• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      海綿鐵三金屬降解對(duì)硝基苯酚的影響因素及催化機(jī)理

      2021-10-26 13:28:36李方芳鞠勇明鄧東陽(yáng)賈文超丁紫榮雷國(guó)元
      中國(guó)環(huán)境科學(xué) 2021年10期
      關(guān)鍵詞:零價(jià)雙金屬負(fù)載量

      李方芳,鞠勇明,鄧東陽(yáng),賈文超,丁紫榮,雷國(guó)元

      海綿鐵三金屬降解對(duì)硝基苯酚的影響因素及催化機(jī)理

      李方芳1,2,鞠勇明2,3,鄧東陽(yáng)2,賈文超2,丁紫榮2,雷國(guó)元1*

      (1.武漢科技大學(xué)資源與環(huán)境工程學(xué)院,湖北 武漢 430000;2.生態(tài)環(huán)境部華南環(huán)境科學(xué)研究所,廣東 廣州 510655;3.生態(tài)環(huán)境部南京環(huán)境科學(xué)研究所,江蘇 南京 210042)

      通過(guò)超聲置換反應(yīng)制備鈀銅共修飾海綿鐵三金屬催化劑(Pd-(Cu-s-Fe0)),研究了三金屬負(fù)載順序、金屬負(fù)載量、材料投加量以及重復(fù)利用對(duì)材料降解對(duì)硝基苯酚(PNP)的影響,并利用掃描電子顯微鏡(SEM)和X射線(xiàn)光電子能譜(XPS)表征材料表面結(jié)構(gòu)特征.結(jié)果表明,Pd-(Cu-s-Fe0)催化活性高于Cu-(Pd-s-Fe0)和(Cu-Pd)-s-Fe0;Cu和Pd的最佳負(fù)載量分別為5%和0.025%.在100mL初始濃度為100mg/L的PNP溶液中投加3g Pd-(Cu-s-Fe0)并超聲反應(yīng)30min,PNP的降解率超過(guò)80%,降解反應(yīng)基本符合一級(jí)動(dòng)力學(xué)方程;Pd-(Cu-s-Fe0)材料循環(huán)利用4次表現(xiàn)出良好的循環(huán)利用性能.此外,PNP的主要催化還原產(chǎn)物是對(duì)氨基苯酚(PAP),主要的反應(yīng)路徑是催化還原反應(yīng).

      海綿鐵;Pd-(Cu-s-Fe0)三金屬;對(duì)硝基苯酚(PNP);降解機(jī)理

      對(duì)硝基苯酚(PNP)被廣泛用作染料、農(nóng)藥和防腐劑的原料或中間體[1],具有溶解度高和結(jié)構(gòu)穩(wěn)定等特點(diǎn),在自然條件下很難被降解[2].作為一種環(huán)境內(nèi)分泌干擾物,PNP具有顯著的高毒性和致癌性[3-5],長(zhǎng)期接觸含PNP廢水能造成機(jī)體內(nèi)分泌系統(tǒng)功能紊亂[3].目前PNP的降解方法主要有微生物法[1-2]、化學(xué)氧化還原法[2-8]、微波輔助催化氧化[6]和電化學(xué)氧化[7]等.然而,微生物降解周期長(zhǎng),微波和電化學(xué)氧化對(duì)設(shè)備要求高且能耗大.零價(jià)鐵具有無(wú)毒、含量豐富、強(qiáng)還原性,在含PNP廢水處理的應(yīng)用成為研究熱點(diǎn).納米零價(jià)鐵比表面積大、還原性能強(qiáng),但在應(yīng)用過(guò)程中容易團(tuán)聚而降低活性,且納米零價(jià)鐵的價(jià)格昂貴,成為限制其實(shí)際應(yīng)用的因素.因此探索高效、經(jīng)濟(jì)的降解材料處理PNP具有重要意義.

