• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CONTINUOUS TIME MIXED STATE BRANCHING PROCESSES AND STOCHASTIC EQUATIONS?

    2021-10-28 05:44:04ShukaiCHEN陳舒凱ZenghuLI李增滬

    Shukai CHEN(陳舒凱) Zenghu LI(李增滬)

    Laboratory of Mathematics and Complex Systems,School of Mathematical Sciences,Beijing Normal University,Beijing 100875,China

    E-mail:skchen@mail.bnu.edu.cn;lizh@bnu.edu.cn

    Abstract A continuous time and mixed state branching process is constructed by a scaling limit theorem of two-type Galton-Watson processes.The process can also be obtained by the pathwise unique solution to a stochastic equation system.From the stochastic equation system we derive the distribution of local jumps and give the exponential ergodicity in Wasserstein-type distances of the transition semigroup.Meanwhile,we study immigration structures associated with the process and prove the existence of the stationary distribution of the process with immigration.

    Key words mixed state branching process;weak convergence;stochastic equation system;Wasserstein-type distance;stationary distribution.

    1 Introduction

    Branching processes were introduced as probabilistic models describing the evolution of populations.The study of branching processes was initiated by Bienaym′e(1845)and Galton and Watson(1874),independently,and the processes were referred to as discrete time and discrete state branching processes(GW-processes).To increase speci ficity,several naturally generalized processes including continuous time discrete state branching processes(DB-processes)with or without immigration and continuous time continuous state branching processes(CB-processes)with or without immigration,were subsequently introduced and studied by researchers.

    The DB-processes are continuous time discrete state Markov processes with lifetimes that are independent and with exponentially distributed random variables.There have been many works on DB-processes,including ones pertaining to their construction,to the properties of moments,to limit theorems and so on;we refer to[1]for the details regarding these.The application of stochastic equations to branching processes has been developed in recent decades.Let N={0,1,2,···}and let?(·)=be a counting measure on N.Let X={Xt:t≥0}be a DB-process with immigration with a branching rate c>0,offspring distribution(pi:i∈N),an immigration rate η>0 and immigration distribution(qi:i∈N).The two distributions satisfy<∞.It is known that X can be obtained as a pathwise unique strong solution to the stochastic equation

    where X0is a random variable taking values in N,M(ds,dz,du)is a Poisson random measure on(0,∞)×N×(0,∞)with intensity measure cpzds?(dz)du,N(ds,dz)is a Poisson random measure on(0,∞)×N with intensity measure ηqzds?(dz),and X0,M(ds,dz,du)and N(ds,dz)are independent of each other.In particular,if η≡0,qz≡0 for all z∈N,this reduces things to the DB-process.Moreover,here and in the sequel,we understand that for any b≥a≥0,

    CB-processes were first introduced in[16],to model the random evolution of large population dynamics.Denoting the law on D([0,∞),[0,∞))by Pxfor each initial value x≥0,the branching property of processes can be described by Px+y=Px?Py.The semigroup of CB-processes with immigration(CBI-processes)(Qt)t≥0can be characterized uniquely by the Laplace transform

    and the branching mechanism φ and immigration mechanism ψ de fined on[0,∞)take the form of

    where Y0is a random variable taking values in R+,W(ds,du)is a time-space white noise with intensity measure dsdu,M(ds,dz,du)is a Poisson random measure on(0,∞)3with intensity measure dsm(dz)du,N(ds,dz)is a Poisson random measure on(0,∞)2with intensity measure dsn(dz)and(ds,dz,du)=M(ds,dz,du)?dsm(dz)du is the compensated measure of M(ds,dz,du).Moreover,Y0,W,M and N are independent of each other.We mention that the moment conditionz n(dz)<∞was removed in[13].The sample paths of Y can also be obtained as a unique strong solution to a stochastic equation driven by Brownian motions and Poisson random measures.One finds that the formulation(1.3)is nicer for analysing the flows of CBI-processes and other applications;see[6]for the speci fic construction.We refer to[3,5,6,13,23,25,30]for more on this approach and further properties of the above stochastic equations.Based on the stochastic equations established above,[14]studied the explicit expression of the distribution of jumps.[17]gave the criteria for the existence of general moments for CB-processes with or without immigration under a more general branching mechanism,where the characterization of the processes in terms of stochastic equations plays an essential role,and[18]extended those results to the processes in Lvy random environments.Some applications for finance can be found in[19].A two-type CBI-process obtained as a unique strong solution of a stochastic equation system was studied in[28,29].

    We can rewrite(1.3)without an immigration part by extending the M to a Poisson random measure denoted again by M on(0,∞)3×N with intensity dsm(dz)du?(dk)for some λ>0 as follows:

    Here,M0(ds,dz,du)=M(ds,dz,du,{k=0})and

    Recently,[9]gave another SDE-type description for one-dimensional CB-processes based on(1.4)with a<0,λ≥λ?;here λ?is the unique root of φ on(0,∞).One of the results in[9]shows that the last three integrals on the right-hand side of(1.4)are identi fied with the mass that immigrates from the skeleton construction.More precisely,the following stochastic equation system has a unique strong solution:

    Here M=R+×N,M3(ds,dz,dk)is a Poisson random measure on(0,∞)2×{N{0}}with intensity measure dsze?λzm(dz)?(dk),M4(ds,dz,dk)is a Poisson random measure on(0,∞)×M×{N{0}}with intensity measure φ′(λ)dsηz2(dz1)pz2?(dz2)?(dk),and one can see the speci fic de finitions of two distributions(ηk)k∈Nand(pk)k∈Nin[9,p.1127],so we omit them here.The authors prove that,for any y≥0,{Yt:t≥0}is a weak solution of(1.4)with initial value Y0=y if X0is Poisson distributed with parameter λy.Moreover,(1.5)–(1.6)includes the proli fic skeleton decomposition when λ=λ?;see[2]for the properties of this special decomposition.We refer to[10]for a similar construction of(1.5)–(1.6)in the setting of superprocesses.

