• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adaptive Consensus of Non-Strict Feedback Switched Multi-Agent Systems With Input Saturations

    2021-10-23 02:21:24ZhanjieLiandJunZhao
    IEEE/CAA Journal of Automatica Sinica 2021年11期

    Zhanjie Li and Jun Zhao,

    Abstract—This paper considers the leader-following consensus for a class of nonlinear switched multi-agent systems (MASs)with non-strict feedback forms and input saturations under unknown switching mechanisms.First,in virtue of Gaussian error functions,the saturation nonlinearities are represented by asymmetric saturation models.Second,neural networks are utilized to approximate some unknown packaged functions,and the structural property of Gaussian basis functions is introduced to handle the non-strict feedback terms.Third,by using the backstepping process,a common Lyapunov function is constructed for all the subsystems of the followers.At last,we propose an adaptive consensus protocol,under which the tracking error under arbitrary switching converges to a small neighborhood of the origin.The effectiveness of the proposed protocol is illustrated by a simulation example.

    I.INTRODUCTION

    IN recent years,the topic on the leader-following consensus control of multi-agent systems (MASs)has captured considerable attention [1]–[5].In [6],the leader-following consensus problem was addressed for networked MASs with limited communication resources and unknown-but-bounded noise.In [7],by introducing an auxiliary parameter for each agent,a distributed dynamic event-triggered strategy and a distributed adaptive consensus protocol were proposed to solve the event-triggered consensus of general linear MASs.Leader-following consensus involves many natural phenomena and has wide practical applications,such as the migration of birds and formation control for mobile robots.In the existing results,a large amount of effort has been put into the consensus problem of linear or nonlinear MASs with matching conditions [8]–[10].

    When the agents involve mismatching nonlinear uncertainties,however,the approaches mentioned above cannot be used to achieve consensus of MASs.To this end,adaptive neural/fuzzy strategies have been proposed by using the approximation capability to unknown functions [11]–[15].With the usage of the backstepping method,the neural networks (NNs)based results concerning the consensus control have been well reported for the strict feedback uncertain MASs,see,for example,[16]–[18].But,for MASs with non-strict feedback forms,the above approaches are inapplicable.The challenge lies in the well-known algebraic loop issue,which will break the backstepping process.Thus,we need new control schemes to handle the non-strict feedback terms.In [19]–[21],by utilizing the structural property of the Gaussian basis function,the consensus tracking problems were studied for nonlinear MASs subjected to non-strict feedback terms.However,the results [16]–[21]are obtained just for MASs whose followers are modeled by single dynamics.The multiple dynamics behaviors are very common in engineering applications,such as the continuously stirred tank reactor system [22] and the two inverted pendulums system [23].Thus,it is important to propose a proper consensus protocol for more general MASs with multiple dynamics.

    Switched systems provide a more general framework to describe the multiple dynamics behavior of processes[24]–[29].Switched systems have an important feature that they do not essentially inherit the behavior of their subsystems[30]–[32].For example,some switching laws can destabilize a switched system with all stable subsystems [33]–[35].Thus,when the switching mechanisms are unknown,we should deal with all possible switching mechanisms to achieve the consensus of MASs,which implies a common Lyapunov function (CLF)for all subsystems of the agents.In [36],[37],a CLF was constructed to achieve the consensus tracking of switched MASs with strict and pure-strict feedback forms,respectively.It is stressed that the leader-followering consensus of MASs with non-strict feedback forms is not fully taken into account.This is mainly due to the fact that in the iterative design process,each agent is associated with not only its spilled variables but also state variables of its neighbours.These undesired extra states make it difficult to proceed to the iterative process.On the other hand,input saturation is inevitable in many real life dynamical plants due to the physical limitation of the actuator [38]–[42].However,due to the interactions among unknown switching mechanisms,nonstrict feedback terms and input saturations,the adaptive leader-follower consensus for switched MASs with non-strict feedback terms and input saturation has not been clearly studied.

    In this paper,we will focus on the consensus tracking control for a class of nonlinear switched MASs with non-strict feedback forms and input saturation under unknown switching mechanisms.The main work is summarized as follows.1)This paper makes the first attempt to the adaptive leaderfollowing consensus for the uncertain switched MASs with non-strict feedback terms and input saturations.The studied MASs have a more general structure and can reduce to some special case of non-switched MASs or switched MASs with strict-feedback terms.2)The nonlinear terms of the followers are unknown and have the non-strict feedback forms.In virtue of the NNs approximation and the structural feature of Gaussian basis functions,the unknown nonlinear terms are compensated and the algebraic loop problem caused by undesired extra states is solved.3)All the subsystems of each follower are allowed to have switched dynamics.We construct a CLF for all the associated subsystems,which allows the switching mechanisms to be arbitrary and unknown.Besides,the saturation nonlinearities are represented by asymmetric saturation models.An appropriate consensus protocol is proposed to ensure the tracking performance in presence of input saturation.

    The used notation of this paper is standard.Denote byRnand Rn×mthe realn-vector space andn×m-matrix space,respectively.For a scalarx1,|x1| is its absolute value.For a vectorx,is the Euclidean norm withxTbeing its transpose.Let λmin(A)be the minimum singular value of a matrixA.diag(b1,...,bn) denotes ann×ndiagonal matrix whose element (i,i) isbi.s ign(·)denotes the sign function.

