• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electrolyte/Structure-Dependent Cocktail Mediation Enabling High-Rate/Low-Plateau Metal Sulfide Anodes for Sodium Storage

    2021-10-21 03:31:14YongchaoTangYueWeiAnthonyHollenkampMustafaMusamehAaronSeeberTaoJinXinPanHanZhangYananHouZongbinZhaoXiaojuanHaoJieshanQiuChunyiZhi
    Nano-Micro Letters 2021年11期

    Yongchao Tang ,Yue Wei ,Anthony F.Hollenkamp ,Mustafa Musameh ,Aaron Seeber ,Tao Jin,4,Xin Pan,Han Zhang,Yanan Hou,Zongbin Zhao,Xiaojuan Hao,Jieshan Qiu,Chunyi Zhi

    ABSTRACT As promising anodes for sodium-ion batteries,metal sulfides ubiquitously suffer from low-rate and high-plateau issues,greatly hindering their application in full-cells.Herein,exemplifying carbon nanotubes (CNTs)-stringed metal sulfides superstructure (CSC) assembled by nano-dispersed SnS2 and CoS2 phases,cocktail mediation effect similar to that of high-entropy materials is initially studied in ether-based electrolyte to solve the challenges.The high nano-dispersity of metal sulfides in CSC anode underlies the cocktail-like mediation effect,enabling the circumvention of intrinsic drawbacks of different metal sulfides.By utilizing ether-based electrolyte,the reversibility of metal sulfides is greatly improved,sustaining a long-life effectivity of cocktail-like mediation.As such,CSC effectively overcomes low-rate flaw of SnS2 and highplateau demerit of CoS2,simultaneously realizes a high rate and a low plateau.In half-cells,CSC delivers an ultrahigh-rate capability of 327.6 mAh g-1anode at 20 A g-1,far outperforming those of monometallic sulfides (SnS2,CoS2) and their mixtures.Compared with CoS2 phase and SnS2/CoS2 mixture,CSC shows remarkably lowered average charge voltage up to ca. 0.62 V.As-assembled CSC//Na1.5VPO4.8F0.7 full-cell shows a good rate capability(0.05~ 1.0 A g-1,120.3 mAh g-1electrode at 0.05 A g-1) and a high average discharge voltage up to 2.57 V,comparable to full-cells with alloy-type anodes.Kinetics analysis verifies that the cocktail-like mediation effect largely boosts the charge transfer and ionic diffusion in CSC,compared with single phase and mixed phases.Further mechanism study reveals that alternative and complementary electrochemical processes between nano-dispersed SnS2 and CoS2 phases are responsible for the lowered charge voltage of CSC.This electrolyte/structure-dependent cocktail-like mediation effect effectively enhances the practicability of metal sulfide anodes,which will boost the development of high-rate/-voltage sodium-ion full batteries.

    KEYWORDS Metal sulfide anode;Rate capability;Voltage plateau;Cocktail mediation effect;Sodium-ion batteries

    1 Introduction

    With the merits of high capacity and low cost,metal sulfides have been recognized as promising anode materials for sodium-ion batteries (SIBs) [1,2].However,most metal sulfide anodes examined to date exhibit poor high-rate performance and/or voltage behavior that trends rapidly to relatively high values.The result is full-cells that only operate well at a low rate (≤0.5 A g-1electrode) and maintain average output voltages typically ≤2 V _ENREF_6 [3-8].At this level of performance,such cells are only slightly better than a number of advantages in energy density over aqueous batteries (e.g.,zinc batteries) but noncomparable safety to the latter [9-12].Thus far,many studies on metal sulfide anodes still focus on the enhancement in reversible capacity,rate capability,and cyclability in half-cells.Even few studies concerning the properties of metal sulfide anodes in fullcells,most of them only roughly evaluate the performance of full-cells based on anodes instead of total electrodes.This could result in certain intrinsic flaws of metal sulfide anodes underrated [10].Therefore,from the perspective of full-cell,to solve the low-rate and high-plateau issues of metal sulfide anodes is crucial for the development of high-performance full-cells (Scheme 1a).

    Different metal sulfides usually show electrolyte/structure-dependent electrochemical properties,offering valuable inspiration to rationally design new architectures and investigate their properties in proper electrolyte [3,13,14].Compared with ester-based electrolytes,ether-based electrolytes can effectively inhibit3 the shuttle effect of polysulfides in situ formed during discharge/charge processes,thus more beneficial to obtain reversible properties of metal sulfides [1,13,15].Ferromagnetic metal (Fe,Co,Ni,etc.)sulfides (FMSs) are very promising conversion-reaction anode materials widely studied for SIBs [16-19].Compared with conventional hard carbon or red phosphorous anodes,FMS anodes can display ultrahigh-rate capability (≥20 A g-1) in ether-based electrolyte,holding a great promise in SIBs (Scheme 1b) [20-22].However,FMS anode usually suffers from severe voltage hysteresis and high plateau(~1.9 V vs Na/Na+),largely lowering the discharge plateau of full-cells (Scheme 1c).From this point,mono-component FMSs seem to be difficult to meet the requirements for high-performance full-cells.So far,despite many relevant studies,most of them are inclined to ignoring the severe intrinsic flaws of FMSs,emphasizing to enhance capacity and cyclability.By contrast,another series of metal (Sn,Sb,Bi,etc.) sulfides (AMSs) with conversion/alloying-reaction mechanisms can show acceptable voltage hysteresis and relatively lower voltage plateau [23-30].However,these AMSs always suffer from severe volume change during discharge/charge processes,resulting in poor rate capability and cyclability in ester-based electrolytes (Scheme 1b).Owing to latent catalysis over the decomposition of certain ether,such AMSs remain scarcely investigated in ether-based electrolyte [31,32].Encouragingly,by utilizing fluorine-containing sodium salt in ether solvents as electrolyte,the undesirable catalysis of AMSs can be effectively suppressed to allow a stable battery operation [33,34].The good compatibility enables the investigation of electrochemical properties of FMS/AMS composites in ether-based electrolytes.In the multi-component metal sulfide anodes,each component functions as active material and mutually compete.Thus,the electrochemical behaviors of multi-component metal sulfides are comprehensive results from individual component.Given that exotic properties beyond rule-of-mixtures(cocktail-like mediation effect) in multi-component highentropy nano-systems [35,36],to construct new superstructures assembled by nano-dispersed FMSs and AMSs and to study their properties in ether-based elctrolytes,could be an effective strategy toward high-performance full-cells.Additionally,the poor conductivity of most metal sulfides makes them essential to further combine with highly conductive carbon materials.Such combination can endow rational architectures with fast ion/electron transfer,which is conducive to obtaining satisfactory electrochemical properties [13,37-39].So far,despite some studies pertaining to FMS/AMS composites,the certain agglomeration or phase separation between FMS and AMS remains unsatisfactory to investigate their comprehensive impact.Additionally,such studies mostly involved the electrochemical properties of FMS/AMS composites in carbonate-based electrolytes[40-42].Thus,to study the voltage behavior of metal sulfide composites in ether-based electrolytes will provide a new perspective to pursue desired sodium storage properties.