    Inspired by the formulations(1.5)–(1.6),the first objective of this paper is to construct a two-dimensional branching Markov process{(Y1(t),Y2(t)):t≥0}taking values in M obtained as a unique strong solution to a more generalized stochastic equation system than(1.5)–(1.6);the process is called the continuous time mixed state branching process(MSB-process).The speci fic form of the stochastic equation system is as follows:

    Here,a21,α≥0,a11∈R,M?1=R+×N?1,N?1=N∪{?1},B is a standard Brownian motion,N1and N2are two Poisson random measures with intensity measures dsn1(dz)du and dsn2(dz)du,respectively,and n1and n2are two Lvy measures satisfying some moment conditions.Intuitively,there exist interactions between{Y1(t):t≥0}and{Y2(t):t≥0},therefore(1.7)–(1.8)obviously generalize(1.5)–(1.6).We mention that the Brownian motion B in(1.7)can be replaced by a space-time white noise W and the process has the same law for any fixed initial value.

    In the literature on the theory of branching processes,the rescaling approach plays a valuable role in establishing the connection among those branching processes;this leads to the second purpose of this paper,and the establishment of two results.First,for a sequence of GW-processes{Xk(n):n≥0}k≥1and a positive sequence{γk}k≥1,we show that on proper conditions,{Xk():t≥0}converges as k→∞to a DB-process in distribution,wheredenotes the integral part of x.Second,for a sequence of two-type GW-processes{(Yk,1(n),Yk,2(n)):n∈N}k≥1,we prove that{(k?1Yk,1(),Yk,2()):t≥0}converges in distribution to a MSB-process under parallel conditions.The two limit theorems above are mainly inspired by[22,23,27].

    The existence of the stationary distribution and the ergodic rates are both important topics in the theory of Markov processes.Demonstration of a necessary and sufficient condition for the existence of the stationary distribution of one-dimensional CBI-processes was initiated by[31];see also[23]for a proof.The sufficient condition for the multi-type case can be found in[20].The strong Feller property and exponential ergodicity of such processes in the total variation distance were given in[24]by a coupling of CBI-processes constructed by the stochastic equation driven by time-space noises and Poisson random measures;see also[25].In a recent work,[26]considered the ergodicities and exponential ergodicities in Wasserstein and total variation distances of Dawson-Watanabe superprocesses with or without immigration;this clearly includes the multi-type CBI-process case.After constructing the MSB-processes,we also want to study the ergodic theory of such processes and prove the exponential ergodicity in the L1-Wasserstein distance by establishing upper bound estimates for the variations of the transition probabilities;this is inspired by similar results on measure-valued branching processes in[26].Moreover,by adding the immigration structures,we give a sufficient and necessary condition for the existence of the stationary distribution of MSB-processes with immigration(MSBI-processes).

    The remainder of this paper is organized as follows:in Section 2,we prove a weak convergence theorem from GW-processes to DB-processes.In Section 3,we obtain the MSB-process arising in a limit theorem of rescaled two-type GW-processes.In Section 4,we provide another construction of MSB-processes by stochastic equation systems.The analysis of distributions of jumps is given in Section 5.In Section 6,we study both the estimates for the variations and the exponential ergodicity in the L1-Wasserstein distance W1for the transition semigroup of such processes.Finally,we prove the existence of the stationary distribution of such processes with immigration in Section 7.

    2 The Construction of DB-processes

    Let{pj:j∈N}be a probability distribution on N,and denote the generating function by g(z)=on|z|≤1.Let u(z)=a(g(z)?z)for some a>0.A Markov process{Xt:t≥0}with state space N is called a DB-process with branching rate a>0 and offspring distribution{pj:j∈N}if its transition probabilities Qij(t)satisfy

    which implies the branching property of the process.Denote F(z,t)=Clearly,F=(F(·,t):t≥0)satis fies the semigroup property F(·,t+s)=F(F(·,t),s)for t,s≥0 and is the unique solution of the following differential equation:

    We call F the compound semigroup for the DB-process,and refer to[1,p.106-107]for more details.

    We now provide a sufficient condition for the weak convergence of GW-processes to the DB-process.Assume that there exists a sequence of GW-processes{Xk(n):n≥0}k≥1with parameters{gk}k≥1,and let{γk}k≥1be a sequence of positive numbers.Denote the n-step transition probability for{Xk(n):n≥1}by,and letx」be the integral part of x.One can see that

    where g°n(z)is de fined by g°n(z)=g(g°(n?1)(z)),successively with g°0(z)=z and Uk(z)=γk(gk(z)?z),0≤z≤1.For convenience,we formulate the following conditions:

    (A)γk→∞as k→∞.

    (B)The sequence Uk(z)is uniformly Lipschitz on[0,1],and converges to a continuous function u(z)as k→∞.

    Proposition 2.1(i)Suppose that(A,B)hold.Then the limit function of sequence{Uk(z)}k≥1has representation u(z)=a(g(z)?z)as k→∞for all 0≤z≤1,where a is a strictly positive constant,g(z)is a generation function and g′(1?)<∞.

    (ii)For any given u(z)=a(g(z)?z),there exists a sequence of{Uk}k≥1such that(A,B)hold with Uk(z)→u(z).

    Proof(i)The desired result is a corollary of Proposition 3.1(i),to be demonstrated later.Indeed,it suffices to consider the offspring distribution corresponding to two-type GW-processes cases satisfying vk({i,·})≡0 for all i≥1.

    De fining Uk(z)=,it is not hard to see that Uksatis fies condition(B),and converges to u(z)for all z∈[0,1].

    Lemma 2.2Suppose that(A,B)hold.Then there are constants λ,N≥0 such that Fk(z,t)∈for every t≥0,z∈[0,1]and k≥N.

    ProofLet bk:=γk((1?)?1).Under condition(B),there exists λ≥0 such that 2|bk|≤λ for all k≥1.It is not hard to obtain that

    Since γk→∞as k→∞,there is a N≥1 such that,for all k≥N,

    so for t≥0 and k≥N,

    We get the desired result by Jensen’s inequality.

    Lemma 2.3Suppose that(A,B)hold.For any c>0,we have Fk(z,t)→some F(z,t)uniformly on[0,e?c]×[0,c]as k→∞,and the limit function solves(2.2).

    ProofWe may rewrite

    By Proposition 2.1 and Lemma 2.2,for ε∈(0,1],we can take N≥1 large enough such that

    Denote the last term on the right hand of equation(2.3)by εk(t,z).Then

    and it follows that

    from which it follows that Fk(z,t)→some F(z,t),and the limit function satis fies(2.2).