      海綿鐵(s-Fe0)作為一種新型零價(jià)鐵材料,具有不易團(tuán)聚、價(jià)格低廉等優(yōu)點(diǎn)[8],已成功應(yīng)用于含鹵代有機(jī)物、芳香族硝基化合物等各類(lèi)廢水的處理. 通過(guò)在s-Fe0表面負(fù)載貴金屬形成雙金屬和三金屬催化劑能夠顯著提高材料的催化活性[9].已有研究表明,零價(jià)鐵粉(ZVI)、鐵銅雙金屬(Fe/Cu)和鐵銅銀三金屬(Fe-Cu-Ag)能有效催化還原降解PNP[8-11].然而,零價(jià)鐵粉(ZVI)的腐蝕產(chǎn)物容易沉積在零價(jià)鐵表面上形成鈍化膜并顯著降低零價(jià)鐵表面催化降解PNP的活性,在£200W的超聲功率下,零價(jià)鐵粉(ZVI)幾乎無(wú)法降解PNP[8].鐵銅雙金屬(Fe/Cu)[10]和鐵銅銀三金屬(Fe-Cu-Ag)[11]降解PNP的反應(yīng)活性與鐵基材料上銅銀金屬負(fù)載量、負(fù)載順序和Na2SO4溶劑濃度顯著相關(guān).例如:Fe/Cu雙金屬在Cu負(fù)載量為6%時(shí),幾乎不能降解PNP. Fe-Cu-Ag三金屬降解PNP需要0.75%的Ag負(fù)載量,材料成本顯著增加.貴金屬鈀(Pd)作為一種優(yōu)良的產(chǎn)氫材料,其催化產(chǎn)氫性能遠(yuǎn)高于Cu和Ag等金屬.目前,暫未檢索到利用Cu-Pd雙金屬修飾零價(jià)鐵進(jìn)行催化降解PNP的研究.

      本研究通過(guò)超聲輔助還原法制備微量Cu、Pd負(fù)載的鐵銅雙金屬和Fe-Cu-Pd三金屬材料.考察制備過(guò)程中調(diào)控不同參數(shù)對(duì)三金屬催化活性的影響,研究三金屬在超聲條件下(200W)催化降解PNP的主要影響因素,探索了三金屬的催化反應(yīng)機(jī)理,為海綿鐵材料在去除酚類(lèi)有機(jī)物的應(yīng)用提供理論基礎(chǔ).

      1 材料與方法

      1.1 試劑和儀器

      試劑:對(duì)硝基苯酚(PNP;天津大茂化學(xué)試劑廠(chǎng)),硝酸銅(天津市大茂化學(xué)試劑廠(chǎng)),氯鈀酸鉀(上海麥克林生化科技有限公司),海綿鐵(河南西爾環(huán)??萍加邢薰?,實(shí)驗(yàn)用水為超純水(Milli-Q 超純水系統(tǒng)).

      儀器:紫外可見(jiàn)分光光度計(jì)(UV-2450,日本島津公司);掃描電子顯微鏡(SEM;S-3400N,日本HITACHI);X射線(xiàn)光電子能譜(XPS; ESCALAB250Xi,美國(guó)Thermo公司);超聲波清洗機(jī)(KQ5200E,昆山市超聲清洗有限公司);高速離心機(jī)(SIGMA,4K15),pH計(jì)(FE20,上海梅特勒托利多有限公司),便攜式溶解氧測(cè)定儀(雷磁JPB-607A,上海儀電科學(xué)儀器股份有限公司).

      1.2 實(shí)驗(yàn)方法

      1.2.1 材料制備 Cu-s-Fe0和Pd-s-Fe0雙金屬材料的制備:雙金屬的制備參照之前的制備方法[12-13],將s-Fe0投加到裝有適量2M Cu(NO3)2溶液中進(jìn)行置換反應(yīng),溶液由藍(lán)色變?yōu)辄S色后結(jié)束反應(yīng),用過(guò)量超純水反復(fù)沖洗,得到Cu-s-Fe0雙金屬顆粒;將s-Fe0投加到裝有適量濃度為500mg/L的氯鈀酸鉀溶液中進(jìn)行置換反應(yīng),溶液由橘黃色變?yōu)闊o(wú)色后結(jié)束反應(yīng),用過(guò)量超純水反復(fù)沖洗,得到Pd-s-Fe0雙金屬顆粒.

      Pd-(Cu-s-Fe0)三金屬材料的制備:將制備好的Cu-s-Fe0雙金屬投加到裝有適量濃度為500mg/L的氯鈀酸鉀溶液中進(jìn)行置換反應(yīng),溶液由橘黃色變?yōu)闊o(wú)色后結(jié)束反應(yīng),用過(guò)量超純水反復(fù)沖洗,得到Pd-(Cu-s-Fe0)三金屬顆粒.