    Herein,CNTs-stringed metal sulfides superstructure anode assembled by nano-dispersed SnS2and CoS2phases(CSC,C:CNT;S: SnS2;C: CoS2) is engineered to combine the merits of FMS-and AMS-type anode materials,aiming at simultaneously solving the dual-problems of poor rate capability/output-voltage characteristics (Scheme 1b-c).The highly nano-dispersed metal sulfides in CSC show remarkable cocktail-like mediation effect,effectively circumventing intrinsic drawbacks of different metal sulfides.The etherbased electrolyte greatly enhances the reversibility of metal sulfides,which can inhibit the aggregation of homogenous metal sulfides,enabling a long-life effectivity of cocktaillike mediation.In half-cells,CSC delivers an ultrahigh-rate capability of 327.6 mAh g-1at 20 A g-1,showing remarkably lowered average charge plateau up to 0.62 V vs Na/Na+,compared with CoS2phase and SnS2/CoS2mixture.The asassembled CSC//Na1.5VPO4.8F0.7full-cell shows a good rate capability (0.05~ 1.0 A g-1,120.3 mAh g-1electrodeat 0.05 A g-1) and a high average discharge voltage up to 2.57 V,comparable to full-cells with alloy-type anodes.Kinetics and mechanism studies reveal that the cocktail mediation effect largely boosts the charge transfer and ionic diffusion in CSC;along the diffusion direction of Na+carriers,alternative and complementary electrochemical processes between different nano-dispersed metal sulfides (SnS2,CoS2) and Na+carriers are responsible for the lowered average charge plateau of CSC.This exhibited cocktail-like mediation effect evidently improves the practicability of metal sulfide anodes,which will boost the development of high-rate/-voltage sodium-ion full batteries.

    Scheme 1 a Prototype of full-cells.b Rate capability comparison of typical metal sulfide anodes in half-cells.c Discharge plateau comparison in full-cells with different metal sulfide anodes showing the merits of FMS/AMS ultrastructure

    2 Results and Discussion

    2.1 Materials Preparation and Characterization

    The CSC was initially obtained by ion-exchange reaction between thiostannate (SnxSyn-) and cobalt-based zeolitic imidazolate framework (ZIF-67) followed by annealing treatment (Fig.1a).For an enhanced conductivity of the resulting CSC,the ZIF-67 particles (C-ZIF-67) are connected together (‘stringed’) by a network of CNTs (Fig.S1). Sn119NMR spectroscopy reveals that several tetravalent thiostannate species (SnS32-,SnS44-,and Sn2S64-)exist in solution and these are referred to collectively as‘SnxSyn-’ (Fig.S2) [43].Within the ion-exchange process,Co2+in ZIF-67 reacts rapidly with SnxSyn-species,forming a unique superstructure comprised of nano-dispersed CoS2and SnS2phases.The overall reaction follows Eq.(1):

    Fig.1 a Schematic illustration of fabrication process of CSC,inset (right) showing the reaction between ZIF-67 and SnxSyn-.b XRD patterns of CNTs and CSC.c Mass content of CoS2,SnS2,and CNTs in the CSC.d N2 adsorption isotherm of CSC and corresponding pore width distribution.e FE-SEM images of CSC (inset displaying the core/shell structure of CSC).f TEM image of CSC and g TEM-EDS element mapping of CSC including C,Co,Sn,and S.HR-TEM images of h shell and i core in CSC showing co-assembly of nano-CoS2 and -SnS2

    As shown in Fig.1b,X-ray diffraction (XRD) patterns exhibit the diffraction peaks of CoS2(PDF No.00-41-1471),SnS2(PDF No.00-23-0677),and carbon,verifying their presence in the CSC.Compared with standard phase,the reflection for the (0 0 1) plane of SnS2registers a slight shift toward lower angles,implying an expanded interlayer spacing [14,44].The expanded interlayer spacing could be associated with the use of thiostannate precursor and low-temperature ion-exchange process.The ion-exchange reaction of thiostannate with ZIF-67 typically occurs at-5 °C in 1 h,where fast reassembly of SnS2results in the expanded interlayer spacing.Also,the relatively low annealing temperature (450 °C) is beneficial to retain the expanded interlayer spacing of SnS2.The content of carbon nanotubes in CSC is obtained by thermogravimetric analysis (TGA),which is ca.3.75 wt% (Fig.S3).By inductively coupled plasma-mass spectrometry (ICP-MS),the elemental content of CSC is analyzed,revealing that the mole ratio of Co/Sn/S isca.1.00/1.73/5.46 (Table S1).The corresponding mass content of CoS2and SnS2in the CSC is 26.95 and 69.30wt%,respectively (Fig.1c).The type-IV N2adsorption isotherms of CSC present an evident hysteresis loop,indicating the presence of mesopores (Fig.1d).The corresponding pore width (inset) mainly centers in the range of 20-45 nm.The theoretical capacity of CSC anode (CT-CSC) can be evaluated roughly according to the equation: CT-CSC=xCT-CoS2+yCT-SnS2,wherexandyis the percentage content of CoS2and SnS2in the CSC.The CT-CoS2and CT-SnS2are the theoretical capacity of CoS2and SnS2,which is 872 and 1136 mAh g-1,respectively.Thus,CT-CSC=0.2695 × 872+0.695 × 1136=1024.5 mAh g-1.

    Figure 1e exhibits field emission scanning electron microscopy (FE-SEM) images of CSC,which consists of carbon nanotubes-stringed core/shell architecture (inset).Such core/shell structures are greatly influenced by precursors,solvents,reaction temperatures,and concentrations (Figs.S4-S6).The content of SnS2in the CSC can be tuned to some extent by varying the concentration of thiostannate solution (Fig.S6).Transmission electron microscope (TEM) image shows the typical radial morphology of the CSC (Fig.1f).Energy-dispersive spectrometer (EDS) elemental mapping yields a distribution of the elements C,Sn,Co,and S in the CSC,which correspond well with the TEM image (Fig.1g).The details of shell and core were further characterized by TEM.The shell is actually composed of nanosheets (Fig.S7a).As displayed in Fig.1h,high-resolution transmission electron microscope (HR-TEM) image clearly exhibits interplanar spacings of 0.248 and 0.615 nm for CoS2(2 1 0) and SnS2(0 0 1) lattice planes,verifying such nanosheets assembled by nano-dispersed SnS2(red) and CoS2(blue-green).The TEM-EDS line-scan profiles show matched peaks with Co,Sn,S elements,further suggesting the superstructure of shell co-assembled by SnS2and CoS2phases (Fig.S7b).Corresponding to SEM image of CSC (inset),the core of CSC shows an abundant microstructure,in which the pore(green) can be observed (Fig.S8a).As shown in Fig.1i,HR-TEM image of the core also exposes the lattice planes of SnS2(0 0 1) and CoS2(2 1 0),which accord with the corresponding selected area electron diffraction (SAED)pattern (Fig.S8b).Such results verify that the core of CSC is also assembled by nano-dispersed SnS2and CoS2phases.The CSC was further analyzed by X-ray photoelectron spectroscopy (XPS).As shown in Fig.S9,compared with commercial CoS2sample,the high-resolution of XPS of Co 2p of CSC shows aca.0.45 eV shift toward higher binding energy.Moreover,the high-resolution of XPS of Sn 3d of CSC also appears a 0.61 eV shift toward higher binding energy.Such results imply the presence of chemical effect between CoS2and SnS2in CSC anodes [45,46].