    II.PROBLEM STATEMENT AND PRELIMINARIES

    A.Problem Statement

    Consider a nonlinear MAS which consists ofNfollowers and one leader.The leader output is a desired reference signalye,and the dynamics of thej-th follower are given by

    Remark 1:The MAS (1)is a switched system in which each follower switches among different dynamics.WhenM0={1},the uncertain nonlinear termof the MAS (1)reduces to that of non-switched MASs considered in [20],[21],[39].In addition,compared with the switched MASs in [36],[37]where the nonlinear functions are in the strict and pure-strict feedback forms,respectively,the MAS (1)contains the nonstrict feedback termwhich is associated with the whole state variables.Thus,the MAS (1)has a more general structure.

    The objective of this paper is to explore an adaptive protocol for each follower in (1)such that for the desired leader signalyeand a small constant >0,the consensus tracking errorej=yj?yesatisfies limt→∞|ej(t)|≤?,j=1,2,...,N,that is,e=(e1,e2,...,eN)Tconverges to a small neighbourhood near the origin.

    Before deriving a solution to this consensus objective,some necessary preliminaries and assumptions are presented,and some useful lemmas are introduced.

    B.Communication Graph

    A directed graphG=(V,E,A)is introduced to express the information transfer between agents.In an MAS,V={V1,V2,...,VN}denotes the set of agents (or nodes),E?V×Vdenotes the set of directed edges andA=[ai,j]∈RN×Nis the adjacency matrix.EdgeEj,i=(Vj,Vi)∈Emeans the information flow from agentjto agenti.In matrixA,ai,j>0 indicates the weight of this edge,otherwise,ai,j=0.In our context,we do not consider the self-loop,thus,ai,i=0.Denote byL=D?Athe Laplacian matrix,in whichD=diag{d1,...,dN}∈RN×Nis the in-degree matrix with.The neighbor setNi={Vj|(Vj,Vi)∈E} contains all neighbors of the agenti.A graph has a directed spanning tree if there is a node named root,which has a directed path to the rest of nodes.The augmented graphofGis used when considering the leader,whereis the node set involving the leader,anddenotes the edge set of.The leader adjacency matrix is defined byB=diag{b1,...,bN},wherebi>0 if followerican get information flow from the leader,otherwise,bi=0.

    Assumption 1:If the leader is considered as the root,the graphhas a directed spanning tree.

    Denote the neighbourhood synchronization error as

    Under Assumption 1,[43] has indicated thatL+Bis nonsingular.Then,we have the following lemma.

    Lemma 1 [43]:Denotez=(z1,1,z2,1,...,zN,1)T.Then,the overall consensus tracking errore=(e1,e2,...,eN)Tsatisfies

    For the consensus design of MASs,Assumption 1 is standard and commonly used,see for example [21],[39],[43].Using Lemma 1,our control objective can be boiled down to designing the adaptive consensus protocol to make the neighbourhood synchronisation errorz=(z1,1,z2,1,...,zN,1)Tbounded and small.

    C.Saturation Nonlinearity

    In this context,we adopt a new model,rather than saturation model (2),to describe the saturation nonlinearity.This is mainly due to the fact that in (2),there exist the sharp corners for the relationship betweenvj(t)anduj(t) whenvj=andvj=.The new smooth model is given as in [41]

    The function erf(·)is called the Gaussian error function and is smooth.In Fig.1,by taking=3,=4 andv1(t)=10sin(t),we show the evolutions of the saturation models (2)and (5)of the first follower.

    Fig.1.Saturation models (2)and (5).

    For thej-th follower,we define the function ?j(·)as

    wheregjis some positive constant.Using the function ?j(vj),we can rewrite the saturation model (5)as follows:

    To design a desired consensus protocol,the following assumption is required.

    Assumption 2:There are constants ?j,0>0,>0 and>0 such that ?j≤?j,0,.

    Remark 2:From (5),each follower has its own saturation level,and the different lower and upper bounds of each saturation level can be adjusted by alternating the valuesand,respectively.If,(5)is a symmetric saturation actuator,otherwise,(5)is an asymmetric one.In Assumption 2,the boundedness of the disturbances is required,which is reasonable.In a real application,the actual control input cannot be infinite,thus,Assumption 2 is practical in reality.Some similar restrictions can be found in[41],[42].

    D.Neural Networks

    In practice,a control system often involves some nonlinear uncertainties.To design an effective control strategy,we will adopt the radial basis function (RBF)NNs to model the uncertainties.As shown in [12],ifh(χ)is a continuous function defined on a compact set Σχ?Rn,then for a pregiven accuracy level τ>0,there is an RBF NN ?TΨ(χ)such that

    where |ε(χ)|≤τ is the approximation error,?=(?1,?2,...,?l)T∈Rlis the weight vector withlbeing the neuron number,and Ψ(χ)=(ψ1(χ),ψ2(χ),...,ψl(χ))∈Rlis the basis function vector with ψi(χ)being selected as the Gaussian function

    where ρi=(ρ1,ρ2,...,ρn)Tis the center of the receptive field and νiindicates the width of ψi(χ).

