• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Oxygen-Deficient β-MnO2@Graphene Oxide Cathode for High-Rate and Long-Life Aqueous Zinc Ion Batteries

    2021-10-21 03:31:00ShouxiangDingMingzhengZhangRunzhiQinJianjunFangHengyuRenHaocongYiLeleLiuWenguangZhaoYangLiLuYaoShunningLiQingheZhaoFengPan
    Nano-Micro Letters 2021年11期

    Shouxiang Ding ,Mingzheng Zhang ,Runzhi Qin ,Jianjun Fang ,Hengyu Ren ,Haocong Yi ,Lele Liu,Wenguang Zhao,Yang Li,Lu Yao,Shunning Li,Qinghe Zhao,Feng Pan

    ABSTRACT Recent years have witnessed a booming interest in grid-scale electrochemical energy storage,where much attention has been paid to the aqueous zinc ion batteries (AZIBs).Among various cathode materials for AZIBs,manganese oxides have risen to prominence due to their high energy density and low cost.However,sluggish reaction kinetics and poor cycling stability dictate against their practical application.Herein,we demonstrate the combined use of defect engineering and interfacial optimization that can simultaneously promote rate capability and cycling stability of MnO2 cathodes.β-MnO2 with abundant oxygen vacancies (VO) and graphene oxide (GO) wrapping is synthesized,in which VO in the bulk accelerate the charge/discharge kinetics while GO on the surfaces inhibits the Mn dissolution.This electrode shows a sustained reversible capacity of~ 129.6 mAh g-1 even after 2000 cycles at a current rate of 4C,outperforming the state-of-the-art MnO2-based cathodes.The superior performance can be rationalized by the direct interaction between surface VO and the GO coating layer,as well as the regulation of structural evolution of β-MnO2 during cycling.The combinatorial design scheme in this work offers a practical pathway for obtaining high-rate and long-life cathodes for AZIBs.

    KEYWORDS Manganese oxides;Oxygen defects;Surface optimization;Aqueous zinc battery

    1 Introduction

    The worldwide transition from fossil fuels to sustainable energy sources has spawned a rising demand for more reliable and low-cost batteries in the field of large-scale energy storage [1],where safety and economic issues are more of a concern than energy density.Rechargeable aqueous zinc ion batteries (AZIBs) [2],because of their non-flammability,cost effectiveness,environmental benignity,and abundant sources,offer a promising alternative to the lithium-ion battery technology in stationary grid-connected applications.Currently,the performance of AZIBs is largely limited by available cathode materials,of which renowned examples include manganese oxides [3],vanadium oxides [4],Prussian blue analogs [5,6],and organic species [7].Among them,polymorphs of MnO2have captured particular attention due to their outstanding theoretical capacity and a preferable theoretical voltage versus Zn anode [8-12].However,the development of MnO2cathodes has been impeded by scientific challenges related to the kinetic limitations and capacity fading,which can be ascribed to the sluggish Zn2+diffusion in the cathode [13] and the irreversible phase transformation [14],respectively.To realize high-rate and longlife AZIBs,it is therefore required to formulate new design strategies for MnO2-based cathode materials.

    Toward this goal,researchers have adopted various technologies,including pre-intercalation engineering [15],defect engineering [16,17],interfacial optimization [18,19],and metal-doping [20],etc.Especially,the incorporation of oxygen vacancies (VO) is an effective route to improve the rate performance of MnO2electrodes.Previous studies have suggested that electronic conductivity can be enhanced in the presence of VO[21,22] and that the under-coordinated Mn ions will potentially afford facile transport pathways for ionic charge carriers [23-26].It is worth mentioning that a recent study of β-MnO2cathode has revealed the massive proton insertion triggered by the introduction of VOinto the bulk lattice [27].These promising aspects enabled by oxygen deficiency may,however,be tarnished by a higher susceptibility to Mn dissolution,which is likely to incur phase transitions.In this regard,surface coating (SC) can be leveraged to inhibit the Mn ions diffusing into the electrolyte.For pristine MnO2cathodes,the benefits of SC have already been demonstrated in several reports with carbon-based coating materials ranging from graphene [28,29] to polymers [30,31].Yet,the pertinent combination of VOand SC has not been explored in AZIB cathodes up to date,despite its fascinating potential to promote rate capability and cycling stability at the same time.Moreover,how such coatings interact with MnO2is rarely discussed,thus depriving researchers of a rational understanding of the role played by SC.