    2.2 Half-Cell Properties

    The electrochemical properties of anode materials are firstly evaluated by testing half-cells with Na foil as counter electrode and ether-based electrolytes with fluorine-containing sodium salt.For comparison,commercial SnS2and CoS2powders with well-matched XRD patterns to standard phases are also tested (Fig.S10).Compared with the CSC,the N2isotherms of commercial SnS2and CoS2samples typically exhibit no evident hysteresis loop,whereby the corresponding pore diameter distributions display nonporous properties (Fig.S11).After initial three scans at 0.1 mV s-1,mono-component metal sulfides (CoS2and SnS2) and anodes composed of both compounds show gradually stabilized CV curves (Fig.S12).The initial CV curve of the CSC anode shows three oxidation peaks,which are associated with SnS2phase at 0.70-1.55 V and CoS2phase at 1.70-2.10 V,respectively.The reduction peak at 1.60-1.80 V is correlated with the CoS2phase,while the peaks at 0.50-1.10 V are linked to SnS2and formation of solid electrolyte interphase (Fig.S13a).In subsequent scans,the reduction peak related to CoS2gradually disappears,which could result from electrochemical activation of nano-dispersed SnS2and CoS2phases[16,22].As shown in Fig.2a,the activated CSC delivers a main oxidized peak potential range (0.75-1.65 V),which is close to that of SnS2(0.80-1.45 V) but remarkably lower than that of CoS2(1.30-2.18 V) and SnS2/CoS2mixture(1.25-2.15 V).Correspondingly,CSC anode displays an average charge voltage ofca.1.30 V,which is close to that of SnS2but lower than that of CoS2(ca.1.92 V) (Fig.2b).Compared with commercial SnS2/CoS2mixture with average charge voltage ofca.1.81 V,CSC anode also shows evident low-plateau merit (Fig.2c).This verifies that the construction of a superstructure assembled from nano-dispersed SnS2and CoS2phases is crucial for lowering the intrinsically high plateau of the CoS2phase.Specifically,as shown in Fig.2d,the introduction of nano-dispersed SnS2phase into CSC effectively lowers the intrinsic average charge voltage of CoS2up toca.0.62 V.This in turn will translate to a higher plateau voltage for full-cells,thereby improving their energy density.

    Fig.2 a CV curves and b,c corresponding discharge-charge curves of CSC,commercial SnS2 and CoS2,and SnS2/CoS2 mixture.d Histogram showing the average charge plateau voltages of various anodes in half-cells.e Capacity/charge plateau comparison of different anodes.f Rate capability of CSC,commercial SnS2 and CoS2 in half-cells.g Rate capability comparison of different anodes.h Long-life cyclability of CSC anode at 1 and 10 A g-1 (CE Coulombic efficiency)

    Compared with other metal chalcogenide anodes,CSC exhibits obvious high-capacity and low-plateau advantages(Fig.2e).Moreover,compared with commercial SnS2and CoS2,and mixtures of the two,CSC shows a remarkably improved rate capability,ranging from 0.5 to 20 A g-1with a high capacity of 327.6 mAh g-1anodeat 20 A g-1(Fig.2f).The corresponding discharge/charge curves are exhibited in Fig.S14.When tested with ester-based electrolyte,CSC shows similar CV curves to that in ether-based electrolyte,but the reversible capacity,to the same cutoffvoltage,shrinks markedly (Fig.S15).In addition,compared with in ether-based electrolyte,the rate capability of CSC is greatly deteriorated (Fig.S16),along with an increased resistance of charge transfer (Fig.S17).Such phenomena suggest the key role of ether-based electrolyte in stabilizing metal sulfide anodes and realizing fast charge transfer,which could be associated with good compatibility between metal sulfide and ether solvent [1,15].Evidently,the CSC anode effectively circumvents the intrinsic high voltage of CoS2and low-rate drawback of SnS2in etherbased electrolyte.Compared with other anode materials in half-cells,CSC also shows a remarkable high-rate capability(Fig.2g,Table S2)_ENREF_12_ENREF_13_ENREF_14_ENREF_15_ENREF_16_ENREF_17_ENREF_18 [47-54].The CSC can be cycled at high current densities (1 and 10 A g-1) with excellent long-life cyclability,specifically,410.8 mAh g-1anodeat 10 A g-1over 500 cycles without decay(Fig.2h).

    2.3 Electrochemical Kinetics

    The electrochemical kinetics of the CSC anode in half-cells is studied in detail by reference to the results of electrochemical impedance spectroscopy (EIS).Compared with electrodes made from commercial samples of SnS2and CoS2,the Nyquist curve for a typical CSC anode shows a semi-circle with smaller diameter,implying a faster charge transfer (Fig.3a).Based on the derived equivalent circuit,the resistances of charge transfer for CSC,commercial SnS2and CoS2anodes are 9.5,32.7,and 13.4 Ω,respectively(Fig.3b).To compare Na+diffusion coefficient (DNa+) in CSC and SnS2/CoS2mixture,galvanostatic intermittent titration technique (GITT) was conducted at 0.05 A g-1for 0.5 h,followed by relaxation for 2 h.The typical GITT discharge profiles of CSC and SnS2/CoS2mixture are shown in Fig.3c.As illustrated in Fig.3d,can be calculated following equationDNa+=,where L is Na+diffusion length(cm),τis the current impulse time (s),tis relaxation time(s),ΔESis steady-state potential change (V),ΔEtis the instantaneous potential change (V) used to deduce IR drop[55,56].Corresponding to the GITT profiles,the calculated averageDNa+isca.0.5 × 10-9cm2s-1,which is around twice that in half-cell with SnS2/CoS2mixture (Fig.3e).Evidently,compared with simply mixed SnS2/CoS2anode,the CSC assembly of nano-dispersed SnS2and CoS2particles shows remarkable superiority in terms of charge transfer kinetics and ionic diffusion.