    In what follows,some lemmas and an assumption are introduced.

    Lemma 2 [19]:It is assumed thatis the basis function vector of an RBF NN andis the input vector.For any integersq≥p≥1,the following inequality holds

    Lemma 3 [14]:For all (a,b)∈R2,constants ε >0 andp>1,q>1 satisfyingp+q=pq,it holds

    Lemma 4 [13]:Consider a system=?γ?+s(t).If γ is a positive constant ands(t)is a positive function,then,for all ?(t0)≥0,it holds ?(t)≥0,?t≥t0.

    Assumption 3:The signalye(t)and its derivatives up toare continuous and bounded withL=max{l1,l2,...,lN}.It is assumed that there is a positive constanty0such that,forj=1,2,...,L.

    Lemma 2 shows the property of the Gaussian basis functions of RBF NNs and is useful to apply backstepping for the system with non-strict feedback forms.Young’s inequality in Lemma 3 is used to handle some important inequalities.Lemma 4 is applied to guarantee that all adaptive signals are positive.

    III.MAIN RESULT

    In this section,we will design the adaptive consensus tracking protocol and construct a CLF for the MAS (1).Then,an analysis procedure will be presented to give the main result.

    A.Design of Consensus Protocol

    In this subsection,the backstepping method is used to design the desired protocol.The design process involvesljsteps for thej-th follower,and at each step we will use the NNs to approximate the uncertain functions.

    For thej-th follower,we introduce a new set of coordinateszj,s,s=1,2,...,lj.The coordinatezj,1is defined in (3)and

    We now present the design process.

    Step 1:By the definition ofzj,1in (3)and along thei-th subsystem of thej-th follower,one can deduce from (1)that

    Choose the Lyapunov function candidate as

    Since the functionHj,1(χj,1)is related to the unknown functionsand,we cannot directly useHj,1(χj,1)to design the desired virtual protocol.To this end,an RBF NN is utilized to approximateHj,1(χj,1)on a compactsuch that for any given τj,1>0,

    where εj,1(χj,1)denotes the approximation error satisfying|εj,1(χj,1)|≤τj,1.Applying (18)and Lemmas 2–3,one has

    Next,we construct the desired virtual protocoland the adaptive lawas

    where the constants μj,1,λj,1and γj,1are positive design parameters.By (20)and (21)one deduces that

    Step s(2≤s≤lj?1):Denote for convenience=0.Suppose that at the first (s?1)-th step,we have designed a set of desired stabilizing functions,m=2,...,s,which are dependent onwithand,the adaptive laws,and a Lyapunov function candidateWj,s?1,such that

    where δj,s?1is a constant.In what follows,we will prove that a similar inequality in the form of (23)holds at the stepsfor the following Lyapunov function candidate

    By (1)and (13),along thei-th subsystem of thej-th follower,one has

    where

    In view of (23),the derivative ofWj,salong thei-th subsystem satisfies

    Since the functionHj,s(χj,s)is related to the unknown functionsand,an RBF NN is utilized to approximateHj,s(χj,s) on a compactsuch that for any given τj,s>0,

    where εj,s(χj,s)denotes the approximation error satisfying|εj,s(χj,s)|≤τj,s.Applying (29)and Lemmas 2–3,one has

    where the constants μj,s,λj,sand γj,sare positive design parameters.Using (28),(30)and (31),one arrives at

    Steplj:At the finial step,we consider the Lyapunov function candidate as

    By (1)and (13),along thei-th subsystem,one has

    where ?j,c>0,>0 are design parameters.We construct the actual protocolvjand the adaptive law as

    Substituting (37)–(39)into (35)produces

    B.Consensus Analysis

    In this subsection,we present the main result.

    Theorem 1:Consider the switched MAS (1)under Assumptions 1–3,and design the consensus protocol (38),related to the virtual protocols and the adaptive laws (21)and(31),with the designed parameters μj,s>1/2,cj,s>0,?j,c>0,cj,s>0,τj,s>0 and γj,s>0,j=1,...,N,s=1,...,lj.Let δ=andwith=μj,k?1/2.Then,for the bounded initial conditions,all the closed-loop signals under arbitrary switching are bounded,and the consensus tracking error tends to a small neighbourhood near the origin and satisfies,j=1,2,...,N.

    Proof:Choose a common Lyapunov function of the MAS(1)asW=.From (41),it follows that

    According to the definitions of δ and μ,we can rewrite (42)as

    By (43),we derive that

    whereW(t)stands forW(z1(t),...,zN(t),.From(44)and the definition ofW,it can be obtained that all the closed-loop signals are bounded under arbitrary switching.In addition,using (44),we can also achieve that

    Hence,the following relationship holds

    Recalling Lemma 1,we arrive at

    For any constant ?>0,we can choose appropriate design parameters such that,which implies that the consensus tracking errors |ej,1(t)| can be made small enough. ■

    Remark 3:For the switched MAS (1),how to construct a CLF candidate is rather difficult due to the interaction among switching subsystems,non-strict feedback terms and input saturation.In the iterative design process,at steps,thej-th agent is associated with not only its spilled variablesbut also state variablesxkof its neighbours.The extra undesired variables often destroy the solvability of virtual controllers.To this end,the structural feature of Gaussian basis functions is utilized to eliminate the effect of these undesired variables.