      Cu-(Pd-s-Fe0)三金屬材料的制備:將制備好的Pd-s-Fe0投加到裝有適量2mol/L Cu(NO3)2溶液中進(jìn)行置換反應(yīng),溶液由藍(lán)色變?yōu)辄S色后結(jié)束反應(yīng),用過(guò)量超純水反復(fù)沖洗,得到Cu-(Pd-s-Fe0)三金屬顆粒.

      (Cu-Pd)-s-Fe0三金屬材料的制備:將活化后的s-Fe0投加到同時(shí)裝有適量500mg/L的氯鈀酸鉀和2mol/L Cu(NO3)2溶液中進(jìn)行置換反應(yīng),當(dāng)溶液變?yōu)辄S色后結(jié)束反應(yīng),用過(guò)量超純水反復(fù)沖洗,得到(Cu- Pd)-s-Fe0三金屬顆粒.置換反應(yīng)方程式如下:

      1.2.2 PNP降解實(shí)驗(yàn) 以250mL燒杯為反應(yīng)器,每個(gè)反應(yīng)器中加入一定濃度的PNP溶液100mL和一定量的海綿鐵材料,置于超聲反應(yīng)器中進(jìn)行降解反應(yīng),每隔一定時(shí)間取樣離心后,再取上清液上機(jī)測(cè)量.

      1.3 雙金屬和三金屬催化劑的表征

      利用掃描電子顯微鏡(SEM)和X射線(xiàn)光電子能譜(XPS)對(duì)5%-Cu-s-Fe0雙金屬和Pd負(fù)載量為0.025%的三金屬顆粒的表面形貌結(jié)構(gòu)進(jìn)行分析.

      1.4 PNP濃度檢測(cè)

      PNP采用紫外分光光度計(jì)檢測(cè),檢測(cè)波長(zhǎng)為316nm.本實(shí)驗(yàn)采用相對(duì)濃度/0表示不同影響因素對(duì)PNP的去除效果,表示時(shí)刻溶液中PNP的剩余濃度,0則表示溶液的初始濃度.采用一級(jí)動(dòng)力學(xué)模擬PNP的降解,方程式為:

      2 結(jié)果與討論

      2.1 雙金屬和三金屬顆粒的表征

      不同負(fù)載順序三金屬的SEM圖如圖1所示.由Cu-s-Fe0雙金屬的Cu元素XPS分峰處理(圖1(a)插圖)可知,超聲置換法成功將Cu沉積到s-Fe0表面,但Cu沉積到s-Fe0表面過(guò)程中生成大量CuO和Cu2O,這是由于s-Fe0、Cu-s-Fe0能有效還原溶液中的NO3-[14],從而導(dǎo)致雙金屬表面上負(fù)載新生成的Cu單質(zhì)被氧化.根據(jù)圖1所示的SEM可知,相對(duì)于Cu-s-Fe0雙金屬材料,三金屬表面疏松,并且出現(xiàn)一定量的微小顆粒,有利于增大材料比表面積,促進(jìn)材料與污染物接觸.而Cu-(Pd-s-Fe0)和(Cu-Pd)-s-Fe0相對(duì)于Pd-(Cu-s-Fe0)表面則出現(xiàn)部分團(tuán)聚,因此Pd-(Cu-s-Fe0)表面結(jié)構(gòu)有利于和污染物的接觸,理論上具有更高的催化反應(yīng)活性.

      圖1 不同材料掃描電鏡(SEM)圖片(′2000)

      圖2 3種海綿鐵三金屬XPS表征

      圖2展示了不同負(fù)載順序三金屬的XPS數(shù)據(jù).由圖2(a)可知,3種三金屬表面Fe主要為Fe的氧化態(tài)[15];由圖2(b)可知,3種三金屬表面Cu的結(jié)合能約為932.58和952.38eV,分別代表Cu(0)和Cu(Ⅰ)[16], (Cu-Pd)-s-Fe0和Pd-(Cu-s-Fe0)均在943.78和962.28eV處的特征峰代表Cu(Ⅱ)[17].由圖2(c)可知,(Cu-Pd)-s-Fe0和Pd-(Cu-s-Fe0)表面Pd的結(jié)合能主要約為335.4和340.8eV,為Pd(0)[18].Cu-(Pd- s-Fe0)由于Cu將Pd覆蓋,并未有效檢測(cè)出Pd.