    Next,the pseudocapacitive contribution to charge storage in the Na//CSC half-cell was evaluated,on the basis that this component gives rise to faster charge transfer kinetics.CV curves at different rates are shown in Fig.3f,and the correlation of peak currents (i) and scan rates (v) was assessed against the relationshipi=avb,whereaandbare adjustable constants [57].As shown in Fig.3g,the resultantb-values are 0.98,0.81,and 0.93,respectively,which implies the presence of a substantial pseudocapacitive contribution.The latter can be quantified through the equationi=k1v+k2v1/2,wherek1vandk2v1/2represent pseudocapacitive and iondiffusion controlled contribution,respectively [57-59].As shown in Fig.3h,CSC anodes exhibit dominant pseudocapacitive contributions at scan rates of 0.1,0.2,0.4,0.8,and 1.5 mV s-1,specifically,64.0%,67.0%,71.6%,78.3%,and 86.3%,respectively.Figure 3i displays the CV curves of Na//CSC at 1.5 mV s-1,in which the shaded region represents the pseudocapacitive contribution.This,together with the small charge transfer resistance and highDNa+,explains the excellent rate capability of the CSC anode.

    Fig.3 a Nyquist plots of different anodes in half-cells and b corresponding equivalent circuit and charge transfer resistance (Rct).c GITT profiles of Na//CSC half-cell discharged and d typical profile in a single GITT test.e Na+ diffusion coefficient distribution corresponding to a typical discharge curve of Na//CSC half-cell (inset).f CV curves of Na//CSC half-cell at different scan rates.g b-values obtained by fitting peak current-scan rate correlation based on CV curves of Na//CSC half-cell.h Pseudocapacitive contribution (pseudocapa.contri.) of Na//CSC at different scan rates.i CV profiles of Na//CSC at 1.5 mV s-1 and corresponding pseudocapacitive contribution (shaded region)

    2.4 Electrochemical Mechanism

    To investigate the mechanism that underpins the superior electrochemical behavior of CSC anodes,samples were at various states-of-(dis)charge characterized by ex situ XRD.The copper current collector in a Na//Cu half-cell discharged to 0.4 V shows only the intrinsic diffraction peaks for metallic copper,verifying no evident electrochemical reaction between Na and Cu collector in etherbased electrolyte (Fig.S18).Compared with original samples (CSC,commercial SnS2and CoS2),the samples after electrochemical activation exhibit dramatically different XRD patterns,indicating the occurrence of phase transition (Fig.S19).For CoS2,the relevant electrochemical reactions are as follows: CoS2+xNa++xe-→ NaxCoS2,NaxCoS2+(4 -x)Na++(4 -x)e-? 2Na2S+Co [60].For SnS2,the corresponding electrochemical reactions are as follows:xNa++SnS2+xe-→ NaxSnS2,NaxSnS2+(4-x)Na++(4-x)e-? 2Na2S+Sn,Sn+yNa++ye-? NaySn[40,61].Compared with single phases,the CSC anode shows similar featured diffraction peaks to pure SnS2,while the peaks from the CoS2diffraction pattern are difficult to discern.This could be associated with differences in crystallinity between products derived from SnS2and CoS2.For investigating the mechanism of activated CSC,original CSC anodes were activated for at least 3 cycles to obtain phase-transformed materials.Corresponding to the discharge-charge-time curves in Fig.4a,the activated CSC anodes at various states-of-charge show repeatable XRD patterns,implying good reversibility during the discharge/charge processes (Fig.4b).The peak intensity of XRD pattern of anode (such as C-0.97 V,blue) is lower than that of initially charged anode (such as C-0.97 V,pink),which could be associated with the decreased diameter and gradually aggravated amorphization of metal sulfide phases.Similar phenomena have been reported in other metal chalcogenide anodes such as CoSe2and CoS2[13,60].At different (dis)charge states,the corresponding XRD of anodes shows different patterns,which should be correlated to the successive formation of different products.

    As shown in Fig.4c,HR-TEM image of CSC discharged to 0.4 V displays interplanar spacings of 0.569 and 0.316 nm,corresponding to lattice plane (0 0 4) of Na29.58Sn8and (1 0 1) of Co.Selected area electron diffraction (SAED) patterns reveal the lattice plane (2 1 1)of Co,(5 1 3) and (1 3 1) of Na29.58Sn8in the discharged product (Fig.4d).When charged back to 2.9 V,the crystalline domains in the resulting product are remarkably smaller than those in the discharged state.As shown in Fig.4e,HR-TEM image of CSC charged to 2.9 V displays interplanar spacings of 0.184 and 0.295 nm,which are assigned to lattice plane of (2 2 1)’ of NaxCoS2and (0 0 2)’ of NaxSnS2(with CoS2and SnS2standard phases as reference),respectively.The SAED pattern exhibits typical polycrystalline features,in which lattice plane (2 2 0) of NaxCoS2,(1 0 3) and (1 0 0) of NaxSnS2can be identified (Fig.4f).Based on the characterization above,the progress of electrochemical reduction,followed by oxidation,for the CSC electrode is illustrated in Fig.4g.Typically,SnS2and CoS2phases in CSC experience an initial phase transition to Na+-intercalated intermediates(NaxMS2,M=Sn,Co),which act as active materials for subsequent discharge/charge cycles.Based on the analysis above,the exotic property mediation beyond rule-of-mixtures [35,36] (cocktail mediation effect) among nanodispersed SnS2and CoS2phases in CSC is schematically illustrated in Fig.4h-i.Specifically,along the different ionic diffusion directions,the nano-dispersed SnS2and CoS2phases in CSC will alternatively react with Na+carriers,as schematically illustrated in Fig.4i.The nanodispersion of SnS2and CoS2phases effectively shortens the ion diffusion path,which can kinetically boost electrochemical processes of both metal sulfide anodes.Due to intrinsic thermodynamics difference,the electrochemical competition is present between SnS2and CoS2phases.Also,it does not exclude one of the two phases could show local kinetic merit owing to the diameter difference between them.Thus,in the CSC anode,the alternative electrochemical reaction processes could coexist between the two phases.It enables complementary charge voltage plateau of different metal sulfide phases,resulting in lowered charge plateau of CSC anode.