    Remark 4:According to the definitions of μ and δ,the satisfactory leader-following consensus performance can be achieved by decreasingcj,s,τj,s,?j,cand increasing μj,s,γj,s.But,in such a way,a high gain of the designed protocol will be caused.Thus,in practice,the trade-off between desired performance and the protocol gain can be used to guide the choice of design parameters.

    IV.AN ILLUSTRATIvE EXAMpLE

    In this section,we give an example to illustrate the effectiveness of the designed protocol.

    Example 1:Consider a switched MAS composed of three followers and one leader.Fig.2 shows the communication graph,and the dynamics of each follower are described by

    wherej=1,2,3,σj:[0,∞)→M0={1,2}.The functionshj,s(xj)=1,j,s=1,2,3.The nonlinear termsand,i∈1,2,have the following form=0.1xj,2xj,3,.The leader output is selected asye=sin(t).The saturation lower and upper bounds are=50,=70,=800,=800,=1200,=1500.

    Following the process of Section III,the consensus protocol and the adaptive laws are designed as

    Fig.2.Communication graph between leader and agents.

    wherej=1,2,3,k=1,2,3,z1,1=2(y1?ye),z2,1=3(y2?y1),z3,1=2(y3?y1),zj,2=xj,2?,zj,3=xj,3?withandbeing defined by (21)and (31),,and forj=2,3,,where.

    The parameters are selected as μ1,1=4,μ1,2=15,μ1,3=30,c1,k=0.5,λ1,k=5,γ1,k=3,k=1,2,3,μ2,1=4,μ2,2=10,μ2,3=25,c2,k=0.5,λ2,k=6,γ2,k=3,k=1,2,3,μ3,1=6,μ3,2=20,μ3,3=30,c3,k=0.5,λ3,k=6,γ3,k=4,k=1,2,3,=1,?j,c=1,j=1,2,3.=30,=50,=100,=200.The initial states are taken as(x1,1(0),x1,2(0),x1,3(0))=(0,0.2,0.1),(x2,1(0),x2,2(0),x2,3(0))=(0.3,?0.1,0.1),(x3,1(0),x3,2(0),x3,3(0))=(?0.2,0,0),and,i=1,2,3,j=2,3.In the sequel,we take the RBF NNs including 16 neurons,and their centers evenly space in [–3,3] and their widths are equal to 5.

    Figs.3–7 show the simulation results.Fig.3 depicts switching signals σ1(t),σ2(t)and σ3(t).Fig.4 shows the consensus errors of the followers and the leader.Figs.5–7 demonstrates the responses of the statesxi,j,i,j=1,2,3 and the adaptive laws=1,2,3.From Figs.4–7,it follows that all the closed-loop system signals are bounded under the chosen switching signals,and from Fig.4,it can be clearly seen that all outputs of the followers track that of leader successfully.Besides,in this example,the real errors satisfy|ej(t)|≤0.02,j=1,2,3.The simulation time ist=1.26 s.

    Fig.3.The evolution of switching laws σ1,σ2,σ3.

    Example 2:We consider three groups of single-link robot manipulators subjected to nonlinear disturbances.Each system is modeled as=?(1/2)mjljgsin(qj)+uj,where the physical meanings and the values of the system parameters can be founded in [44].Due to the potential changes of system dynamics,we introduce the switching disturbances.By takingxj,1=qjandxj,2=,j=1,2,3,the system model can be rewritten as

    Fig.4.The consensus errors between the three followers and the leader.

    Fig.5.The states and adaptive laws of the follower 1.

    Fig.6.The states and adaptive laws of the follower 2.

    Fig.7.The states and adaptive laws of the follower 3.

    wherej=1,2,3,σj:[0,∞)→M0={1,2},and,,i∈M0,denote the switching disturbances.The communication graph and the switching laws are chosen as in Figs.2 and 3,respectively.The adaptive consensus protocol is designed as in Section III.

    Fig.8.The consensus errors in Example 2.

    Fig.9.The state and adaptive laws of the follower 1 in Example 2.

    Fig.10.The state and adaptive laws of the follower 2 in Example 2.

    Fig.11.The states and adaptive laws of the follower 3 in Example 2.

    V.CONCLUSIONS

    In this paper,an adaptive consensus protocol has been proposed for a class of nonlinear switched MASs with nonstrict feedback forms and input saturations.By utilizing the Gaussian error functions and NNs approximation,the unknown nonlinear terms are compensated,and by constructing a CLF for all the followers,we make the tracking error convergent under arbitrary switching.An interesting problem worthy of further investigation is to extend the developed control strategy to the output feedback design based on an observer.Recent results on cyber deception attacks have been achieved,see e.g.[45]–[47],thus,a problem is whether some results can be obtained for non-strict feedback switched MASs with input saturation under deception attacks.

