精品偷伦视频观看了| 久久九九热精品免费| 后天国语完整版免费观看| 首页视频小说图片口味搜索| 国产成人精品久久二区二区免费| 国产亚洲一区二区精品| 日韩欧美一区视频在线观看| 交换朋友夫妻互换小说| 精品一区二区三区四区五区乱码| 制服人妻中文乱码| 国产精品国产高清国产av | 真人做人爱边吃奶动态| 国产精品美女特级片免费视频播放器 | 精品国产一区二区久久| 国产亚洲午夜精品一区二区久久| 免费在线观看日本一区| 女性被躁到高潮视频| 不卡一级毛片| 日本欧美视频一区| 免费高清在线观看日韩| 桃红色精品国产亚洲av| 777米奇影视久久| 国产成人免费无遮挡视频| 999精品在线视频| 日韩成人在线观看一区二区三区| 91麻豆精品激情在线观看国产 | 国产单亲对白刺激| 久久 成人 亚洲| 日韩中文字幕欧美一区二区| 日韩 欧美 亚洲 中文字幕| 色在线成人网| 久热这里只有精品99| 国产精品香港三级国产av潘金莲| 在线观看一区二区三区激情| 久久精品熟女亚洲av麻豆精品| 丁香欧美五月| 99re在线观看精品视频| 国产淫语在线视频| 亚洲美女黄片视频| 日韩精品免费视频一区二区三区| 亚洲成av片中文字幕在线观看| 国产精品九九99| 久久精品91无色码中文字幕| 亚洲第一欧美日韩一区二区三区 | 少妇 在线观看| 日韩欧美一区视频在线观看| 国产精品自产拍在线观看55亚洲 | 波多野结衣一区麻豆| 午夜久久久在线观看| 女性被躁到高潮视频| 国产又爽黄色视频| 中文字幕另类日韩欧美亚洲嫩草| 亚洲国产av影院在线观看| 搡老乐熟女国产| 一区二区三区国产精品乱码| 中文字幕最新亚洲高清| 亚洲熟女精品中文字幕| 叶爱在线成人免费视频播放| 热99久久久久精品小说推荐| 天天躁夜夜躁狠狠躁躁| 999久久久精品免费观看国产| 午夜激情av网站| 我要看黄色一级片免费的| 啦啦啦在线免费观看视频4| 久久热在线av| 欧美大码av| 国产精品 欧美亚洲| 少妇的丰满在线观看| 国产97色在线日韩免费| 国产97色在线日韩免费| 国产成人av教育| 欧美日韩视频精品一区| 国产黄频视频在线观看| 国产黄色免费在线视频| 老汉色av国产亚洲站长工具| 亚洲第一青青草原| 国产主播在线观看一区二区| 精品人妻1区二区| 老鸭窝网址在线观看| 久久精品国产亚洲av高清一级| 欧美精品一区二区大全| 久久久久国产一级毛片高清牌| 欧美人与性动交α欧美精品济南到| 女人精品久久久久毛片| 丁香六月欧美| 欧美日韩黄片免| 蜜桃在线观看..| 久久天躁狠狠躁夜夜2o2o| 多毛熟女@视频| 欧美激情久久久久久爽电影 | 天天躁日日躁夜夜躁夜夜| 午夜精品国产一区二区电影| 国产精品国产av在线观看| 一级,二级,三级黄色视频| 伦理电影免费视频| 97人妻天天添夜夜摸| 国产主播在线观看一区二区| a级毛片在线看网站| www.精华液| 手机成人av网站| 一区福利在线观看| 母亲3免费完整高清在线观看| 大片电影免费在线观看免费| 国产精品99久久99久久久不卡| 18禁国产床啪视频网站| 人妻一区二区av| 国产精品九九99| 少妇裸体淫交视频免费看高清 | 免费日韩欧美在线观看| 国产一区二区三区视频了| 97在线人人人人妻| 19禁男女啪啪无遮挡网站| 国产伦人伦偷精品视频| 99精品久久久久人妻精品| 精品国产乱子伦一区二区三区| 中文亚洲av片在线观看爽 | 五月天丁香电影| 午夜激情av网站| 精品久久久精品久久久| 一区福利在线观看| 日韩视频一区二区在线观看| 成人手机av| 免费一级毛片在线播放高清视频 | 人成视频在线观看免费观看| 老司机午夜福利在线观看视频 | 在线亚洲精品国产二区图片欧美| 视频区欧美日本亚洲| av网站在线播放免费| 手机成人av网站| 