      2.2 PNP降解的影響因素

      2.2.1 不同材料對(duì)PNP降解的影響 如圖3(a)所示,當(dāng)反應(yīng)30min后,s-Fe0體系中PNP的去除率為62.4%,而Cu-s-Fe0、Pd-s-Fe0和Pd-(Cu-s-Fe0)對(duì)PNP降解率分別為26.9%、63.5%和78.8%.s-Fe0負(fù)載Cu材料對(duì)PNP的降解效率明顯下降,負(fù)載Pd材料對(duì)PNP降解效率無(wú)明顯提高.這是由于本實(shí)驗(yàn)選用Cu(NO3)2作為銅源,Cu-s-Fe0可有效還原硝酸根[19],從而生成大量銅氧化物使材料鈍化(詳見(jiàn)圖1(a)插圖).而Pd作為一種高效產(chǎn)氫材料[20],能產(chǎn)生大量活性氫原子[H]abs并還原銅氧化物,從而使Pd- (Cu-s-Fe0)三金屬材料具有更高催化還原活性.因此,結(jié)果推測(cè)Pd-(Cu-s-Fe0)降解PNP的催化位點(diǎn)主要在銅上.

      2.2.2 金屬負(fù)載順序?qū)NP降解的影響 如圖3(b)所示,反應(yīng)30min后,(Cu-Pd)-s-Fe0、Cu-(Pd-s-Fe0)和Pd-(Cu-s-Fe0)對(duì)PNP的降解率分別為34.9%、26.8%和78.8%.Pd-(Cu-s-Fe0)具有最高活性,與已有的三金屬活性研究一致[21].這是由于Fe/Pd氧化還原電位(θ(Fe/Pd) =1.398V)大于Fe/Cu氧化還原電位(θ(Fe/Cu) =0.7889V)[11].當(dāng)先負(fù)載Cu后再負(fù)載Pd,Pd產(chǎn)生活性氫原子[H]abs還原材料表面的各種氧化物,形成Fe/Pd最大電位差,調(diào)整負(fù)載順序則無(wú)法有效形成原電池催化體系,降低了催化反應(yīng)效率.由表1可知,三金屬降解PNP的過(guò)程遵循一級(jí)動(dòng)力學(xué),且動(dòng)力學(xué)常數(shù)Pd-(Cu-s-Fe0)>(Cu-Pd)-s-Fe0>Cu-(Pd-s-Fe0).

      2.2.3 Cu負(fù)載量對(duì)PNP降解的影響 如圖3(c)所示,當(dāng)Pd負(fù)載量為0.025%時(shí),Cu負(fù)載量從1%增加到5%,PNP去除率由67.5%增加至78.8%;當(dāng)Cu負(fù)載量由5%增加至10%,PNP去除率降低為63.0%,這與此前鐵銅雙金屬的規(guī)律基本一致[12].由表1可知,一級(jí)動(dòng)力學(xué)常數(shù)obs也隨著Cu負(fù)載量增加呈現(xiàn)先增后減的趨勢(shì).這是由于Cu在s-Fe0表面形成原電池促進(jìn)s-Fe0腐蝕失去電子;而繼續(xù)增加Cu負(fù)載能在s-Fe0表面形成致密的Cu層,抑制內(nèi)部s-Fe0和溶液接觸,從而抑制s-Fe0的腐蝕、降低材料活性[10].

      表1 不同降解條件下的擬一級(jí)動(dòng)力學(xué)參數(shù)變化規(guī)律

      表2 水溶液中PNP:O2:H+的物質(zhì)的量比

      2.2.4 Pd負(fù)載量對(duì)PNP降解的影響 如圖3(d)和表1所示,隨著Pd負(fù)載量不斷增加,材料催化活性和obs也呈現(xiàn)出先增加后減少的規(guī)律.Pd負(fù)載量為0.015%、0.025%、0.5%、0.075%和0.1%的三金屬對(duì)PNP的降解率分別為47.5%、78.8%、77.5%、69.3%和67.8%.材料表面負(fù)載Pd后能顯著提高材料產(chǎn)氫能力并提高催化效率,而當(dāng)Pd負(fù)載超過(guò)0.025%時(shí),進(jìn)一步提高負(fù)載量會(huì)導(dǎo)致材料產(chǎn)氫過(guò)快并在材料表面形成一層氫氣膜[22]阻止目標(biāo)物和材料表面接觸,從而抑制PNP的降解.