    Fig.4 a Discharge-charge-time curve and b ex situ XRD patterns of CSC anode at different potentials.c HR-TEM image and d SAED pattern of CSC discharged to 0.4 V.e HR-TEM image and f SAED pattern of CSC charged to 2.9 V.g Schematic illustration of discharge/charge mechanisms of CSC anode.h Schematic illustration of reaction route and charge voltage change trend of CoS2 anode.i Schematic illustration of reaction route and charge voltage change trend of CSC anode,showing cocktail mediation effect among nano-dispersed metal sulfide phases in CSC

    2.5 Full-Cell Properties

    To verify the practicability of the CSC anode,a highvoltage cathode material Na1.5VPO4.8F0.7was employed to assemble CSC//Na1.5VPO4.8F0.7full-cells.Synthesis of Na1.5VPO4.8F0.7followed a modified literature method(Supporting Information),and yielded a micro-particle morphology with a well-matched XRD pattern with the standard phase (Fig.S20) [33].Corresponding to CV curves,Na1.5VPO4.8F0.7cathode showsca.3.9 V discharge plateau with low electrochemical polarization,which is suitable for demonstrating the practicability of different anodes (Fig.S21a,b).The Na1.5VPO4.8F0.7cathode delivers a good rate capability from 0.05 to 0.5 A g-1,showing a high reversible capacity of 124.1 mAh g-1electrodeat 0.05 A/g (Fig.S21c,d).Over 350 cycles at 0.1 A g-1,the Na1.5VPO4.8F0.7cathode shows a capacity of 106.4 mAh g-1electrode,corresponding to a low capacity decay of 0.02%per cycle (Fig.S22).Figure 5a shows the typical CV curves of CoS2//Na1.5VPO4.8F0.7,SnS2//Na1.5VPO4.8F0.7,and CSC//Na1.5VPO4.8F0.7full-cells at 0.5 mV s-1.Evidently,the main redox peaks of CoS2//Na1.5VPO4.8F0.7appear at 1.0-2.5 V,implying that its average discharge voltage is in the range.In contrast,the ranges of main redox peaks of SnS2//Na1.5VPO4.8F0.7and CSC//Na1.5VPO4.8F0.7full-cells are in 2.0-4.0 V,which imply a higher average discharge voltage than that of the former.Figure 5b shows that the discharge capacity available from the CSC//Na1.5VPO4.8F0.7cell,while the voltage is above 2 V,isca.61.7 mAh g-1electrode,which is 1.62 times that of CoS2//Na1.5VPO4.8F0.7.As displayed in Fig.5c,CSC//Na1.5VPO4.8F0.7full-cells present an average discharge voltage of 2.57 V,which is close to that of SnS2//Na1.5VPO4.8F0.7andca.0.62 V higher than that with CoS2anode.The CSC anode confers a significantly higher average voltage during discharge of full-cells when compared with CoS2cells.Compared with other full-cells reported previously,CSC//Na1.5VPO4.8F0.7full-cells also show obvious merits in terms of discharge voltage and capacity (Fig.5d).Moreover,CSC//Na1.5VPO4.8F0.7full-cells show a high-rate capability from 0.05 to 1 A g-1,delivering a high capacity of 120.3 mAh g-1electrodeat 0.05 A g-1(Fig.5e).The corresponding discharge/charge curves are shown in Fig.S23,where the voltage plateaus are well-retained.As exhibited in Fig.5f,compared with other full-cells with different electrode materials,CSC//Na1.5VPO4.8F0.7full-cell delivers comparable merits in terms of energy/power density.[62-67]Specifically,~106.1 Wh kg-1electrode/1278.3 W kg-1electrodeare achieved at 1 A g-1.When operated over 120 cycles at 0.25 A g-1,CSC//Na1.5VPO4.8F0.7full-cell shows a high capacity of 63.0 mAh g-1electrodewith a low decay of 0.20%per cycle (Fig.5g).Such results suggest a good practicability of CSC in full-cells.

    Fig.5 a CV curves of CoS2//Na1.5VPO4.8F0.7,SnS2//Na1.5VPO4.8F0.7,and CSC//Na1.5VPO4.8F0.7 full-cells at 0.5 mV s-1.b Corresponding discharge/charge curves and c discharge plateaus of full-cells at 0.05 A g-1.d Discharge plateau/capacity comparison of different full-cells.e Rate capability of CoS2//Na1.5VPO4.8F0.7,SnS2//Na1.5VPO4.8F0.7,and CSC//Na1.5VPO4.8F0.7 full-cells.f Ragone plots comparison of different fullcells.g Long-life cyclability of CSC//Na1.5VPO4.8F0.7 full-cells at 0.25 A g-1

    3 Conclusions

    Despite with high-capacity and low-cost merits,the ubiquitous low-rate and high-plateau issues greatly lower the practicability of metal sulfide anodes in full-cells.Herein,enlightened by electrolyte/structure-dependent properties of metal sulfides,CSC anode assembled by nano-dispersed SnS2and CoS2phases is engineered as a case study in ether-based electrolyte,simultaneously realizing high-rate and low-plateau properties.The high nano-dispersity of metal sulfides endows CSC anode with evident cocktail mediation effect similar to high-entropy materials,effectively circumventing intrinsic drawbacks of different metal sulfides.The utilized ether-based electrolyte greatly enhances the reversibility of metal sulfides,sustaining a long-life effectivity of cocktail-like mediation.In half-cells,CSC delivers an ultrahigh-rate capability of 327.6 mAh g-1anodeat 20 A g-1and remarkably lowered average charge voltage up toca.0.62 V,far outperforming CoS2phase and SnS2/CoS2mixture.The as-assembled CSC//Na1.5VPO4.8F0.7full-cell shows a good rate capability (0.05-1.0 A g-1,120.3 mAh g-1electrodeat 0.05 A g-1) and a high average discharge voltage up to 2.57 V,comparable to full-cells with alloy-type anodes.Kinetics and mechanism studies further verify that the cocktail-like mediation effect largely boosts charge transfer and ionic diffusion in CSC,while alternative and complementary electrochemical processes between different nano-dispersed metal sulfides (SnS2and CoS2) and Na+carriers account for the lowered charge plateau of CSC.This work shows a unique electrolyte/structure-dependent cocktaillike mediation effect of metal sulfide anodes,which will boost the development of high-rate/-voltage sodium-ion full batteries.

    AcknowledgementsThis work was supported by Guangdong Basic and Applied Basic Research Foundation,China (No.2019A1515110980),research project from the National Natural Science Foundation of China (No.21361162004),China Scholarship Council,and CSIRO.We acknowledge Dr Yesim Gozukara,Dr Malisja de Vries,and Dr Yunxia Yang from CSIRO (Clayton)for their help with material characterization training.

    Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License,which permits use,sharing,adaptation,distribution and reproduction in any medium or format,as long as you give appropriate credit to the original author(s) and the source,provide a link to the Creative Commons licence,and indicate if changes were made.The images or other third party material in this article are included in the article’s Creative Commons licence,unless indicated otherwise in a credit line to the material.If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use,you will need to obtain permission directly from the copyright holder.To view a copy of this licence,visit http:// creat iveco mmons.org/ licen ses/ by/4.0/.

    Supplementary InformationThe online version contains supplementary material available at https:// doi.org/ 10.1007/s40820-021-00686-4.