    By(2.1),we see that the transition probabilities Q={Qij(t):i,j∈N,t≥0}of the DB-process{Xt:t≥0}can be determined by

    Based on Proposition 2.1 and Lemma 2.3,by similar arguments as to those of Theorem 2.9 in[25],it is not hard to see that the transition probability Q of{Xt:t≥0}is a limit of a sequence of transition probabilities{(i,j):i,j∈N,t≥0}k≥1associated with GW-processes in the sense of weak convergence under conditions(A,B);this indeed implies another construction of DB-processes by a rescaling approach.

    3 The Construction of MSB-processes

    For a two-type GW-process{Y(n)=(Y1(n),Y2(n)):n∈N},we de fine two corresponding generation functions for i=(i1,i2)∈N2and s1,s2∈[0,1]:

    For convenience,let us consider the following conditions:(A)γk→∞.

    (C)The sequence{Φk,1(λ1,λ2)}k≥1is uniformly Lipschitz in(λ1,λ2)on each bounded rectangle,and converges to a continuous function as k→∞.

    (D)The sequence{eλ2Φk,2(λ1,λ2)}k≥1is uniformly Lipschitz in(λ1,λ2)on each bounded rectangle,and converges to a continuous function as k→∞.

    By a modi fication of the proof of Lemma 2.6 and Theorem 2.7 in[25],we get(3.8).For given(Φ1,Φ2)by(3.3)–(3.4),it follows from Proposition 3.1(ii)that there is a sequence{Φk,1,Φk,2}satisfying(A,C,D),so if we let a sequence{Vk}be given by(3.1)and(3.2),the existence of the solution is immediate.The uniqueness of the solution follows by Gronwall’s inequality,and the semigroup property follows from the uniqueness of the solution.

    Proposition 3.3Suppose(Φ1,Φ2)are given by(3.3)–(3.4).For any λ∈,let t→V(t,λ)be the unique positive solution to(3.8).Then we can de fine a transition semigroup(Pt)t≥0by

    ProofGiven(Φ1,Φ2)by(3.3)–(3.4),by Proposition 3.1,there is a sequence(Φk,1,Φk,2)satisfying(A,C,D).By Proposition 3.2,for any a≥0 we have Vk(t,λ)→V(t,λ)uniformly on[0,a]3as k→∞.Take xk∈Mksatisfying xk→x as k→∞.Then,by a continuity theorem(see,e.g.,Theorem 1.18 in[23]),(3.10)de fines a probability measure on M and(xk,·)=Pt(x,·)by weak convergence.The semigroup property of the family of(Pt)t≥0follows from(3.9)and(3.10).

    De finitionA Markov process{Y(t)=(Y1(t),Y2(t)):t≥0}is called a MSB-process with state space M if it has the transition semigroup(Pt)t≥0in(3.10).

    Proposition 3.4Let(Pt)t≥0be the transition semigroup de fined by(3.10).Then we have

    with initial condition π(0,λ)=λ.

    ProofOne can see that V(t,0+)=0 for t≥0.By differentiating both sides of(3.10)with respect to λ1and λ2,we have

    and the desired assertion follows.

    By a modi fication of the proof of Theorem 2.11 in[25],one can see that the semigroup de fined by(3.10)is a Feller semigroup.Then the MSB-process has a c`adl`ag realization.Moreover,the MSB-process can also be characterized in terms of the martingale problem described as follows(see Corollary 4.4 below for the proof):for f∈C2(M),let L be an operator acting on C2(M)de fined by

    Suppose that{(Y1(t),Y2(t)):t≥0}is a non-negative cdlg process withE[Yi(0)]<∞,i=1,2.Then{(Y1(t),Y2(t)):t≥0}is a MSB-process with transition semigroup(Pt)t≥0if and only if,for every f∈C2(M),

    Theorem 3.5Assume that(A,C,D)hold,and that(Yk,1(0)/k,Yk,2(0))converges to(Y1(0),Y2(0))in distribution.Then

    in distribution on D([0,∞),M)as k→∞.

    ProofLet L be the generator of the MSB-process.For λ=(λ1,λ2)?0,x∈M,set eλ(x)=e?〈λ,x〉.We have

    Denote by D1the linear hull of{eλ,λ?0}.Then D1is an algebra which strongly separates the points of M.Let C0(M)be the space of the continuous function on M vanishing at in finity.By the Stone-Weierstrass theorem,D1is dense in C0(M)for the supremum norm.Noting that D1is invariant under Ptby(3.10),it follows from Proposition 3.3 in Chapter I of[8]that D1is the core of L.Note that{Yk,1(n)/k,Yk,2(n):n≥0}is a Markov chain with state space Mk,and the one-step transition probability is determined by

    From Corollary 8.9 in Chapter 4 of[8],we prove the desired result.

    Theorem 3.6Suppose that{(Y1(t),Y2(t)):t≥0}is any MSB-process with(Φ1,Φ2).Then,there exist a sequence of positive numbers{γk}and a sequence of two-type GW-processes{(Yk,1(n),Yk,2(n)):n∈N}with generation functions(gk,1,gk,2)such that the sequence{(k?1Yk,1(),Yk,2()):t≥0}converges in distribution on D([0,∞),M)to the process{(Y1(t),Y2(t)):t≥0}as k→∞.

    ProofBy Proposition 3.1,there exist{γk},{(gk,1,gk,2)}such that conditions(A,C,D)hold.The desired result follows from Theorem 3.5.

    4 The Construction of MSB-processes by Stochastic Equations

    Let(?,F,Ft,P)be a complete filtered probability space satisfying the usual hypotheses,let{B(t)}be a standard Brownian motion,let{N1(ds,du,dz)}be a Poisson random measure on(0,∞)2×M with intensity dsdun1(dz),and let{N2(ds,du,dz)}be a Poissonrandom measure on(0,∞)2×M?1with intensity dsdun2(dz),z=(z1,z2).Suppose that B,N1,N2are independent of each other.Let us recall the stochastic integral equation system(1.7)–(1.8)

    Proposition 4.1Suppose that{Y(t)}satis fies(1.7)–(1.8)andP{Y(0)≥0}=1.ThenP{Y(t)≥0,?t≥0}=1.

    ProofBy equation(1.8),if Y2(0)≥0,it is not hard to see that,for all t≥0,Y2(t)≥0.Now suppose that there exists ε>0 such that τ:=inf{t>0,Y1(t)≤?ε}<∞with strictly positive probability.Then there exists t0>0,Y1(t0)=0,and on the time interval[t0,τ],tY1(t)is a strictly negative continuous function.Hence there are some t1∈[t0,τ]and δ>0 such that,for all s∈[t0,t1],?a11Y1(s)+a21Y2(s)≥δ.Then

    Moreover,for function f on R,we denote

    Theorem 4.2The pathwise uniqueness for(1.7)–(1.8)holds.