    日本三级黄在线观看| 国产在线男女| 精品久久国产蜜桃| 欧美精品一区二区大全| 亚洲人成网站在线播| 少妇猛男粗大的猛烈进出视频 | 国产视频首页在线观看| 亚洲真实伦在线观看| 欧美三级亚洲精品| 免费大片黄手机在线观看| 青春草视频在线免费观看| 免费黄网站久久成人精品| 激情 狠狠 欧美| 久久久成人免费电影| 国产精品一及| 高清av免费在线| 精品国产乱码久久久久久小说| 日产精品乱码卡一卡2卡三| 国产男女超爽视频在线观看| 国产91av在线免费观看| 国产免费视频播放在线视频| 国产一区二区亚洲精品在线观看| 少妇人妻 视频| 国产爱豆传媒在线观看| 99re6热这里在线精品视频| 人人妻人人看人人澡| 久久精品国产亚洲av天美| 亚洲欧美日韩另类电影网站 | 久久精品国产亚洲av涩爱| 久久久久久久大尺度免费视频| 久久精品久久精品一区二区三区| 18禁裸乳无遮挡动漫免费视频 | 极品教师在线视频| 九九爱精品视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产色婷婷99| 色5月婷婷丁香| 久久久久久久久久久免费av| 日韩人妻高清精品专区| 只有这里有精品99| 3wmmmm亚洲av在线观看| 国产一区二区在线观看日韩| 精品国产三级普通话版| 精品一区二区免费观看| 高清日韩中文字幕在线| 亚洲精品,欧美精品| 日日啪夜夜撸| av国产免费在线观看| 2021天堂中文幕一二区在线观| 汤姆久久久久久久影院中文字幕| 久久热精品热| 精品人妻偷拍中文字幕| 国内少妇人妻偷人精品xxx网站| 国产黄频视频在线观看| 欧美日韩精品成人综合77777| 在线观看av片永久免费下载| 国内精品美女久久久久久| 欧美日韩综合久久久久久| 看免费成人av毛片| 麻豆成人av视频| 欧美+日韩+精品| 人妻 亚洲 视频| 美女被艹到高潮喷水动态| 亚洲欧美成人精品一区二区| 伦精品一区二区三区| 亚洲国产日韩一区二区| 久久久欧美国产精品| 精品久久久久久久人妻蜜臀av| 免费少妇av软件| 成人一区二区视频在线观看| 亚洲图色成人| 国产久久久一区二区三区| 午夜精品国产一区二区电影 | 在线观看一区二区三区激情| 免费少妇av软件| 亚洲精品国产av成人精品| 搡老乐熟女国产| 99久久中文字幕三级久久日本| 网址你懂的国产日韩在线| 青春草视频在线免费观看| 欧美高清性xxxxhd video| 91久久精品国产一区二区成人| 亚洲国产最新在线播放| 色视频在线一区二区三区| 搡老乐熟女国产| 日韩强制内射视频| 嫩草影院精品99| 丰满乱子伦码专区| 综合色丁香网| 日本爱情动作片www.在线观看| 激情五月婷婷亚洲| 欧美日韩视频高清一区二区三区二| 91精品伊人久久大香线蕉| 在线观看免费高清a一片| 成人无遮挡网站| 水蜜桃什么品种好| 嘟嘟电影网在线观看| 国产一区有黄有色的免费视频| 国产午夜精品一二区理论片| 内射极品少妇av片p| 特级一级黄色大片| 在线精品无人区一区二区三 | 免费在线观看成人毛片| 国产片特级美女逼逼视频| 亚洲高清免费不卡视频| 午夜免费鲁丝| 久久久久久国产a免费观看| 一级毛片 在线播放| 国产成人91sexporn| 国产精品一及| 国产男女内射视频| 成人特级av手机在线观看| a级毛片免费高清观看在线播放| 18禁裸乳无遮挡免费网站照片| 久久精品国产亚洲网站| 干丝袜人妻中文字幕| 一级av片app| 亚洲综合精品二区| 男男h啪啪无遮挡| 丝袜美腿在线中文| 亚洲精品久久午夜乱码| 一二三四中文在线观看免费高清| 毛片一级片免费看久久久久| 插阴视频在线观看视频| 亚洲欧美中文字幕日韩二区| 麻豆乱淫一区二区| 99久久人妻综合| 国产大屁股一区二区在线视频| 久久精品夜色国产| 亚洲欧美清纯卡通| 最后的刺客免费高清国语| 久久久久久久精品精品| 日日摸夜夜添夜夜爱| 嫩草影院新地址| 18禁在线播放成人免费| 国精品久久久久久国模美| 欧美xxxx黑人xx丫x性爽| 日本一二三区视频观看| 男插女下体视频免费在线播放| 一本一本综合久久| 麻豆成人午夜福利视频| 国产乱来视频区| 亚洲av不卡在线观看| 午夜福利视频1000在线观看| 69人妻影院| 美女国产视频在线观看| 中文天堂在线官网| 人体艺术视频欧美日本| 国产精品国产av在线观看| 精品99又大又爽又粗少妇毛片| 高清毛片免费看| 