搡老岳熟女国产| 久久免费观看电影| 欧美成人免费av一区二区三区 | 亚洲精华国产精华精| 国产精品亚洲av一区麻豆| 国产av国产精品国产| 亚洲熟女毛片儿| 亚洲视频免费观看视频| 久久免费观看电影| 亚洲国产中文字幕在线视频| 不卡av一区二区三区| 在线观看人妻少妇| 老司机影院毛片| 夜夜夜夜夜久久久久| 91九色精品人成在线观看| 欧美av亚洲av综合av国产av| 色精品久久人妻99蜜桃| 亚洲一卡2卡3卡4卡5卡精品中文| 黄片播放在线免费| 一边摸一边做爽爽视频免费| 亚洲成人国产一区在线观看| 制服诱惑二区| 久久99热这里只频精品6学生| 一二三四在线观看免费中文在| 久久精品aⅴ一区二区三区四区| 欧美激情高清一区二区三区| 老司机午夜十八禁免费视频| 人人妻人人添人人爽欧美一区卜| 亚洲中文字幕日韩| 久久久精品免费免费高清| 国产福利在线免费观看视频| 国产成人欧美在线观看 | 在线播放国产精品三级| 老司机在亚洲福利影院| h视频一区二区三区| 国产黄色免费在线视频| 黄色丝袜av网址大全| 侵犯人妻中文字幕一二三四区| 美女高潮喷水抽搐中文字幕| 国产欧美日韩综合在线一区二区| 亚洲av片天天在线观看| 亚洲三区欧美一区| 丁香欧美五月| 国产亚洲精品久久久久5区| av片东京热男人的天堂| 五月天丁香电影| 天天躁狠狠躁夜夜躁狠狠躁| 成在线人永久免费视频| av片东京热男人的天堂| 精品久久久精品久久久| 丁香六月天网| 欧美激情高清一区二区三区| 老司机福利观看| 久久青草综合色| 久久久久久人人人人人| 欧美日本中文国产一区发布| 国产成人一区二区三区免费视频网站| 在线观看舔阴道视频| 亚洲欧美色中文字幕在线| 少妇裸体淫交视频免费看高清 | 国产野战对白在线观看| 国产亚洲精品久久久久5区| 一级片'在线观看视频| 97人妻天天添夜夜摸| 蜜桃在线观看..| 别揉我奶头~嗯~啊~动态视频| 中文字幕av电影在线播放| 久久国产精品影院| 在线天堂中文资源库| 最黄视频免费看| 亚洲欧洲日产国产| 国产99久久九九免费精品| 国产在视频线精品| 一级黄色大片毛片| 91字幕亚洲| 国产高清激情床上av| 啦啦啦 在线观看视频| 亚洲av日韩在线播放| 免费人妻精品一区二区三区视频| 日本wwww免费看| 国产精品 欧美亚洲| 丝袜美足系列| 国产精品自产拍在线观看55亚洲 | 啦啦啦免费观看视频1| www.自偷自拍.com| 国产伦人伦偷精品视频| www.熟女人妻精品国产| 美女视频免费永久观看网站| 99精国产麻豆久久婷婷| 大片电影免费在线观看免费| 午夜精品国产一区二区电影| 欧美精品人与动牲交sv欧美| 99国产精品99久久久久| av欧美777| 制服诱惑二区| 久久久久网色| av有码第一页| 国产亚洲午夜精品一区二区久久| 女人被躁到高潮嗷嗷叫费观| 满18在线观看网站| 人人妻人人添人人爽欧美一区卜| 韩国精品一区二区三区| 啪啪无遮挡十八禁网站| 久久国产精品人妻蜜桃| 久久人人97超碰香蕉20202| 欧美精品一区二区大全| 国产免费视频播放在线视频| 一区二区日韩欧美中文字幕| 99热国产这里只有精品6| www日本在线高清视频| 人人妻人人爽人人添夜夜欢视频| 亚洲国产av新网站| 岛国在线观看网站| 欧美黄色片欧美黄色片| 日本撒尿小便嘘嘘汇集6| 老司机在亚洲福利影院| 欧美日本中文国产一区发布| 两人在一起打扑克的视频| 国产精品久久久久久精品电影小说| 精品乱码久久久久久99久播| 亚洲国产av新网站| 欧美精品亚洲一区二区| 捣出白浆h1v1| 精品午夜福利视频在线观看一区 | 久久婷婷成人综合色麻豆| 香蕉丝袜av| 久久人人爽av亚洲精品天堂| 精品亚洲乱码少妇综合久久| 久久久久久久久久久久大奶| 