    ProofSuppose that{Y(t)}and{Y′(t)}are two solutions of(1.7)–(1.8).Let ζi(t)=Yi(t)?(t),i=1,2 for t≥0.We have

    Since{Y(t)}and{Y′(t)}have c`adl`ag sample paths,we conclude thatP{Y(t)=Y′(t),?t≥0}=1 as m→∞.

    Theorem 4.3There is a unique non-negative strong solution to(1.7)–(1.8).

    ProofSince ν1is supported on M{0},we can rewrite(1.7)–(1.8)as

    For any fixed n≥1,let Vn={z∈M?1:‖z‖≥1/n},so n1(Vn)+n2(Vn)<∞.For m≥1 and x∈M,de fine

    By the results for continuous-type stochastic equations in[15,p.169],one can show that there is a non-negative weak solution to the following stochastic equation system:

    The pathwise uniqueness holds for the above system of equations by similar arguments as to those in Theorem 4.2.Then it has a unique strong solution.By similar arguments as to those in the proof of Proposition 2.2 in[13],we can get a pathwise unique non-negative strong solution{Ym,n(t):t≥0}to(4.1)–(4.2)as follows:

    As in the proof of Lemma 4.3 in[13],one can see that the sequence{Ym,n(t):t≥0},n=1,2,···is tight in D([0,∞),M).Following the proof of Theorem 4.4 in[13],it is easy to show that any weak limit point{Ym(t):t≥0}of the sequence is a non-negative weak solution to

    By Theorem 4.2,the pathwise uniqueness holds for(4.3)–(4.4),so the system of equations has a unique strong solution.Finally,the desired result follows from a modi fication of the proof of Proposition 2.4 in[13].

    Corollary 4.4A c`adl`ag non-negative process is a MSB-process with transition semigroup(Pt)t≥0de fined by(3.8)and(3.10)if and only if it is a weak solution of(1.7)–(1.8).

    ProofSuppose that{(Y1(t),Y2(t))}t≥0is a weak solution of(1.7)–(1.8).By It?o’s formula,one can see that{(Y1(t),Y2(t))}t≥0solves the martingale problem associated with the generator L.By the arguments in Section 3,we infer that{(Y1(t),Y2(t))}t≥0is a MSB-process with a transition semigroup(Pt)t≥0de fined by(3.8)and(3.10).Conversely,suppose that{(Y1(t),Y2(t))}t≥0is a c`adl`ag realization of the MSB-process with transition semigroup(Pt)t≥0de fined by(3.8)and(3.10).Then the distributions of{(Y1(t),Y2(t))}t≥0on D([0,∞),M)can be characterized uniquely by the martingale problem.By a standard stopping time argument,we have

    where G1(t)and G2(t)are two square-integrable local martingales.Let N0(ds,dz)be the optimal random measure on[0,∞)×M?1de fined by

    It follows from[7,p.376]that

    dC1(t)=2αY1(t)dt and dC2(t)=0.Then we obtain the equation(1.7)–(1.8)on an extension of the probability space by applying martingale representation theorems;see,e.g.,[15,p.93,p.84].This completes the proof.

    5 The Distribution of Local Jumps

    For any initial time r≥0,let Y=(?,F,Fr,t,Y(t),Pr,y:t≥r,y≥0)be a Hunt realization of the MSB-process with transition semigroup(Pt)t≥0de fined by(3.8)and(3.10).Here,{Pr,y:y≥0}is a family of probability measures on(?,F,Fr,t)satisfyingPr,y{Y(r)=y}=1 for all y≥0.For any t≥r≥0 and λ∈[0,∞)2,we have

    The following theorem gives a characterization of the distribution of the local maximal jump of the MSB-process:

    6 Exponential Ergodicity in Wasserstein Distances

    In order to present our results in this section,we first introduce some notations.Given two probability measuresμand ν on M,the standard Lp-Wasserstein distance Wpfor all p≥1 is given by

    where|·|denotes the Euclidean norm and C(μ,ν)stands for the set of all coupling measures ofμand ν,i.e.,C(μ,ν)is the collection of measures on M×M havingμand ν as marginals.Denoting Pp(M)as the set of probability measures having a finite moment of order p,it is known that(Pp(M),Wp)becomes a Polish space.

    The next theorem gives the upper and lower bounds for the variations in the L1-Wasserstein distance W1of the transition probabilities of the MSB-process started from two different initial states.

    Theorem 6.1Let(Pt)t≥0be the transition semigroup de fined by(3.10).Then for all x,y∈M and t≥0,we have

    where δxPt(·):=Pt(x,·)and π(t,1)is de fined as in Proposition 3.4 with λ=(1,1).

    ProofThe proof is based on the same idea as that of Theorem 2.2 in[26].By Proposition 3.4,we see thatRM(y1+y2)Pt(x,dy)=〈x,π(t,1)〉.It follows from Theorem 5.10 in[4]that

    Similarly,W1(δxPt,δyPt)≥〈y?x,π(t,1)〉.Then the first inequality follows.On the other hand,for x,y∈M,let(x?y)±:=((x1?y1)±,(x2?y2)±),and x∧y:=x?(x?y)+=y?(x?y)?.Let Pt(x,y,dη1,dη2)be the image of the product measure

    under the mapping(γ0,γ1,γ2)(η1,η2):=(γ0+γ1,γ0+γ2).It is not hard to see that Pt(x,y,dη1,dη2)is a coupling of Pt(x,dη1)and Pt(y,dη2).Then

    where we have used the branching property Pt(a,·)?Pt(b,·)=Pt(a+b,·)for all a,b∈M,t≥0 in the third row.Therefore the proof is finished.

    Based on Theorem 6.1,we can establish the exponential ergodicity with respect to W1.Recalling that a 2×2 matrix H=[Hij]2×2in Corollary 5.5 is de fined as

    we have the following result:

    Theorem 6.2Assume that H11H22?H12H21>0 and H11+H22<0.Then there exist λ,?>0 such that,for any t≥0 and x,y∈M,

    ProofBy assumption,it is easy to see that

    Corollary 6.3Assume that the conditions of Theorem 6.2 hold.Then there exist a unique π∈P1(M)and ?,λ>0 such that,for any x∈M and t≥0,

    ProofBy Theorem 7.5 below,there exists a unique invariant measure.Arguing similarly as to the proof of Theorem 3.2 in[12],one can see that π∈P1(M),and the desired assertion is easily obtained by Theorem 6.2.