      2.2.5 材料投加量對(duì)PNP降解的影響 如圖3(e)所示,隨著三金屬投加量從10g/L增加到30g/L, 100mg/L PNP反應(yīng)30min后降解率從32.1%顯著增加到83.2%;當(dāng)投加量從30g/L繼續(xù)增加到50g/L, PNP降解率僅增加0.7%.這表明當(dāng)PNP濃度一定時(shí),增加三金屬投加量能顯著增加有效活性位點(diǎn)和體系中原電池?cái)?shù)量;當(dāng)三金屬投加量達(dá)到30g/L后,體系中腐蝕電池?cái)?shù)量已經(jīng)接近飽和狀態(tài),繼續(xù)提高投加量無(wú)法顯著提高PNP的降解效率.因此,三金屬催化劑投加量選擇為30g/L.

      圖3 不同單因素對(duì)材料降解PNP的影響

      2.2.6 重復(fù)利用對(duì)PNP降解的影響 如圖3(f)所示.當(dāng)Pd-(Cu-s-Fe0)三金屬材料在最優(yōu)反應(yīng)參數(shù)下持續(xù)循環(huán)4個(gè)周期,PNP去除率分別為83.2%、82.0%、79.9%和77.2%.結(jié)果表明,在4個(gè)循環(huán)利用周期內(nèi),三金屬對(duì)PNP的去除率保持在75%以上,表明材料具有良好的循環(huán)利用穩(wěn)定性.與納米零價(jià)鐵nZVI相比(8000元/kg),s-Fe0的價(jià)格低廉(5000元/t)[23],并且在制備三金屬過(guò)程中不需要氮?dú)獾谋Wo(hù).因此,海綿鐵催化劑具有相對(duì)較高且穩(wěn)定的活性,在含PNP廢水處理中具有良好的應(yīng)用前景.

      2.3 三金屬催化機(jī)理

      零價(jià)鐵催化降解PNP主要包括3條路線(xiàn):(1)由三金屬表面轉(zhuǎn)移的電子和生成的活性氫原子[H]abs將PNP中的硝基(-NO2)還原為氨基(-NH2)[24];(2)溶液中溶解氧得到電子生成羥基自由基(·OH),將PNP氧化降解為NO3-和小分子酸[25-26];(3)先由活性氫原子[H]abs將硝基(-NO2)還原為氨基(-NH2),再由羥基自由基(·OH)將氨基(-NH2)氧化為NO3-和小分子酸[27].圖4(a)插圖呈現(xiàn)了降解反應(yīng)過(guò)程中DO、pH值和鐵離子濃度的變化.反應(yīng)30min后,溶液中DO由7.8mg/L降至0.5mg/L,pH值無(wú)明顯變化,鐵離子在前6min迅速增加為12.89mg/L,隨后略微下降,這是由于材料在降解過(guò)程中不斷釋放Fe2+,極易被氧化為Fe3+隨后生成Fe(OH)3沉淀,從而維持溶液pH值和鐵離子濃度基本不變.如表2所示,溶液中PNP : O2: H+由884.56 : 299.88 : 1降低86.35 : 8.01 : 1,這表明, DO能夠有效競(jìng)爭(zhēng)Pd-(Cu-s-Fe0)轉(zhuǎn)移電子并引發(fā)一系列降解反應(yīng).

      紫外-可見(jiàn)光吸收波譜表明,316nm處吸收峰主要是由苯環(huán)和硝基(-NO2)的共軛引起[10],227nm處吸收峰是由于單環(huán)芳香烴苯環(huán)的π-π*躍遷引起[28].圖4(a)記錄了PNP降解過(guò)程中的全波掃描波譜變化.在30min降解過(guò)程中,316nm處峰的強(qiáng)度隨反應(yīng)時(shí)間增加而逐漸下降,并藍(lán)移至297nm.如圖4(b)可知,對(duì)氨基苯酚(PAP)的濃度隨降解反應(yīng)時(shí)間逐漸增加,反應(yīng)30min后PAP濃度為79.75mg/L,這表明Pd-(Cu-s-Fe0)能有效催化還原-NO2為-NH2,與已有研究一致[29].其次,由圖4(a)可知,227nm處吸收峰強(qiáng)度略有下降,這表明少量苯環(huán)被羥基自由基(·OH)氧化破壞[30],這與圖4(b)中TOC數(shù)據(jù)略有下降相符.因此,Pd-(Cu-s-Fe0)材料催化降解PNP是還原為主,氧化為輔的過(guò)程,催化降解機(jī)理如圖5.