    久热这里只有精品99| 国产精品久久久人人做人人爽| 亚洲五月色婷婷综合| 国产精品一区二区精品视频观看| 一级毛片我不卡| 国产精品99久久99久久久不卡 | 免费在线观看完整版高清| 中文字幕制服av| 啦啦啦啦在线视频资源| 下体分泌物呈黄色| 欧美成人午夜精品| av女优亚洲男人天堂| 老司机亚洲免费影院| 日韩 亚洲 欧美在线| 亚洲欧美日韩另类电影网站| 国产无遮挡羞羞视频在线观看| 天天躁夜夜躁狠狠躁躁| 性色av一级| 亚洲国产成人一精品久久久| www.自偷自拍.com| 久久狼人影院| 国产不卡av网站在线观看| 久久天堂一区二区三区四区| 一本一本久久a久久精品综合妖精| 亚洲国产日韩一区二区| av.在线天堂| 精品少妇黑人巨大在线播放| 一个人免费看片子| 人妻 亚洲 视频| 亚洲成av片中文字幕在线观看| 欧美在线黄色| 赤兔流量卡办理| 19禁男女啪啪无遮挡网站| 国产伦人伦偷精品视频| 欧美日韩成人在线一区二区| 美女主播在线视频| 精品久久蜜臀av无| www.熟女人妻精品国产| 嫩草影院入口| 在现免费观看毛片| 日韩 亚洲 欧美在线| 999久久久国产精品视频| 欧美在线黄色| 九草在线视频观看| 老鸭窝网址在线观看| 日本av免费视频播放| 色吧在线观看| 91老司机精品| 毛片一级片免费看久久久久| 免费日韩欧美在线观看| 啦啦啦啦在线视频资源| www.自偷自拍.com| 搡老岳熟女国产| 国产精品国产av在线观看| a级片在线免费高清观看视频| 成年人免费黄色播放视频| 日韩熟女老妇一区二区性免费视频| 国产av码专区亚洲av| 国产精品 国内视频| 国产精品成人在线| 人人妻人人澡人人看| 亚洲成国产人片在线观看| 夫妻午夜视频| 搡老乐熟女国产| 久久 成人 亚洲| 又黄又粗又硬又大视频| 秋霞在线观看毛片| 久久久久久久大尺度免费视频| 国产日韩欧美亚洲二区| 一区福利在线观看| 午夜福利,免费看| 捣出白浆h1v1| 午夜福利免费观看在线| 久久精品国产亚洲av高清一级| 亚洲精品自拍成人| 哪个播放器可以免费观看大片| 亚洲美女视频黄频| 欧美日韩亚洲国产一区二区在线观看 | 少妇人妻久久综合中文| 2018国产大陆天天弄谢| 一区二区三区四区激情视频| 国产黄色视频一区二区在线观看| 久久精品久久久久久久性| 精品亚洲成国产av| 国产伦理片在线播放av一区| 午夜福利在线免费观看网站| 一级毛片黄色毛片免费观看视频| 亚洲国产精品一区二区三区在线| 亚洲人成电影观看| 欧美人与性动交α欧美精品济南到| 免费在线观看黄色视频的| 国产97色在线日韩免费| av天堂久久9| av国产精品久久久久影院| 我要看黄色一级片免费的| 丝袜脚勾引网站| 在线亚洲精品国产二区图片欧美| 国产又爽黄色视频| 午夜福利免费观看在线| 18在线观看网站| 桃花免费在线播放| 伦理电影免费视频| 高清欧美精品videossex| 免费黄色在线免费观看| 国产深夜福利视频在线观看| avwww免费| 伦理电影大哥的女人| 男女下面插进去视频免费观看| 亚洲精品日韩在线中文字幕| 精品一区二区三区四区五区乱码 | 国产精品久久久久久人妻精品电影 | 亚洲人成77777在线视频| 国产成人精品在线电影| 国产熟女欧美一区二区| 欧美日韩成人在线一区二区| 亚洲av男天堂| www.熟女人妻精品国产| 丁香六月欧美| 日韩 亚洲 欧美在线| 中文字幕亚洲精品专区| 少妇精品久久久久久久| 国产av一区二区精品久久| 午夜福利免费观看在线| 日韩一本色道免费dvd| 日韩制服骚丝袜av| 综合色丁香网| 啦啦啦视频在线资源免费观看| 国产 精品1| 18禁观看日本| 国产99久久九九免费精品| 丰满少妇做爰视频| 精品国产超薄肉色丝袜足j| 国产淫语在线视频| 国产xxxxx性猛交| 久久女婷五月综合色啪小说| 日韩大码丰满熟妇| 成人三级做爰电影| 亚洲精品国产av成人精品| 中文字幕亚洲精品专区| 99国产精品免费福利视频| 又大又爽又粗| 成人三级做爰电影| 一级毛片我不卡| 丝瓜视频免费看黄片| 80岁老熟妇乱子伦牲交| 免费观看人在逋| 国产精品秋霞免费鲁丝片| 日本爱情动作片www.在线观看| 国产成人av激情在线播放| 老司机亚洲免费影院| 青春草国产在线视频| 一个人免费看片子| 国产精品一区二区在线观看99| 男人操女人黄网站| 天堂8中文在线网| 国产精品免费视频内射| 国产色婷婷99| 黄色一级大片看看| 观看av在线不卡| 精品一区二区三区av网在线观看 | 国产精品99久久99久久久不卡 | 日韩中文字幕视频在线看片| 丝袜美足系列| 女的被弄到高潮叫床怎么办| 国产毛片在线视频| 色精品久久人妻99蜜桃| 国产精品 欧美亚洲| 免费在线观看视频国产中文字幕亚洲 | 日韩av不卡免费在线播放| 可以免费在线观看a视频的电影网站 | 国产深夜福利视频在线观看| 亚洲av日韩精品久久久久久密 | 大话2 男鬼变身卡| 极品人妻少妇av视频| 亚洲成人手机| 免费黄网站久久成人精品| 精品酒店卫生间| 少妇被粗大猛烈的视频| 亚洲精品久久午夜乱码| 亚洲欧美日韩另类电影网站| 午夜福利一区二区在线看| 肉色欧美久久久久久久蜜桃| 精品一区二区免费观看| 国产免费视频播放在线视频| 如何舔出高潮| 十八禁网站网址无遮挡| 视频在线观看一区二区三区| 色综合欧美亚洲国产小说| 亚洲四区av| 在线观看免费视频网站a站| 99国产综合亚洲精品| 亚洲欧美成人综合另类久久久| 午夜福利视频精品| 久久久久久人人人人人| 女性生殖器流出的白浆| 久久精品久久久久久噜噜老黄| 啦啦啦中文免费视频观看日本| 欧美亚洲日本最大视频资源| 男女床上黄色一级片免费看| 国产黄色免费在线视频| av网站在线播放免费| 男男h啪啪无遮挡| 午夜精品国产一区二区电影| 国产成人午夜福利电影在线观看| 成人亚洲欧美一区二区av| 最黄视频免费看| 日本爱情动作片www.