    7 MSBI-processes

    Suppose that Φ1,Φ2are two functions on[0,∞)2de fined as in(3.3)–(3.4),and that there exists function Ψ on[0,∞)2de fined by

    where b>0 and m is a σ-fi nite measure on M supported by M{0}such that

    A Markov process{Z(t)=(Z1(t),Z2(t)):t≥0}is called a MSBI-process on M if it has a transition semigroup()t≥0uniquely determined by

    where V(t,λ)=(V1(t,λ),V2(t,λ))takes values onand satis fies(3.8).One can see that the semigroup de fined by(7.2)is a Feller semigroup,so the MSBI-process has a cdlg realization.We can also establish a similar result as to that of Theorem 6.1 for MSBI-processes;indeed,we have the following:

    Theorem 7.1Let()t≥0be the transition semigroup de fined by(7.2).Assume that<∞.Then,for t≥0 and x,y∈M,we have

    where π(t,1)is de fined as in Proposition 3.4 with λ=(1,1).

    ProofThe proof is based on the same idea as that of Theorem 4.1 in[26].One can see that

    where the last inequality follows from Theorem 6.1.

    By a similar argument as to that of Theorem 6.2,we have

    Theorem 7.2Assume that H11H22?H12H21>0 and H11+H22<0.Then,there exist λ,?>0 such that,for any t≥0 and x,y∈M,

    7.1 The construction of MSBI-processes by stochastic equations

    We now give a construction of MSBI-processes by stochastic equations.Let us consider the stochastic equation system

    where b≥0,M(ds,dz)is a Poisson random measure on[0,∞)×M with intensity measure dsm(dz),and the other coefficients are the same as in Section 4.Furthermore,we assume that those random elements are independent of each other.By a modi fication of the proof of Section 4,as well as that in[28],we see that(7.3)–(7.4)has a unique strong solution and is a MSBI-process with branching mechanism(Φ1,Φ2)de fined by(3.3)–(3.4)and an immigration mechanism Ψ de fined by(7.1).

    7.2 Stationary distribution

    In order to characterize the stationary distribution of MSBI-processes,we need to estimate the upper and lower bounds of|V(t,λ)|for t>0,λ∈;this will play an important role in the sequel.

    Lemma 7.3Let(Yt)t≥0be a MSB-process with semigroup(Pt)t≥0satisfying(3.10).Let H=[Hij]2×2be a 2×2 matrix de fined as in Corollary 5.5.Suppose that all the eigenvalues of H have strictly negative real parts.Then there exist some strictly positive constants c1(λ)and c2where c1depends on λ such that

    ProofWe follow the same calculations as those in Proposition 3.4 to see that

    and so

    Similarly,

    By Jensen’s inequality,we deduce that,for all x=(x1,x2)∈M,

    Since all the eigenvalues of H have strictly negative real parts,there exist some strictly positive c,c2>0 such that,for all t>0,

    see,e.g.,equation(2.8)in[32],which implies that|V(t,λ)|≤|λ|ce?c2t.We finish the proof by setting c1(λ)=|λ|c.

    Lemma 7.4Under the conditions of Lemma 7.3,for every λ∈,there exist two strictly positive constants A(λ)and B(λ)such that

    Proof

    and by the comparison theorem we deduce that V2(t,λ)≥and we obtain the desired result by setting B(λ)=2θec1(λ).

    We now give our main result.

    Theorem 7.5Let(Zt)t≥0be a MSBI-process with semigroup()t≥0satisfying(7.2).Suppose that all the eigenvalues of H have strictly negative real parts.Then(x,·)converges to a probability measure π on M as t→∞for all x∈M if and only if

    ProofBy Lemma 7.3 we have|V(t,λ)|→0 as t→∞.Supposing that(Zt)t≥0has a stationary distribution π,one can see that

    ProofIt follows from Theorem 7.5 and the assumptions that there exists a unique stationary distribution π.We can easily derive thatEx[|Zt|]<∞for all t≥0 and x∈M by the assumption thatR{|z|>1}|z|m(dz)<∞.By a modi fication of the proof of Corollary 6.3,we have that π∈P1(M),and the desired result follows from Theorem 7.2.