成人亚洲精品av一区二区| 人妻系列 视频| 九九爱精品视频在线观看| 久久久a久久爽久久v久久| 日韩欧美一区视频在线观看 | 久久精品国产自在天天线| 国产 一区精品| 亚洲精品,欧美精品| 国产真实伦视频高清在线观看| 亚洲精品自拍成人| 美女脱内裤让男人舔精品视频| 免费av不卡在线播放| 高清视频免费观看一区二区| 国产欧美日韩精品一区二区| 精品一区二区三卡| 国产探花在线观看一区二区| 大又大粗又爽又黄少妇毛片口| 午夜精品一区二区三区免费看| 国产高清三级在线| 天堂网av新在线| 中文字幕久久专区| 亚洲丝袜综合中文字幕| 免费人成在线观看视频色| 亚洲丝袜综合中文字幕| 赤兔流量卡办理| 国产精品一区二区在线观看99| 国产毛片在线视频| 国产精品一区二区三区四区免费观看| 伦精品一区二区三区| 精品少妇黑人巨大在线播放| 久久女婷五月综合色啪小说 | 制服丝袜香蕉在线| 午夜福利在线在线| 自拍偷自拍亚洲精品老妇| 久久久成人免费电影| 男女边吃奶边做爰视频| 久久久久久久精品精品| 热99国产精品久久久久久7| 性色av一级| 中文字幕亚洲精品专区| 成人二区视频| 国产v大片淫在线免费观看| 中文字幕免费在线视频6| 夜夜爽夜夜爽视频| 久久鲁丝午夜福利片| 成人免费观看视频高清| 天堂中文最新版在线下载 | 成人国产av品久久久| 各种免费的搞黄视频| 国产精品三级大全| 欧美日韩精品成人综合77777| 亚洲自拍偷在线| 永久免费av网站大全| 亚洲经典国产精华液单| 99re6热这里在线精品视频| kizo精华| 成人美女网站在线观看视频| 99久久精品一区二区三区| kizo精华| 国产欧美亚洲国产| 91久久精品电影网| 亚洲熟女精品中文字幕| 777米奇影视久久| 偷拍熟女少妇极品色| 国产免费一区二区三区四区乱码| 狂野欧美白嫩少妇大欣赏| 高清在线视频一区二区三区| 国产成人freesex在线| 在线看a的网站| 国内揄拍国产精品人妻在线| 亚洲av男天堂| 成人特级av手机在线观看| 免费大片18禁| 国精品久久久久久国模美| 一区二区三区乱码不卡18| 免费黄色在线免费观看| 简卡轻食公司| 亚洲精品第二区| 免费看日本二区| 熟妇人妻不卡中文字幕| 国产综合懂色| 日韩在线高清观看一区二区三区| 少妇高潮的动态图| av在线蜜桃| 国产精品福利在线免费观看| 亚洲怡红院男人天堂| 久久ye,这里只有精品| 能在线免费看毛片的网站| 下体分泌物呈黄色| 亚洲av在线观看美女高潮| 人妻 亚洲 视频| 久久鲁丝午夜福利片| 寂寞人妻少妇视频99o| 午夜福利在线在线| 亚洲av福利一区| 亚洲av一区综合| 久久久久网色| 久久精品国产a三级三级三级| 特级一级黄色大片| 男人舔奶头视频| 18禁裸乳无遮挡动漫免费视频 | 免费看av在线观看网站| 久久精品国产鲁丝片午夜精品| 国产成人a区在线观看| 中文字幕久久专区| 精品酒店卫生间| 国产黄频视频在线观看| 免费av毛片视频| 精品一区在线观看国产| 插阴视频在线观看视频| 久热久热在线精品观看| 亚洲精华国产精华液的使用体验| 成人毛片60女人毛片免费| 97人妻精品一区二区三区麻豆| 久久久久久国产a免费观看| 久久久久九九精品影院| 人妻系列 视频| 欧美97在线视频| 免费av不卡在线播放| 久久女婷五月综合色啪小说 | freevideosex欧美| 亚洲熟女精品中文字幕| 日韩伦理黄色片| 久久久久久伊人网av| 成人特级av手机在线观看| 一级毛片 在线播放| 3wmmmm亚洲av在线观看| 在线观看三级黄色| 欧美成人一区二区免费高清观看| 韩国高清视频一区二区三区| 亚洲精华国产精华液的使用体验| 成人毛片60女人毛片免费| 国产精品一及| 欧美成人a在线观看| 成人鲁丝片一二三区免费| 人人妻人人看人人澡| 久久久久久九九精品二区国产| 草草在线视频免费看| 欧美少妇被猛烈插入视频| 2021少妇久久久久久久久久久| 如何舔出高潮| 国产高清三级在线| 国产成人精品福利久久| 制服丝袜香蕉在线| 美女主播在线视频| 一边亲一边摸免费视频| 久久午夜福利片| 成人二区视频| 成人午夜精彩视频在线观看| 熟女电影av网| 免费播放大片免费观看视频在线观看| 青春草亚洲视频在线观看| 大香蕉97超碰在线| 男人狂女人下面高潮的视频| 国产伦理片在线播放av一区| 1000部很黄的大片| 国产一区亚洲一区在线观看| 