    In this work,we report the combinatorial use of defect engineering and interfacial optimization to boost the electrochemical performance of β-MnO2cathode.Electrode with excessive VOand graphene oxide (GO) wrapping is directly synthesized via a simple hydrothermal reaction. VOplays the vital role in facilitating the transfer of electrons and protons,while GO coating suppresses the dissolution of Mn ions.As a consequence,the oxygen-deficient β-MnO2@graphene oxide architecture exhibits high capacity,superior charge/discharge rates,and excellent cycle stability.Our work highlights that the tight binding of GO to the surfaces of β-MnO2via the interaction with VOacts in synergy with the regulated formation of spinel ZnxMn2O4to guarantee the structural integrity of the electrode during long-term cycling.

    2 Experimental Section

    2.1 Synthesis of β-MnO2@GO Nanorods

    The β-MnO2@GO nanorod was synthesized via a typical hydrothermal method.30 mL 0.6 M MnSO4,2 mL 0.5 M H2SO4,and 4 mL 1 mg mL-1GO dispersed aqueous solutions were mixed and continuously stirred for 30 min.30 mL 0.1 M KMnO4was then added into the resultant solution dropwise,after which the solution was stirred at room temperature for another 30 min and then loaded into a 100 mL Teflon-lined autoclave and maintained at 120 °C for 12 h.Finally,the obtained products were collected by the filter and were washed with deionized water and absolute ethyl alcohol for three times,respectively,and then dried at 80 ℃for 12 h.The β-MnO2counterpart was synthesized with the same method without adding GO.

    2.2 Materials Characterization

    The prepared materials were characterized by X-ray diffraction (XRD,Bruker D8 ADVANCE) with Cu Kα radiation.Scanning electron microscopy (SEM,ZEISS SUPRA55) and transmission electron microscopy (TEM,JEM-3200FS) were employed to investigate the micromorphology and microstructure.The thermogravimetric analysis (TGA) data were recorded in O2atmosphere using a 10 ℃ min-1heating rate from 30 to 700 ℃.X-ray photoelectron spectroscopy (XPS,ESCALAB 250Xi) was used to conduct the element composition and electronic structure analysis,in company with the energy-dispersive spectroscopy (EDS,Oxford X-Max 20)and Fourier transform infrared spectroscopy (FTIR).Electron paramagnetic resonance (EPR,Bruker A300-10/12) was performed to characterize the unpaired electron.

    2.3 Electrochemical Tests

    Electrochemical performance was tested in CR2032-type coin cells which were assembled in air condition.The working cathodes were fabricated by blending active materials,acetylene black (AB) and polyvinylidene fluoride (PVDF) in a weight ratio of 7:2:1 with N-methyl-2-pyrrolidone (NMP)used as a solvent to form a viscous slurry and coat onto Ti foil.The areal active loading for both the β-MnO2and β-MnO2@GO is about~ 2 mg cm-2.The as-prepared electrodes were dried in vacuum oven of about 110 ℃ for 24 h.Zinc foil in 10 mm and glass fiber membrane in 16 mm were used as the anode and separator,respectively.The electrolyte contained 3 M ZnSO4and 0.2 M MnSO4in aqueous solution.The LAND-CT2001A battery-testing instrument was conducted for cycle and rate test with assembled cells.EIS was performed on a Chi 660e electrochemical workstation with frequency range from 100 kHz to 0.1 Hz.

    2.4 First Principles Calculations

    Density functional theory (DFT) calculations were carried out using projected augmented wave pseudopotentials and the generalized gradient approximation in the form of the Perdew-Burke-Ernzerhof exchange-correlation functional modified for solids (PBEsol),as embedded in Vienna ab initio simulation package (VASP).The van der Waals interactions were treated using Grimme’s correction (DFT-D3).To deal with the localization of d electrons on Mn ions,Hubbard-corrected PBEsol+U(+J) functional was employed.More details are given in the Supporting Information.

    3 Results and Discussion

    3.1 Material Characterization

    XRD patterns of the prepared β-MnO2and β-MnO2@GO are shown in Fig.1a,which match very well with the standard β-MnO2(tetragonal,space group of P42/mnm,PDF #42-0735).This result indicates that GO wrapping does not alter the crystal structure of the β-MnO2.SEM results show the nanorod morphologies of β-MnO2and β-MnO2@GO with several micrometers in length and 200-300 nm in width (Fig.S1).The high-resolution TEM(HRTEM) confirms the adhesion of GO to the surfaces of β-MnO2(Fig.1b).Two lattice fringes of (101) and (110)planes are observed for β-MnO2@GO (Fig.1c),with interlayer spacing values of~ 2.40 and~ 3.13 ?,respectively,consistent with the XRD results in Fig.1a.Similar lattice fringe results are also observed for β-MnO2(Fig.S2).There exist some ambiguous areas in β-MnO2@GO,which can be ascribed to the formation of a large number of defects.