      圖4 30g/L Pd-(Cu-s-Fe0)降解100mL 100mg/L PNP過(guò)程中各因素隨時(shí)間的變化

      圖5 Pd-(Cu-s-Fe0)催化降解PNP機(jī)理

      3 結(jié)論

      3.1 Pd-(Cu-s-Fe0)比Cu-s-Fe0和Pd-s-Fe0對(duì)PNP具有更好的降解效果.相同條件下,Pd-(Cu-s-Fe0)比Cu-s-Fe0和Pd-s-Fe0的降解效率分別高51.9%和15.3%,且循環(huán)利用4次后, 其降解效率僅下降6%.

      3.2 三金屬材料的催化活性與金屬負(fù)載順序有關(guān),最優(yōu)三金屬為Pd-(Cu-s-Fe0),且最佳負(fù)載量為5%Cu和0.025%Pd,投加量為30g/L.

      3.3 Pd-(Cu-s-Fe0)催化降解PNP的反應(yīng)過(guò)程遵循一級(jí)動(dòng)力學(xué)規(guī)律,PNP的主要降解途徑為還原催化降解,主要降解產(chǎn)物為PAP.

      [1] Xiong Z, Zhang H, Zhang W, et al. Removal of nitrophenols and their derivatives by chemical redox: A review [J]. Chemical Engineering Journal, 2019,359:13-31.

      [2] Li J, Liu Q, Ji Q Q, et al. Degradation of p-nitrophenol (PNP) in aqueous solution by Fe0-PM-PS system through response surface methodology (RSM) [J]. Applied Catalysis B Environmental, 2017, 200:633-646.

      [3] Bhatti Z I, Toda H, Furukawa K. p-Nitrophenol degradation by activated sludge attached on nonwovens [J]. Water Research, 2002, 36(5):1135-1142.

      [4] Chen J, Song M, Li Y, et al. The effect of phytosterol protects rats against 4-nitrophenol-induced liver damage [J]. Environ. Toxicol. Pharmacol., 2016,41:266-271.

      [5] Arora P K, Srivastava A, Singh V P. Bacterial degradation of nitrophenols and their derivatives [J]. J. Hazardous Materials, 2014, 266:42-59.

      [6] Wang N, Zheng T, Jiang J, et al. Pilot-scale treatment of p- Nitrophenol wastewater by microwave-enhanced Fenton oxidation process: Effects of system parameters and kinetics study [J]. Chemical Engineering Journal, 2014,239(3):351-359.

      [7] Kumar S, Singh S, Srivastava V C. Electro-oxidation of nitrophenol by ruthenium oxide coated titanium electrode: Parametric, kinetic and mechanistic study [J]. Chemical Engineering Journal, 2015,263:135-143.

      [8] Lai B, Chen Z, Zhou Y, et al. Removal of high concentration p-nitrophenol in aqueous solution by zero valent iron with ultrasonic irradiation (US-ZVI) [J]. Journal of Hazardous Materials, 2013,250-251:220-228.

      [9] Ju Y, Yu Y, Wang X, et al. Environmental application of millimetre- scale sponge iron (s-Fe0) particles (III): The effect of surface silver [J]. Journal of Hazardous Materials, 2015,299:618-629.

      [10] Lai B, Zhang Y, Chen Z, et al. Removal of p-nitrophenol (PNP) in aqueous solution by the micron-scale iron-copper (Fe/Cu) bimetallic particles [J]. Applied Catalysis B Environmental, 2014,144:816-830.

      [11] Yuan Y, Yuan D, Zhang Y, et al. Exploring the mechanism and kinetics of Fe-Cu-Ag trimetallic particles for p-nitrophenol reduction [J]. Chemosphere, 2017,186:132-139.

      [12] Ju Y, Liu X, Liu R, et al. Environmental application of millimeter- scale sponge iron (s-Fe0) particles (II): The effect of surface copper [J]. Journal of Hazardous Materials, 2015,287:325-334.

      [13] Huang Z, Deng D, Qiao J, et al. New insight into the cosolvent effect on the degradation of tetrabromobisphenol A (TBBPA) over millimeter-scale palladised sponge iron (Pd-s-Fe0) particles [J]. Chemical Engineering Journal, 2019,361:1423-1436.

      [14] Tang T T, Xing Q J, Zhang S H, et al. High selective reduction of nitrate into nitrogen by novel Fe-Cu/D407 composite with excellent stability and activity [J]. Environmental Pollution, 2019,252:888-896.