天天躁日日操中文字幕| 少妇熟女欧美另类| 国产一区有黄有色的免费视频| 日韩,欧美,国产一区二区三区| 97人妻精品一区二区三区麻豆| 国产综合精华液| 久久精品久久久久久久性| 18+在线观看网站| 亚洲一区二区三区欧美精品 | 欧美成人午夜免费资源| 亚洲欧美成人精品一区二区| 欧美三级亚洲精品| 久久精品国产自在天天线| 欧美日韩视频高清一区二区三区二| 色婷婷久久久亚洲欧美| 亚洲av成人精品一区久久| av福利片在线观看| 国产一区二区三区av在线| 久久久久久国产a免费观看| 亚洲欧美一区二区三区国产| 日本一本二区三区精品| 国产成人精品久久久久久| 色吧在线观看| 亚洲综合精品二区| 亚洲国产精品国产精品| 色综合色国产| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久久九九精品影院| 国产日韩欧美在线精品| 精品熟女少妇av免费看| 91aial.com中文字幕在线观看| 亚洲熟女精品中文字幕| 91久久精品电影网| 中文欧美无线码| 国产av不卡久久| 精品少妇久久久久久888优播| 麻豆乱淫一区二区| 乱码一卡2卡4卡精品| 色网站视频免费| 只有这里有精品99| 久久精品综合一区二区三区| 久久人人爽人人片av| 大香蕉久久网| www.色视频.com| 亚洲最大成人手机在线| av在线老鸭窝| 天天躁夜夜躁狠狠久久av| 激情 狠狠 欧美| 美女视频免费永久观看网站| 国产精品一区二区三区四区免费观看| 亚洲欧美成人综合另类久久久| 精品久久久精品久久久| 国产一区有黄有色的免费视频| 1000部很黄的大片| 有码 亚洲区| 美女高潮的动态| 大香蕉久久网| 精品久久久久久电影网| 成人无遮挡网站| 中文字幕人妻熟人妻熟丝袜美| 精品国产露脸久久av麻豆| 日韩不卡一区二区三区视频在线| av国产精品久久久久影院| 性色av一级| 国产成人一区二区在线| 婷婷色麻豆天堂久久| 亚洲最大成人av| 色视频www国产| 亚洲国产精品999| 日韩av在线免费看完整版不卡| 久久久精品欧美日韩精品| 韩国av在线不卡| av在线亚洲专区| 精品人妻视频免费看| 日日摸夜夜添夜夜爱| 国产大屁股一区二区在线视频| 精品熟女少妇av免费看| 欧美精品国产亚洲| 国产精品99久久99久久久不卡 | xxx大片免费视频| 亚洲精品成人av观看孕妇| 国产伦在线观看视频一区| 又大又黄又爽视频免费| 亚洲va在线va天堂va国产| kizo精华| 国产真实伦视频高清在线观看| 深爱激情五月婷婷| 美女高潮的动态| 岛国毛片在线播放| www.色视频.com| 亚洲成人久久爱视频| 91精品一卡2卡3卡4卡| 少妇人妻 视频| 一级黄片播放器| 三级男女做爰猛烈吃奶摸视频| 免费大片18禁| 极品少妇高潮喷水抽搐| 中文字幕av成人在线电影| 日本av手机在线免费观看| 亚洲精品一区蜜桃| 我的老师免费观看完整版| 精品一区在线观看国产| 中文字幕制服av| 在线天堂最新版资源| 精品一区在线观看国产| 欧美成人精品欧美一级黄| 国产av码专区亚洲av| 国产高清国产精品国产三级 | 免费观看的影片在线观看| 午夜免费男女啪啪视频观看| 久久国产乱子免费精品| 啦啦啦中文免费视频观看日本| 性色av一级| 国产有黄有色有爽视频| 亚洲国产精品专区欧美| 一区二区三区乱码不卡18| av黄色大香蕉| 国产有黄有色有爽视频| 日韩三级伦理在线观看| 午夜福利视频1000在线观看| 熟女av电影| 街头女战士在线观看网站| 91久久精品国产一区二区成人| 精品视频人人做人人爽| 日日啪夜夜撸| 国产免费视频播放在线视频| 大又大粗又爽又黄少妇毛片口| 亚洲欧美精品专区久久| 午夜老司机福利剧场| a级一级毛片免费在线观看| 男女下面进入的视频免费午夜| 五月天丁香电影| av在线亚洲专区| 亚洲精品色激情综合| 国产视频内射| 肉色欧美久久久久久久蜜桃 | 久久精品国产亚洲av天美| 22中文网久久字幕| 日日摸夜夜添夜夜爱| 成人欧美大片| 欧美日韩精品成人综合77777| 午夜福利视频1000在线观看| 另类亚洲欧美激情| 五月伊人婷婷丁香| 国精品久久久久久国模美| 又黄又爽又刺激的免费视频.