    EDS,FTIR,and XPS further justify the successful wrapping of GO (Fig.1b) in the β-MnO2@GO sample.Figure 1d reveals the uniform distributions of Mn,O,and trace amount of C elements.Comparison of FTIR results in Fig.1e demonstrates the characteristic peaks of C-O(~ 1432 cm-1) and C=C (~ 1576 cm-1) [32] in β-MnO2@GO.Three clear peaks located at~ 284.8,~ 286.0,and~ 288.8 eV in XPS C 1 s spectrum of β-MnO2@GO(Fig.1f) indicate the existence of C-C/C=C,C-O,and O-C=O bonds,respectively.

    The formation of VOcan be implied by the XPS O 1sspectra (Fig.1g),where the characteristic peak of VO(~ 531.2 eV) in β-MnO2@GO is substantially higher than that in β-MnO2.EPR spectra (Fig.S3) showing an apparent symmetrical signal atg=2.0 also suggest the high concentration of VO[33].The TGA curves of β-MnO2and β-MnO2@GO in O2-containing atmosphere are shown in Fig.1h.In the temperature range of 200-600 °C,the TGA curve of β-MnO2@GO rises,indicating the filling of VOby oxygen,in contrast to the β-MnO2sample where the mass change is negligible.Here,we cannot rule out the possibility of GO decomposition,which will contribute to mass loss.Due to the formation of more VO,Mn ions in β-MnO2@GO show lower valence than those in β-MnO2,as revealed by Mn 3sspectra in Fig.S4.Such a remarkable increase in VOconcentration is associated with both the low average oxidation state of Mn (+2.7) in the reactant solution,and the deoxygenation of GO during hydrothermal process,which will develop a strong tendency to extract the surface O ions of the as-produced β-MnO2so as to compensate the abundant dangling bonds on the reduced GO.The functional groups on GO may also accelerate the formation of β-MnO2,in which case the fast kinetics will potentially give rise to offset from the equilibrium state,for example,in the form of bulk VO.This scenario is similar to the cases of TiO2@GO [34] and other MnO2@GO electrodes in previous report,where the generation of VOin the transition metal oxides can be triggered during their hydrothermal growth in the presence of GO [35-37].

    Fig.1 a XRD patterns of β-MnO2 and β-MnO2@GO.b-d TEM,HRTEM morphologies,and correlated EDS mapping results of β-MnO2@GO (the insets in b and c show the presence of GO layer and the diffraction pattern,respectively).e comparison of FTIR spectra of β-MnO2 and β-MnO2@GO.f XPS peaks of C 1s and g O 1s spectra.h TGA curves of β-MnO2 and β-MnO2@GO in an O2-containing atmosphere

    3.2 Electrochemical Performance

    Coin-type cells are assembled with Zn plate as anode and aqueous 3 M ZnSO4+0.2 M MnSO4as electrolyte.The role of the pre-added Mn2+in the electrolyte is to suppress the Mn2+dissolution upon discharge processes,and the optimized Mn2+concentration in electrolyte is~ 0.2 M (Fig.S5).Figure 2a compares the rate performance of the β-MnO2and β-MnO2@GO electrodes.It can be seen that both electrodes show similar capacity activation process in the initial eight cycles at a current of 0.1C (1C=308 mA g-1),indicating that GO wrapping shows little influence on the capacity delivery of β-MnO2at low current rates.After eight cycles,the discharge capacity of β-MnO2@GO is stabilized at~ 322.6 mAh g-1.Figure 2b shows the galvanostatic charge/discharge (GCD) curves of the β-MnO2and β-MnO2@GO electrodes at a current of 0.1C in the second cycle,indicating that GO wrapping can induce an elevated discharge platform,i.e.,a smaller polarization.Figures 2c and S6 show the GCD curves of the β-MnO2@GO and β-MnO2electrodes at various current rates,respectively.The discharge capacities of β-MnO2@GO are~ 312.4,~ 290.9,~ 2 59.6,~ 211.7,~ 158.6,~ 132.5,~ 106.8,and~ 94.9 mAh g-1at current rates of 0.25,0.5,1,2,4,6,8,and 10C,respectively,which are much higher than those of β-MnO2.