    又黄又爽又刺激的免费视频.| av网站免费在线观看视频| 亚洲精品成人久久久久久| 国产亚洲午夜精品一区二区久久 | 欧美激情久久久久久爽电影| 黄片wwwwww| 91久久精品国产一区二区三区| 一级毛片我不卡| 一级av片app| 国产成人午夜福利电影在线观看| 成人毛片60女人毛片免费| 亚洲av成人精品一二三区| 噜噜噜噜噜久久久久久91| 国产老妇伦熟女老妇高清| 乱码一卡2卡4卡精品| 色综合色国产| 日韩制服骚丝袜av| 国语对白做爰xxxⅹ性视频网站| 在线亚洲精品国产二区图片欧美 | 激情五月婷婷亚洲| 国产精品一区www在线观看| 亚洲欧美日韩另类电影网站 | 午夜激情久久久久久久| 免费观看性生交大片5| 亚洲国产最新在线播放| 麻豆成人午夜福利视频| 欧美成人一区二区免费高清观看| 国产精品久久久久久av不卡| 日韩免费高清中文字幕av| 99热全是精品| 高清在线视频一区二区三区| 久久这里有精品视频免费| 精品酒店卫生间| 国产精品一区二区在线观看99| 国产乱人视频| 成人国产麻豆网| 精品久久久久久久久av| 久久97久久精品| 国产在视频线精品| 久久精品久久久久久久性| 真实男女啪啪啪动态图| 国产成人一区二区在线| 99精国产麻豆久久婷婷| 国产免费一级a男人的天堂| 亚洲一区二区三区欧美精品 | 久久久久精品性色| 晚上一个人看的免费电影| 欧美日韩亚洲高清精品| 高清毛片免费看| 成人综合一区亚洲| 国产毛片a区久久久久| 国产高潮美女av| 国产黄色免费在线视频| 人妻制服诱惑在线中文字幕| 欧美97在线视频| 日韩电影二区| 久久久久久久久久成人| 国产伦在线观看视频一区| 欧美人与善性xxx| 黄色配什么色好看| 天堂中文最新版在线下载 | 亚洲婷婷狠狠爱综合网| 国产乱人偷精品视频| 三级经典国产精品| 国产欧美另类精品又又久久亚洲欧美| 国内精品宾馆在线| 久久这里有精品视频免费| 在线观看av片永久免费下载| 久久久精品94久久精品| 色视频www国产| 日日摸夜夜添夜夜添av毛片| eeuss影院久久| 91久久精品国产一区二区成人| 久久久久久久大尺度免费视频| 国产成人freesex在线| 久久国产乱子免费精品| 丝袜美腿在线中文| 午夜精品国产一区二区电影 | 亚洲精品国产成人久久av| 国产精品久久久久久精品电影小说 | 春色校园在线视频观看| 中文字幕久久专区| 人妻夜夜爽99麻豆av| 大片电影免费在线观看免费| 最近2019中文字幕mv第一页| 亚洲在久久综合| 婷婷色综合大香蕉| 免费观看无遮挡的男女| 日本一本二区三区精品| 汤姆久久久久久久影院中文字幕| 欧美zozozo另类| 欧美高清性xxxxhd video| 成人亚洲精品一区在线观看 | 日本色播在线视频| 亚洲精品影视一区二区三区av| 伊人久久国产一区二区| 欧美xxⅹ黑人| 偷拍熟女少妇极品色| 欧美成人精品欧美一级黄| 看免费成人av毛片| 亚洲精品乱久久久久久| 亚洲欧美一区二区三区国产| 久久精品国产亚洲av涩爱| 3wmmmm亚洲av在线观看| 亚洲综合精品二区| 小蜜桃在线观看免费完整版高清| 亚洲真实伦在线观看| 欧美日韩视频高清一区二区三区二| 久久99热6这里只有精品| 麻豆成人av视频| 少妇丰满av| 在线观看免费高清a一片| 国产在线一区二区三区精| 亚洲第一区二区三区不卡| 又粗又硬又长又爽又黄的视频| 午夜爱爱视频在线播放| 国产伦理片在线播放av一区| 国内精品美女久久久久久| 中文天堂在线官网| 色哟哟·www| 深爱激情五月婷婷| 亚洲精品国产av成人精品| 久久久久国产精品人妻一区二区| 日韩欧美一区视频在线观看 | av国产精品久久久久影院| 最近的中文字幕免费完整| 免费人成在线观看视频色| 国产成人精品久久久久久| 国产精品人妻久久久影院| 久久久色成人| 九九爱精品视频在线观看| 最近最新中文字幕大全电影3| 99视频精品全部免费 在线| 亚洲一级一片aⅴ在线观看| 一个人观看的视频www高清免费观看| 极品教师在线视频| 内射极品少妇av片p| 亚洲精品久久久久久婷婷小说| 欧美国产精品一级二级三级 | 精品久久久久久电影网| 久久99热这里只频精品6学生| 禁无遮挡网站| 干丝袜人妻中文字幕| 国产精品99久久久久久久久| 国产精品成人在线| 国产视频首页在线观看| 久久久久精品性色| 亚洲人成网站高清观看| 欧美日韩综合久久久久久| 久久国产乱子免费精品| 综合色av麻豆| 日本爱情动作片www.在线观看| 一级黄片播放器| 在线观看一区二区三区激情| 成人亚洲精品一区在线观看 | 综合色av麻豆| 人妻系列 视频| 国产成人一区二区在线| 亚洲一级一片aⅴ在线观看| 熟女人妻精品中文字幕| 亚洲色图av天堂| 亚洲国产欧美在线一区| 三上悠亚av全集在线观看| 免费观看av网站的网址| 黄色怎么调成土黄色| 亚洲国产精品国产精品| 国产精品成人在线| 亚洲综合精品二区| 亚洲欧美成人精品一区二区| 日韩大片免费观看网站| 老汉色∧v一级毛片| 久久国产精品大桥未久av| 亚洲欧洲日产国产| av线在线观看网站| 伊人亚洲综合成人网| 久久青草综合色| 日本91视频免费播放| 国产成人精品久久久久久| 9色porny在线观看| 精品一区二区三卡| 国产麻豆69| 亚洲欧美一区二区三区国产| 老司机影院毛片| 日韩一卡2卡3卡4卡2021年| 黄色视频在线播放观看不卡| 人人妻人人澡人人爽人人夜夜| 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品av麻豆狂野| 高清在线视频一区二区三区| 国产一区二区三区av在线| 好男人视频免费观看在线| h视频一区二区三区| 在线观看免费午夜福利视频| 九色亚洲精品在线播放| 欧美最新免费一区二区三区| 人人澡人人妻人| 精品亚洲成国产av| 观看av在线不卡| 色婷婷久久久亚洲欧美| 亚洲成色77777| 一级毛片电影观看| 国产亚洲av片在线观看秒播厂| 亚洲一区二区三区欧美精品| 无限看片的www在线观看| 热99久久久久精品小说推荐| 亚洲国产欧美在线一区| 亚洲av在线观看美女高潮| 老鸭窝网址在线观看| 国产免费视频播放在线视频| 人妻 亚洲 视频| 视频区图区小说| 一二三四在线观看免费中文在| 国产精品.