| 神马国产精品三级电影在线观看| av国产精品久久久久影院| 国产综合懂色| 蜜臀久久99精品久久宅男| 亚洲精品影视一区二区三区av| 精品久久久噜噜| 深夜a级毛片| 国产亚洲av嫩草精品影院| 免费av观看视频| 国产伦精品一区二区三区视频9| 国产精品久久久久久精品电影小说 | 亚洲天堂国产精品一区在线| 中文欧美无线码| 97热精品久久久久久| 人妻 亚洲 视频| 亚洲伊人久久精品综合| 亚洲欧美一区二区三区国产| 九草在线视频观看| 一级片'在线观看视频| 三级国产精品片| 一级毛片黄色毛片免费观看视频| av在线天堂中文字幕| 亚洲天堂国产精品一区在线| freevideosex欧美| 精品久久久精品久久久| 伦精品一区二区三区| 国产av不卡久久| 亚洲av不卡在线观看| 久久精品人妻少妇| 丰满少妇做爰视频| 久久久久久久久久成人| 中文精品一卡2卡3卡4更新| 久久久久久久大尺度免费视频| 午夜福利高清视频| 亚洲高清免费不卡视频| 久久亚洲国产成人精品v| 国产成年人精品一区二区| 欧美 日韩 精品 国产| av在线蜜桃| 精品少妇久久久久久888优播| av在线app专区| av国产免费在线观看| 插阴视频在线观看视频| 国产在线男女| 亚洲欧洲国产日韩| 简卡轻食公司| 99视频精品全部免费 在线| 夫妻午夜视频| 亚洲人成网站在线播| 亚洲精品aⅴ在线观看| 嫩草影院新地址| 男人添女人高潮全过程视频| 亚洲国产av新网站| 日本黄色片子视频| 久久热精品热| 毛片女人毛片| av福利片在线观看| 国产免费视频播放在线视频| 亚洲无线观看免费| 夫妻午夜视频| 欧美一级a爱片免费观看看| 免费播放大片免费观看视频在线观看| 国产乱来视频区| 久久久久久九九精品二区国产| 最后的刺客免费高清国语| 搞女人的毛片| 青春草亚洲视频在线观看| 精品一区二区三卡| 一本色道久久久久久精品综合| 亚洲人成网站在线播| av免费观看日本| 麻豆精品久久久久久蜜桃| 国内精品美女久久久久久| 男男h啪啪无遮挡| 免费大片黄手机在线观看| 狂野欧美激情性xxxx在线观看| 国产 一区 欧美 日韩| 日韩伦理黄色片| 色视频www国产| 天天躁夜夜躁狠狠久久av| 午夜福利视频1000在线观看| 不卡视频在线观看欧美| 日本wwww免费看| 韩国av在线不卡| 欧美精品一区二区大全| 亚洲欧美清纯卡通| 久久久久久久久久久免费av| 天美传媒精品一区二区| 国产成人一区二区在线| 日本猛色少妇xxxxx猛交久久| 国产成人精品一,二区| 亚洲美女视频黄频| 成年免费大片在线观看| 久久久亚洲精品成人影院| 人妻少妇偷人精品九色| 午夜福利在线观看免费完整高清在| 18禁在线无遮挡免费观看视频| 黄色配什么色好看| 中国国产av一级| 精品久久久久久久人妻蜜臀av| 777米奇影视久久| 国产综合懂色| 国产精品国产三级国产av玫瑰| 亚洲图色成人| 日韩制服骚丝袜av| 高清毛片免费看| 菩萨蛮人人尽说江南好唐韦庄| 蜜桃久久精品国产亚洲av| 精品国产乱码久久久久久小说| 嘟嘟电影网在线观看| 国产精品无大码| 麻豆精品久久久久久蜜桃| 自拍偷自拍亚洲精品老妇| 干丝袜人妻中文字幕| 黄片无遮挡物在线观看| 久久精品久久久久久久性| 日产精品乱码卡一卡2卡三| 亚洲精品第二区| 天天躁夜夜躁狠狠久久av| 在线 av 中文字幕| 国产精品一区二区性色av| 亚洲av免费高清在线观看| 夜夜看夜夜爽夜夜摸| 男插女下体视频免费在线播放| 成人亚洲精品一区在线观看 | 一级毛片黄色毛片免费观看视频| 丰满少妇做爰视频| 国产高清不卡午夜福利| 在线观看免费高清a一片| 亚洲经典国产精华液单| 亚洲婷婷狠狠爱综合网| 99视频精品全部免费 在线| 王馨瑶露胸无遮挡在线观看| 三级男女做爰猛烈吃奶摸视频| 18禁在线无遮挡免费观看视频| 免费av不卡在线播放| 亚洲婷婷狠狠爱综合网| 国产av码专区亚洲av| 亚洲综合精品二区| 日本-黄色视频高清免费观看| 亚洲欧美清纯卡通| 国产免费一级a男人的天堂| 51国产日韩欧美| 久久久久久九九精品二区国产| 在线 av 中文字幕| 制服丝袜香蕉在线| 久久国内精品自在自线图片| 高清午夜精品一区二区三区| 亚洲国产最新在线播放| 免费av不卡在线播放| 性插视频无遮挡在线免费观看| 精品酒店卫生间| 卡戴珊不雅视频在线播放| 黄色一级大片看看| 女人十人毛片免费观看3o分钟| 免费看光身美女| 国产高清有码在线观看视频| 亚洲国产日韩一区二区| 久久6这里有精品| 成人亚洲欧美一区二区av| 性色avwww在线观看|