在线观看| 国产一级毛片在线| 亚洲精品美女久久久久99蜜臀 | 操美女的视频在线观看| 好男人视频免费观看在线| 国产野战对白在线观看| 国产av精品麻豆| 自拍欧美九色日韩亚洲蝌蚪91| 9热在线视频观看99| 两个人免费观看高清视频| 久久久久久久久久久久大奶| 男女边吃奶边做爰视频| 水蜜桃什么品种好| 精品一品国产午夜福利视频| 天天操日日干夜夜撸| 高清av免费在线| 日韩 亚洲 欧美在线| 少妇被粗大的猛进出69影院| 丝袜人妻中文字幕| 国产精品 欧美亚洲| 亚洲欧美一区二区三区国产| 久久毛片免费看一区二区三区| 欧美精品人与动牲交sv欧美| 欧美中文综合在线视频| a级毛片黄视频| 另类亚洲欧美激情| 久久精品亚洲av国产电影网| 欧美日韩视频高清一区二区三区二| 国产精品久久久久久久久免| 精品人妻熟女毛片av久久网站| 哪个播放器可以免费观看大片| 亚洲情色 制服丝袜| 久久人人爽人人片av| 另类亚洲欧美激情| 亚洲av国产av综合av卡| 一级毛片电影观看| 亚洲欧美激情在线| 人妻一区二区av| 午夜av观看不卡| 美女福利国产在线| 人人妻,人人澡人人爽秒播 | 欧美黄色片欧美黄色片| 亚洲欧美一区二区三区黑人| 在线观看三级黄色| 97人妻天天添夜夜摸| 亚洲成av片中文字幕在线观看| 国产一区二区三区av在线| 免费av中文字幕在线| 麻豆乱淫一区二区| 国产精品二区激情视频| 成人手机av| 日日爽夜夜爽网站| av线在线观看网站| 国产有黄有色有爽视频| 人人妻人人澡人人看| 美国免费a级毛片| 国产乱人偷精品视频| 99国产综合亚洲精品| 各种免费的搞黄视频| 亚洲四区av| 80岁老熟妇乱子伦牲交| 亚洲精品,欧美精品| 久久久久国产一级毛片高清牌| 国产1区2区3区精品| 久久精品久久久久久久性| 考比视频在线观看| av有码第一页| 亚洲伊人久久精品综合| 老司机深夜福利视频在线观看 | 人妻人人澡人人爽人人| 丝袜喷水一区| 日韩av在线免费看完整版不卡| 精品一区在线观看国产| 秋霞在线观看毛片| 欧美黑人欧美精品刺激| 男人操女人黄网站| 一二三四中文在线观看免费高清| 黑人巨大精品欧美一区二区蜜桃| 成人免费观看视频高清| 日韩一卡2卡3卡4卡2021年| 国产精品久久久久成人av| avwww免费| 最新的欧美精品一区二区| 国产日韩一区二区三区精品不卡| 在线观看www视频免费| 欧美日本中文国产一区发布| 国产精品秋霞免费鲁丝片| 高清欧美精品videossex| 久久毛片免费看一区二区三区| 波多野结衣一区麻豆| 亚洲婷婷狠狠爱综合网| 亚洲美女视频黄频| 国产一区亚洲一区在线观看| 亚洲五月色婷婷综合| 国产精品久久久人人做人人爽| 99香蕉大伊视频| 国产精品熟女久久久久浪| 黄片小视频在线播放| 亚洲欧美成人综合另类久久久| 国精品久久久久久国模美| 国产一区有黄有色的免费视频| 亚洲激情五月婷婷啪啪| 看免费av毛片| 男女午夜视频在线观看| 国产精品 国内视频| 最近中文字幕高清免费大全6| 久久精品国产a三级三级三级| 大话2 男鬼变身卡| 中国国产av一级| 女的被弄到高潮叫床怎么办| 久久99一区二区三区| 久久精品久久精品一区二区三区| 丝瓜视频免费看黄片| 国产精品久久久久久人妻精品电影 | 成人免费观看视频高清| xxx大片免费视频| 国产精品免费视频内射| 成人亚洲精品一区在线观看| 桃花免费在线播放| 秋霞在线观看毛片| 国产免费现黄频在线看| 国产精品三级大全| 国产无遮挡羞羞视频在线观看| 成人亚洲欧美一区二区av| www.精华液| 亚洲专区中文字幕在线 | av不卡在线播放| 高清视频免费观看一区二区| 七月丁香在线播放| 亚洲精品成人av观看孕妇| av有码第一页| 国产亚洲欧美精品永久| 黄网站色视频无遮挡免费观看| 黑丝袜美女国产一区| 多毛熟女@视频| 99久久人妻综合| 母亲3免费完整高清在线观看| 免费观看性生交大片5| 国产日韩欧美在线精品| 波多野结衣一区麻豆| 在线 av 中文字幕| 国产成人精品福利久久| 国产精品一国产av| 一区二区三区乱码不卡18| 久久毛片免费看一区二区三区| 国产麻豆69| 国产亚洲av高清不卡| 99国产综合亚洲精品| 久久久久人妻精品一区果冻| 乱人伦中国视频| 亚洲一区二区三区欧美精品| www.熟女人妻精品国产| 日日啪夜夜爽| 免费人妻精品一区二区三区视频| 亚洲婷婷狠狠爱综合网| 熟女av电影| 最新在线观看一区二区三区 | 国产成人av激情在线播放| 搡老岳熟女国产| 久久精品久久久久久噜噜老黄| 老司机在亚洲福利影院| 色94色欧美一区二区| www.熟女人妻精品国产| videos熟女内射| av在线观看视频网站免费| 亚洲自偷自拍图片 自拍| 国产精品二区激情视频| 一本色道久久久久久精品综合| 性色av一级| 亚洲欧美一区二区三区黑人| 亚洲 欧美一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲美女黄色视频免费看| 免费日韩欧美在线观看| 大香蕉久久网| 欧美少妇被猛烈插入视频| 丰满饥渴人妻一区二区三| 亚洲欧美一区二区三区黑人| 久久97久久精品| 一区福利在线观看| 久久久精品国产亚洲av高清涩受| 久久久久国产精品人妻一区二区| 日韩熟女老妇一区二区性免费视频| 亚洲精品国产色婷婷电影| 嫩草影视91久久| 超色免费av| 我要看黄色一级片免费的| 看免费成人av毛片| 2018国产大陆天天弄谢| 天天躁夜夜躁狠狠躁躁| 国产黄色免费在线视频| 一本久久精品| a级片在线免费高清观看视频| 一本色道久久久久久精品综合| 免费看av在线观看网站| 国产福利在线免费观看视频| 亚洲精品av麻豆狂野| 国产午夜精品一二区理论片| 操美女的视频在线观看| 亚洲精品在线美女| 免费女性裸体啪啪无遮挡网站| 精品第一国产精品| 