久久久| 亚洲欧洲日产国产| 精品亚洲成国产av| 99热国产这里只有精品6| 久久久久网色| 女性生殖器流出的白浆| 精品第一国产精品| 亚洲精品久久成人aⅴ小说| 日韩精品有码人妻一区| 国产乱来视频区| 精品国产露脸久久av麻豆| 亚洲av电影在线观看一区二区三区| 国产乱人偷精品视频| 十八禁人妻一区二区| 丰满少妇做爰视频| 亚洲第一青青草原| 日本午夜av视频| 午夜91福利影院| 午夜影院在线不卡| 男的添女的下面高潮视频| 久久99热这里只频精品6学生| 日韩 欧美 亚洲 中文字幕| 看非洲黑人一级黄片| 九色亚洲精品在线播放| 国产免费福利视频在线观看| av国产精品久久久久影院| 亚洲欧美色中文字幕在线| 欧美日韩视频精品一区| 秋霞在线观看毛片| 国产成人精品久久二区二区91 | 熟女av电影| 最近最新中文字幕免费大全7| 在线观看www视频免费| 国产免费福利视频在线观看| 精品久久久精品久久久| 亚洲久久久国产精品| 国产亚洲欧美精品永久| 亚洲伊人色综图| 亚洲人成电影观看| 亚洲国产精品成人久久小说| 亚洲第一区二区三区不卡| 亚洲色图综合在线观看| 国产精品二区激情视频| 久久午夜综合久久蜜桃| 青春草视频在线免费观看| 一区二区av电影网| 久久久久久免费高清国产稀缺| 欧美中文综合在线视频| 久久青草综合色| 在线观看免费视频网站a站| 国产精品秋霞免费鲁丝片| 亚洲五月色婷婷综合| 你懂的网址亚洲精品在线观看| 免费观看性生交大片5| 久久精品aⅴ一区二区三区四区| 亚洲美女视频黄频| 一边摸一边做爽爽视频免费| 老鸭窝网址在线观看| 国语对白做爰xxxⅹ性视频网站| 久久精品国产亚洲av涩爱| www.精华液| av在线app专区| 69精品国产乱码久久久| 建设人人有责人人尽责人人享有的| av.在线天堂| 免费观看性生交大片5| 赤兔流量卡办理| 日本wwww免费看| 性色av一级| 高清黄色对白视频在线免费看| 中文字幕av电影在线播放| 18禁国产床啪视频网站| 久久久精品94久久精品| 日韩一区二区视频免费看| 色婷婷av一区二区三区视频| 老熟女久久久| 久久久精品国产亚洲av高清涩受| 精品国产超薄肉色丝袜足j| 在线天堂最新版资源| 国产免费视频播放在线视频| 黄色视频不卡| 久久青草综合色| 热99久久久久精品小说推荐| 国产男人的电影天堂91| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人免费观看mmmm| 伊人久久大香线蕉亚洲五| 国产精品无大码| 午夜激情av网站| 国产av码专区亚洲av| 中文字幕av电影在线播放| 亚洲男人天堂网一区| 国产激情久久老熟女| 亚洲国产毛片av蜜桃av| 日韩制服骚丝袜av| 99久久人妻综合| 国产熟女午夜一区二区三区| 另类精品久久| 制服诱惑二区| 建设人人有责人人尽责人人享有的| 天天操日日干夜夜撸| 一本久久精品| 中文字幕另类日韩欧美亚洲嫩草| 亚洲成人手机| 90打野战视频偷拍视频| 美女福利国产在线| 90打野战视频偷拍视频| 色播在线永久视频| 亚洲av电影在线进入| 亚洲精品av麻豆狂野| 亚洲,欧美,日韩| 黑人猛操日本美女一级片| 国产色婷婷99| 2018国产大陆天天弄谢| 日韩电影二区| 国产成人啪精品午夜网站| 亚洲第一av免费看| 国产97色在线日韩免费| 少妇精品久久久久久久| 久久久久视频综合| 日本欧美视频一区| xxx大片免费视频| 久久久国产欧美日韩av| 最近最新中文字幕免费大全7| av线在线观看网站| 免费不卡黄色视频| 国产野战对白在线观看| 亚洲免费av在线视频| 亚洲图色成人| 日本vs欧美在线观看视频| 嫩草影视91久久| 免费在线观看黄色视频的| 国产精品久久久久久久久免| 在线观看免费午夜福利视频| 成年av动漫网址| 别揉我奶头~嗯~啊~动态视频 | 久久久久网色| 母亲3免费完整高清在线观看| 亚洲综合精品二区| 亚洲欧美精品自产自拍| av女优亚洲男人天堂| 51午夜福利影视在线观看| 无限看片的www在线观看| 丝袜美腿诱惑在线| 2021少妇久久久久久久久久久| 欧美日韩亚洲综合一区二区三区_| 大片免费播放器 马上看| 五月开心婷婷网| 日日摸夜夜添夜夜爱| 国产欧美亚洲国产| 久久 成人 亚洲| 精品酒店卫生间| 久久97久久精品| 看免费成人av毛片| 亚洲,一卡二卡三卡| 99国产精品免费福利视频| 欧美久久黑人一区二区| 国产精品二区激情视频| 亚洲精品av麻豆狂野| 黄色一级大片看看| av卡一久久| 国产免费现黄频在线看| 9191精品国产免费久久| 在线天堂最新版资源| 无限看片的www在线观看| av.在线天堂| 2021少妇久久久久久久久久久| 精品免费久久久久久久清纯 | 亚洲国产毛片av蜜桃av| 欧美日韩亚洲国产一区二区在线观看 | 妹子高潮喷水视频| 少妇被粗大猛烈的视频| 男人舔女人的私密视频| 女人精品久久久久毛片| 国产亚洲精品第一综合不卡| 可以免费在线观看a视频的电影网站 | 日韩不卡一区二区三区视频在线| av在线app专区| 18禁裸乳无遮挡动漫免费视频| 欧美精品高潮呻吟av久久| xxx大片免费视频| 久久狼人影院| 久久久久精品国产欧美久久久 | 日韩一区二区三区影片| 亚洲天堂av无毛| 国产精品蜜桃在线观看| 亚洲伊人久久精品综合| 女人高潮潮喷娇喘18禁视频| 亚洲av福利一区| 日韩一区二区视频免费看| 伦理电影免费视频| 久久久久精品人妻al黑| 精品卡一卡二卡四卡免费| 亚洲av电影在线进入| 女人爽到高潮嗷嗷叫在线视频| 美女脱内裤让男人舔精品视频| 婷婷色综合www| 最近最新中文字幕大全免费视频 | 精品视频人人做人人爽| 在线观看国产h片| 欧美黑人欧美精品刺激| 啦啦啦视频在线资源免费观看| 女人久久www免费人成看片| 好男人视频免费观看在线| 一级毛片黄色毛片免费观看视频| 男人爽女人下面视频在线观看| 国产精品久久久久久人妻精品电影 | 欧美激情极品国产一区二区三区| 久久精品国产综合久久久| 精品国产乱码久久久久久男人| 欧美国产精品va在线观看不卡| 久久久久久久久久久久大奶| 久久精品久久久久久久性| 别揉我奶头~嗯~啊~动态视频 | 激情视频va一区二区三区| 国产 一区精品| 久久久久久久大尺度免费视频| 久久久精品国产亚洲av高清涩受| 搡老岳熟女国产| 熟女少妇亚洲综合色aaa.