      [15] Aleem A R, Jin L, Jing W, et al. Selective sensing of Cu2+and Fe3+ions with vis-excitation using fluorescent Eu3+-induced aggregates of polysaccharides (EIAP) in mammalian cells and aqueous systems [J]. Journal of Hazardous Materials, 2020,399:122991.

      [16] Huang C C, Wu M S, Chen C L, et al. Preparation of silica particles doped with uniformly dispersed copper oxide nano-clusters [J]. Journal of Non-Crystalline Solids, 2013,381:1-11.

      [17] Tran T V, Nguyen D, Nguyen T T, et al. Metal-organic framework HKUST-1-based Cu/Cu2O/CuO@C porous composite: Rapid synthesis and uptake application in antibiotics remediation [J]. Journal of Water Process Engineering, 2020,36:101319.

      [18] Yogita S, Sumanta P, Mahesh K B, et al. Spectroscopic evidences for the size dependent generation of Pd species responsible for the low temperature CO oxidation activity on Pd-SBA-15nanocatalyst [J]. Applied Catalysis B: Environmental, 2020,272:118934.

      [19] Cheng R, Xue X Y, Li G Q, et al. Removal of waterborne phage and NO3-in the nZVI/phage/NO3-system: competition effect [J]. RSC Advances, 2017,7(41):25369-25377.

      [20] Ershov B G, Solovov R D, Ershov B G, et al. Hydrosols of Pd and Pd-H2: Influence of particle nature on the rate of catalytic reduction of hexacyanoferrate (III) ions with hydrogen [J]. Catalysis Communications, 2017,103:34-37.

      [21] Bransfield S J, Cwiertny D M, Livi K, et al. Influence of transition metal additives and temperature on the rate of organohalide reduction by granular iron: Implications for reaction mechanisms [J]. Applied Catalysis B Environmental, 2007,76(3/4):348-356.

      [22] Yu Y, Huang Z, Deng D, et al. Synthesis of millimeter-scale sponge Fe/Cu bimetallic particles removing TBBPA and insights of degradation mechanism [J]. Chemical Engineering Journal, 2017,325:279-288.

      [23] Ju Y, Liu X, Li Z, et al. Environmental application of millimetre-scale sponge iron (s-Fe0) particles (I): Pretreatment of cationic triphenylmethane dyes [J]. J. Hazardous Materials, 2015,283:469-479.

      [24] Lai B, Zhang Y H, Li R, et al. Influence of operating temperature on the reduction of high concentration p-nitrophenol (PNP) by zero valent iron (ZVI) [J]. Chemical Engineering Journal, 2014,249:143-152.

      [25] Xiong Z, Lai B, Yuan Y, et al. Degradation of p-nitrophenol (PNP) in aqueous solution by a micro-size Fe0/O3process (mFe0/O3): Optimization, kinetic, performance and mechanism [J]. Chemical Engineering Journal, 2016:137-145.

      [26] 孫 鵬,柳佳鵬,王維大,等.活性炭強(qiáng)化熱活化過(guò)硫酸鹽降解對(duì)硝基苯酚[J]. 中國(guó)環(huán)境科學(xué), 2020,40(11):4779-4785.

      Sun P, Liu J, Wang W, et al. Active carbon enhanced thermal activation of persulfate for degradation of p-nitrophenol [J]. China Environmental Science, 2020,40(11):4779-4785.

      [27] Yuan S, Tian M, Cui Y, et al. Treatment of nitrophenols by cathode reduction and electro-Fenton methods [J]. Journal of Hazardous Materials, 2006,137(1):573-580.

      [28] Lai B, Zhou Y, Qin H, et al. Pretreatment of wastewater from acrylonitrile-butadiene-styrene (ABS) resin manufacturing by microelectrolysis [J]. Chemical Engineering Journal, 2012,179:1-7.

      [29] 陳 猛,楊萬(wàn)亮,段英男,等.CuO@HHSS催化劑制備及催化還原對(duì)硝基苯酚性能[J]. 無(wú)機(jī)鹽工業(yè), 2020,52(12):92-97.

      Chen M, Yang W, Duan Y, et al. Preparation of CuO@HHSS catalyst and its catalytic properties for reduction of p-nitrophenol [J]. Inorganic Chemicals Industry, 2020,52(12):92-97.