美女午夜性视频免费| 精品国产一区二区久久| 亚洲欧美精品综合一区二区三区| 国产精品一区二区在线观看99| 丰满迷人的少妇在线观看| 午夜影院在线不卡| 亚洲精品,欧美精品| 丝袜脚勾引网站| 久久人妻熟女aⅴ| 91精品国产国语对白视频| 日韩欧美一区视频在线观看| 成人国产麻豆网| 天堂俺去俺来也www色官网| 免费观看人在逋| 男男h啪啪无遮挡| 午夜福利,免费看| 一级片'在线观看视频| 日日啪夜夜爽| 婷婷色综合大香蕉| 国产精品国产三级国产专区5o| 国产成人精品无人区| 亚洲国产欧美网| 99国产精品免费福利视频| svipshipincom国产片| 国产精品久久久av美女十八| 视频区图区小说| 飞空精品影院首页| 18在线观看网站| 最近2019中文字幕mv第一页| 国产成人精品久久久久久| 久久热在线av| 国产淫语在线视频| e午夜精品久久久久久久| 99久久人妻综合| 99精品久久久久人妻精品| 亚洲熟女毛片儿| 欧美在线一区亚洲| 亚洲精品国产av成人精品| 人人妻人人澡人人爽人人夜夜| 免费观看性生交大片5| 免费在线观看完整版高清| 国产精品 欧美亚洲| 极品少妇高潮喷水抽搐| 国产黄频视频在线观看| 国产精品久久久久久精品电影小说| kizo精华| 国产精品 欧美亚洲| 国产又爽黄色视频| 午夜日韩欧美国产| 精品人妻在线不人妻| 国产亚洲欧美精品永久| 十八禁高潮呻吟视频| 成人国产麻豆网| 久久久久久久大尺度免费视频| av在线观看视频网站免费| 少妇 在线观看| 久久免费观看电影| 国产片特级美女逼逼视频| 欧美激情高清一区二区三区 | 九草在线视频观看| 国产成人av激情在线播放| 午夜福利,免费看| 青春草亚洲视频在线观看| 热99久久久久精品小说推荐| www.精华液| 午夜福利一区二区在线看| 日本猛色少妇xxxxx猛交久久| 久久婷婷青草| 2018国产大陆天天弄谢| 美女午夜性视频免费| av又黄又爽大尺度在线免费看| 无遮挡黄片免费观看| 精品一区二区免费观看| 亚洲专区中文字幕在线 | 九九爱精品视频在线观看| 99精品久久久久人妻精品| 黄色 视频免费看| 99香蕉大伊视频| 欧美 日韩 精品 国产| 欧美亚洲 丝袜 人妻 在线| 少妇人妻精品综合一区二区| 亚洲国产欧美一区二区综合| 黄色视频在线播放观看不卡| 欧美xxⅹ黑人| 一本大道久久a久久精品| 国产精品av久久久久免费| av卡一久久| 成人亚洲精品一区在线观看| 国产1区2区3区精品| 大香蕉久久网| 亚洲精品av麻豆狂野| 亚洲国产日韩一区二区| av在线播放精品| 亚洲久久久国产精品| 国产成人av激情在线播放| 人人妻人人爽人人添夜夜欢视频| 一区二区三区激情视频| 日韩av不卡免费在线播放| 老司机在亚洲福利影院| 满18在线观看网站| 夜夜骑夜夜射夜夜干| 一级毛片黄色毛片免费观看视频| 亚洲综合精品二区| 中文字幕人妻丝袜制服| 欧美 亚洲 国产 日韩一| 制服丝袜香蕉在线| www日本在线高清视频| 中文天堂在线官网| 欧美精品亚洲一区二区| 中文字幕人妻丝袜制服| 欧美国产精品va在线观看不卡| 肉色欧美久久久久久久蜜桃| 亚洲欧美清纯卡通| 成年美女黄网站色视频大全免费| 亚洲综合精品二区| 亚洲第一区二区三区不卡| 又黄又粗又硬又大视频| 久久人妻熟女aⅴ| 热99国产精品久久久久久7| 中文字幕人妻丝袜制服| 超碰成人久久| 男女下面插进去视频免费观看| 日韩 亚洲 欧美在线| 日韩大码丰满熟妇| 精品国产超薄肉色丝袜足j| 香蕉国产在线看| 纯流量卡能插随身wifi吗| 日本vs欧美在线观看视频| 国产免费又黄又爽又色| 欧美少妇被猛烈插入视频| 欧美黄色片欧美黄色片| 午夜免费鲁丝| 老汉色av国产亚洲站长工具| 最近中文字幕高清免费大全6| 啦啦啦 在线观看视频| 毛片一级片免费看久久久久| 亚洲人成77777在线视频| 中文字幕精品免费在线观看视频| 香蕉丝袜av| 亚洲精品日本国产第一区| 日韩人妻精品一区2区三区| 日韩一区二区三区影片| 中文欧美无线码| 黄色 视频免费看| 国产麻豆69| 国产免费又黄又爽又色| 大片电影免费在线观看免费| 午夜福利一区二区在线看| 欧美久久黑人一区二区| 亚洲国产日韩一区二区| 丝袜美足系列| 大陆偷拍与自拍| 在现免费观看毛片| a级毛片在线看网站| 免费黄色在线免费观看| 欧美精品一区二区免费开放| 久久久久久久国产电影| av片东京热男人的天堂| 天天躁狠狠躁夜夜躁狠狠躁| 免费久久久久久久精品成人欧美视频| 1024香蕉在线观看| xxxhd国产人妻xxx| 国产男女超爽视频在线观看| 女性被躁到高潮视频| 午夜日本视频在线| 999精品在线视频| 菩萨蛮人人尽说江南好唐韦庄| 午夜影院在线不卡| 男女高潮啪啪啪动态图| 国产伦理片在线播放av一区| 久久久久久久精品精品| 午夜福利在线免费观看网站| 色婷婷久久久亚洲欧美| 18在线观看网站| 中文字幕亚洲精品专区| 日韩大片免费观看网站| 日韩欧美一区视频在线观看| 9色porny在线观看| 波野结衣二区三区在线| 久久久久网色| 汤姆久久久久久久影院中文字幕| 欧美日韩亚洲高清精品| 精品一区二区三区四区五区乱码 | 国产一级毛片在线| 精品久久久久久电影网| 精品视频人人做人人爽| 青青草视频在线视频观看| 久久久国产精品麻豆| 欧美日韩国产mv在线观看视频| 欧美精品人与动牲交sv欧美| 欧美亚洲日本最大视频资源| 性少妇av在线| 午夜福利一区二区在线看| 看免费av毛片| 国产精品av久久久久免费| 亚洲欧美一区二区三区国产| 哪个播放器可以免费观看大片| 精品人妻一区二区三区麻豆| 2018国产大陆天天弄谢| 在线精品无人区一区二区三| 午夜91福利影院| 老鸭窝网址在线观看| 亚洲国产欧美日韩在线播放| 国产麻豆69| 在线观看免费视频网站a站| 精品少妇久久久久久888优播| 欧美日韩一区二区视频在线观看视频在线|