我的亚洲天堂| 午夜福利视频在线观看免费| 汤姆久久久久久久影院中文字幕| 亚洲成人手机| 国产免费av片在线观看野外av| 亚洲人成电影免费在线| 黄色成人免费大全| 精品国产一区二区三区久久久樱花| 亚洲精品国产色婷婷电影| 日本五十路高清| 青草久久国产| 777久久人妻少妇嫩草av网站| 黄色视频,在线免费观看| 成人18禁高潮啪啪吃奶动态图| 国产成人系列免费观看| 菩萨蛮人人尽说江南好唐韦庄| 女同久久另类99精品国产91| 一个人免费在线观看的高清视频| 制服人妻中文乱码| 免费少妇av软件| 成人黄色视频免费在线看| 欧美精品啪啪一区二区三区| 亚洲精品美女久久久久99蜜臀| 777米奇影视久久| 久久久久久久国产电影| 天天操日日干夜夜撸| 亚洲午夜理论影院| 99re6热这里在线精品视频| 国产精品免费大片| 国产男靠女视频免费网站| 成人黄色视频免费在线看| 午夜福利影视在线免费观看| 一二三四社区在线视频社区8| 亚洲第一欧美日韩一区二区三区 | videos熟女内射| 99热国产这里只有精品6| 精品一区二区三区视频在线观看免费 | 国产日韩欧美亚洲二区| 久久午夜亚洲精品久久| 午夜福利影视在线免费观看| 一二三四社区在线视频社区8| 国产男女内射视频| 亚洲精品在线观看二区| 最近最新免费中文字幕在线| 色综合婷婷激情| 日本精品一区二区三区蜜桃| 大片电影免费在线观看免费| 亚洲专区中文字幕在线| 亚洲一区二区三区欧美精品| 99国产精品99久久久久| 免费在线观看完整版高清| 自拍欧美九色日韩亚洲蝌蚪91| 日韩免费av在线播放| 久久天躁狠狠躁夜夜2o2o| 亚洲专区字幕在线| 国产午夜精品久久久久久| 国产高清国产精品国产三级| 精品亚洲成a人片在线观看| 亚洲av欧美aⅴ国产| 在线播放国产精品三级| 涩涩av久久男人的天堂| 亚洲av国产av综合av卡| 一本久久精品| 精品人妻熟女毛片av久久网站| 日韩大码丰满熟妇| 黑人操中国人逼视频| 欧美老熟妇乱子伦牲交| 亚洲熟女精品中文字幕| 久久精品亚洲熟妇少妇任你| 国产成人精品在线电影| av一本久久久久| 天天影视国产精品| 国产精品久久久久久人妻精品电影 | 一本综合久久免费| 日本黄色日本黄色录像| 国产高清videossex| 一区二区日韩欧美中文字幕| 午夜精品久久久久久毛片777| 动漫黄色视频在线观看| 免费人妻精品一区二区三区视频| 在线观看66精品国产| 麻豆av在线久日| 老熟妇乱子伦视频在线观看| 天堂中文最新版在线下载| 国产亚洲精品一区二区www | 亚洲五月色婷婷综合| 一二三四社区在线视频社区8| 精品第一国产精品| 国产不卡av网站在线观看| 大码成人一级视频| 在线观看人妻少妇| 精品久久久久久电影网| 亚洲 国产 在线| 视频区图区小说| 18禁观看日本| 精品国产乱码久久久久久小说| 久久久精品区二区三区| 国产在线免费精品| 久久99热这里只频精品6学生| a级片在线免费高清观看视频| www.精华液| 日韩精品免费视频一区二区三区| 一本色道久久久久久精品综合| 精品人妻1区二区| 一区二区av电影网| 91字幕亚洲| 黄色片一级片一级黄色片| 欧美 日韩 精品 国产| tocl精华| 欧美日韩av久久| 最近最新中文字幕大全免费视频| 亚洲自偷自拍图片 自拍| 亚洲成av片中文字幕在线观看| 精品第一国产精品| 亚洲,欧美精品.| 久久久久精品国产欧美久久久| 久久精品aⅴ一区二区三区四区| 2018国产大陆天天弄谢| 国产不卡一卡二| 高清av免费在线| 久久精品熟女亚洲av麻豆精品| 国产亚洲欧美精品永久| 国产真人三级小视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91|