| 欧美变态另类bdsm刘玥| 人妻 亚洲 视频| 制服人妻中文乱码| 19禁男女啪啪无遮挡网站| 99久久99久久久精品蜜桃| 国产av码专区亚洲av| 美女国产高潮福利片在线看| 在线观看免费日韩欧美大片| 久久久久久久大尺度免费视频| 国产一区二区在线观看av| 亚洲成人免费av在线播放| av网站在线播放免费| 国产av一区二区精品久久| 国产精品女同一区二区软件| 久久女婷五月综合色啪小说| 亚洲一区中文字幕在线| 91国产中文字幕| 亚洲专区中文字幕在线 | 另类亚洲欧美激情| 校园人妻丝袜中文字幕| 精品国产一区二区三区久久久樱花| av不卡在线播放| av网站免费在线观看视频| 一边摸一边做爽爽视频免费| 久久精品久久久久久噜噜老黄| 国产一卡二卡三卡精品 | 久久精品熟女亚洲av麻豆精品| 一级毛片电影观看| 啦啦啦 在线观看视频| 精品久久久精品久久久| 久久久亚洲精品成人影院| 欧美亚洲日本最大视频资源| 女人精品久久久久毛片| 国产精品久久久人人做人人爽| 天堂8中文在线网| 午夜福利免费观看在线| www日本在线高清视频| 国产极品天堂在线| 999久久久国产精品视频| 日韩大片免费观看网站| 免费看不卡的av| 色视频在线一区二区三区| 90打野战视频偷拍视频| 久久久久精品性色| 制服诱惑二区| 午夜福利视频在线观看免费| √禁漫天堂资源中文www| 欧美黑人欧美精品刺激| 一区二区三区乱码不卡18| 亚洲精品aⅴ在线观看| 丰满饥渴人妻一区二区三| 久久精品久久久久久噜噜老黄| 亚洲欧美色中文字幕在线| 久久午夜综合久久蜜桃| 国产成人精品在线电影| 老司机在亚洲福利影院| 观看av在线不卡| 天天躁狠狠躁夜夜躁狠狠躁| 青春草亚洲视频在线观看| 国产精品.久久久| 女性被躁到高潮视频| 免费人妻精品一区二区三区视频| 亚洲国产精品国产精品| 久久久精品94久久精品| 久久久久久久久久久免费av| 男人爽女人下面视频在线观看| 黄片无遮挡物在线观看| 在线观看人妻少妇| 久久久精品94久久精品| 国产精品.久久久| 在线 av 中文字幕| 如日韩欧美国产精品一区二区三区| 亚洲少妇的诱惑av| 亚洲精品国产色婷婷电影| 伦理电影大哥的女人| 亚洲一区中文字幕在线| 别揉我奶头~嗯~啊~动态视频 | 亚洲美女搞黄在线观看| 午夜激情久久久久久久| 日韩,欧美,国产一区二区三区| 亚洲欧美清纯卡通| 最新的欧美精品一区二区| 国产精品久久久久久久久免| 精品午夜福利在线看| 男女床上黄色一级片免费看| 无限看片的www在线观看| 欧美日韩成人在线一区二区| 精品亚洲成a人片在线观看| 国产亚洲最大av| 亚洲成色77777| 狂野欧美激情性bbbbbb| 亚洲美女视频黄频| 亚洲人成网站在线观看播放| 大片免费播放器 马上看| 日韩人妻精品一区2区三区| 亚洲专区中文字幕在线 | 日本黄色日本黄色录像| 国产精品久久久久成人av| 久久性视频一级片| 欧美av亚洲av综合av国产av | 最近中文字幕2019免费版| 一二三四在线观看免费中文在| 日韩精品有码人妻一区| 成人午夜精彩视频在线观看| 热re99久久国产66热| 日韩人妻精品一区2区三区| 久久久久久人妻| 欧美国产精品一级二级三级| 午夜福利免费观看在线| 亚洲欧美日韩另类电影网站| 国产成人91sexporn| 亚洲国产毛片av蜜桃av| 日本av手机在线免费观看| 亚洲第一区二区三区不卡| 超碰97精品在线观看| 精品午夜福利在线看| 久久久久精品人妻al黑| 美女国产高潮福利片在线看| 又大又黄又爽视频免费| 成人午夜精彩视频在线观看| 王馨瑶露胸无遮挡在线观看| 亚洲精品视频女| 亚洲国产精品国产精品| 成人漫画全彩无遮挡| 人体艺术视频欧美日本| 久久久久久免费高清国产稀缺| 久久久久视频综合| 久久鲁丝午夜福利片| 国产精品久久久久久精品电影小说| 免费在线观看黄色视频的| 80岁老熟妇乱子伦牲交| 国产成人a∨麻豆精品| 一级片免费观看大全| 亚洲美女搞黄在线观看| 久久ye,这里只有精品| 国产高清不卡午夜福利| 99热全是精品| 中文字幕色久视频| 欧美激情极品国产一区二区三区| 国产精品一区二区精品视频观看| 亚洲伊人久久精品综合| 一本一本久久a久久精品综合妖精| av不卡在线播放| 在线观看免费午夜福利视频| av视频免费观看在线观看| 欧美乱码精品一区二区三区| 香蕉国产在线看| 男女无遮挡免费网站观看| 日日爽夜夜爽网站| 亚洲激情五月婷婷啪啪| 丁香六月天网| 免费观看性生交大片5| 老鸭窝网址在线观看| 亚洲少妇的诱惑av| 国产成人av激情在线播放| 狠狠婷婷综合久久久久久88av| 欧美成人精品欧美一级黄| 国产亚洲午夜精品一区二区久久| 国产高清不卡午夜福利| 国产无遮挡羞羞视频在线观看| 精品午夜福利在线看| 日韩熟女老妇一区二区性免费视频| 久久人人爽人人片av| 成年女人毛片免费观看观看9 | 中文字幕另类日韩欧美亚洲嫩草| 丝袜在线中文字幕| 欧美少妇被猛烈插入视频| 国产熟女欧美一区二区| 欧美日韩亚洲高清精品| 国产亚洲最大av| 欧美xxⅹ黑人| 嫩草影视91久久| 两个人看的免费小视频| 成人毛片60女人毛片免费| 亚洲av在线观看美女高潮| 综合色丁香网| 久久免费观看电影| 无遮挡黄片免费观看| 久久精品久久精品一区二区三区| 伊人亚洲综合成人网| 精品亚洲成国产av| 丁香六月欧美| av在线观看视频网站免费|