      [30] Ji Q, Li J, Xiong Z, et al. Enhanced reactivity of microscale Fe/Cu bimetallic particles (mFe/Cu) with persulfate (PS) for p-nitrophenol (PNP) removal in aqueous solution [J]. Chemosphere, 2017,172:10-20.

      Study on influencing factors and catalytic mechanism of p-nitrophenol degradation with sponge iron-based tri-metals.

      LI Fang-fang1,2, JU Yong-ming2,3, DENG Dong-yang2, JIA Wen-chao2, DING Zi-rong2, LEI Guo-yuan1*

      (1.Department of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430000, China;2.South China Institute of Environmental Science, Ministry of Ecology and Environment of the People’s Republic of China, Guangzhou 510655, China;3.Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing 210042, China)., 2021,41(10):4670~4676

      Pd-(Cu-s-Fe0) trimetals were synthesized adopting with displacement reactions under ultrasonic conditions, and the surface structure of the aforementioned materials was further characterized with scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). Moreover, the effects of noble metal loading sequence, the loading amount, input dosage and recycling reuse for the degradation of p-nitrophenol (PNP) was studied in detail. The experimental results show that the catalytic activity of Pd-(Cu-s-Fe0) was higher than that of Cu-(Pd-s-Fe0) and (Cu-Pd)-s-Fe0. The loading amounts of Cu and Pd were optimized as 5% and 0.025%, respectively. Under the optimized conditions including 30g/L of Pd-(Cu-s-Fe0), the removal content of PNP (100mL, initial concentration of 100mg/L) reached more than 80% after 30min of ultrasonic reactions, and the degradation reactions conformed to a pseudo-first-order kinetics equation. Furthermore, after 4times of recycling tests, Pd-(Cu-s-Fe0) showed good recycling performance. Based on the UV-visible spectral variations and high-performance liquid chromatography, we proposed the degradation mechanism mainly via catalytic reductions of PNP into p-aminophenol (PAP).

      sponge iron;Pd-(Cu-s-Fe0) trimetal;p-nitrophenol (PNP);degradation mechanism

      X703.5

      A

      1000-6923(2021)10-4670-07

      李方芳(1997-),女,湖北荊州人,武漢科技大學(xué)碩士研究生,主要從事海綿鐵材料降解機(jī)理研究.發(fā)表論文1篇.

      2021-02-04

      國(guó)家重點(diǎn)研發(fā)計(jì)劃(2019YFE0111100);廣東省國(guó)際合作項(xiàng)目(2018A050506045);廣東省基礎(chǔ)與應(yīng)用基礎(chǔ)研究基金資助項(xiàng)目(2020A1515010969);公益性科研院所專(zhuān)項(xiàng)項(xiàng)目(GYZX210301)

      * 責(zé)任作者, 教授, leiguoyuanhit@126.com

      猜你喜歡
      零價(jià)雙金屬負(fù)載量
      不同CuO負(fù)載量CuO/SBA-16對(duì)CO催化活性的影響*
      生物炭負(fù)載納米零價(jià)鐵去除廢水中重金屬的研究進(jìn)展
      定量核磁共振碳譜測(cè)定甘氨酸鉀-二氧化碳吸收體系的二氧化碳負(fù)載量
      雙金屬支承圈擴(kuò)散焊替代技術(shù)研究
      不同負(fù)載量及花穗整形斱式對(duì)‘戶(hù)太八號(hào)’葡萄果實(shí)品質(zhì)的影響
      雙金屬?gòu)?fù)合管液壓脹形機(jī)控制系統(tǒng)
      不同負(fù)載量對(duì)“翠冠”梨果實(shí)性狀的影響
      雙金屬?gòu)?fù)合管焊接方法選用
      零價(jià)納米鐵對(duì)地下水中硝酸鹽去除的研究進(jìn)展
      一種污水處理用碳化硅復(fù)合零價(jià)鐵多孔陶瓷及制備方法
      牡丹江市| 河北省| 北安市| 防城港市| 邢台市| 洛阳市| 藁城市| 东兰县| 临漳县| 昌乐县| 屯昌县| 三江| 常山县| 临高县| 揭西县| 霍州市| 万载县| 曲松县| 集贤县| 瑞昌市| 新平| 中牟县| 黔江区| 长泰县| 花垣县| 苍山县| 宁阳县| 巢湖市| 区。| 祁东县| 名山县| 武隆县| 特克斯县| 亚东县| 西华县| 资源县| 休宁县| 会宁县| 临清市| 冷水江市| 永安市|