    Figure 2 d,e provides the cycling performances of β-MnO2and β-MnO2@GO electrodes at current rates of 1C and 4C,respectively.It can be seen that the cycling performances follow the similar trend:The discharge capacity is activated in the initial cycles and then continuously reduces in the subsequent cycles.This kind of capacity variation is similar to other manganese oxide electrodes in previous reports [38,39],and the initial capacity activation process can be attributed to the bulk-nanocrystalline evolution during cycling.For β-MnO2@GO,at a current rate of 1C,the discharge capacity first increases to~ 278.6 mAh g-1in 50 cycles and then reduces slowly to~ 236.6 mAh g-1in 200 cycles.Furthermore,at a current rate of 4C,the discharge capacity first increases to~ 166.9 mAh g-1in 220 cycles and then reduces slowly to~ 129.6 mAh g-1in 2000 cycles,with nearly no capacity fading as compared with the initial discharge capacity (~ 106.7 mAh g-1).The capacity,rate,and cycling performances of β-MnO2@GO are among the best reported manganese oxides (Table S1).Therefore,the combination of VOand GO wrapping on β-MnO2not only enhances the charge/discharge kinetics for superior rate performances,but also improves the cycling stability of the electrode.

    Fig.2 a,b Comparison of rate performances and the galvanostatic charge/discharge (GCD) curves at the second cycle (at current of 0.1C) of β-MnO2 and β-MnO2@GO electrodes.c GCD curves of β-MnO2@GO electrodes at various rate currents.Cycling performances of β-MnO2 and β-MnO2@GO electrodes at the rate currents of e 1C and f 4C

    3.3 Charge Storage Mechanism

    Insights into the charge storage mechanism is highly significant to understand the enhanced electrochemical performances of β-MnO2@GO.Herein,XRD,SEM,TEM,and XPS are comprehensively applied to reveal the charge storage mechanism and the correlated structural evolution of β-MnO2@GO upon cycles.Figure 3a shows the GCD curves of β-MnO2@GO electrode in the initial two cycles(at current rate of 0.1C),with the correlated XRD patterns at selected states (from point #A to #J) given in Fig.3b.It can be seen that the (110),(101),(211) peaks of β-MnO2@GO located at 28.62°,37.28°,56.60° shift negligibly upon discharge/charge processes.After discharge (i.e.,at point#B in the first cycle,and point #H in the second cycle),two diffraction peaks at 16.35° and 33.95° emerge,corresponding well to the monoclinic MnOOH (orthorhombic,Pnma(62),PDF #88-0648),a typical product of proton conversion in MnO2[40,41].Meanwhile,zinc sulfate hydroxide hydrate by-product (Zn4(OH)6·ZnSO4·xH2O,abbreviated as“ZSH,” PDF #44-0673) is generated upon discharge,featuring a set of strong diffraction peaks located at 8.12°,15.08°,21.56°,and 24.57°,which is a critical evidence for proton intercalation into the lattice framework of MnO2[20].The presence of ZSH on the electrode can be further confirmed by the morphology evolutions of β-MnO2@GO electrodes,(Figs.3c,S7),and the detailed analysis for the morphology evolutions is shown in Supporting Information.

    As reported previously,for β-MnO2,protons rather than Zn2+ions tend to intercalate into the [1 × 1] tunnel framework,owing to the large ion radius and high charge density of the divalent Zn2+ions [24].Hence,the charge storage in β-MnO2@GO is likely to be dominated by the proton intercalation/conversion reactions.When the amount of intercalated proton in surface area exceeds a threshold,it converts to the orthorhombic MnOOH,which explains the co-existence of diffraction patterns of MnOOH (surface area) and protonated β-HxMnO2(internal area) phases [27]upon discharge in Fig.3b.Furthermore,some weak peaks locating at 32.97° and 58.70° are observed upon discharge in the second cycle,which is indexed to the ZnMn2O4phase (hetaerolite,141/amd,PDF No.24-1133) [3,42].HRTEM is also applied to reveal the lattice structures of β-HxMnO2,MnOOH,and ZnMn2O4phases in the discharged electrode,as shown in Fig.3d-g.The nanorod morphology of β-MnO2@GO maintains well upon discharge.We note that the internal part (region I) remains the pristine crystal lattice of β-MnO2(Fig.3e),while the surface parts (i.e.,in region II and III) show a different scenario.The magnified HRTEM images and the correlated diffraction patterns in region II and III (Fig.3f,g)show the lattice fringes corresponding to (200) plane of MnOOH and (103) plane of ZnMn2O4,respectively.The detailed analyses of diffraction patterns from regions I to III are illustrated in Fig.S8.

    Fig.3 a Galvanostatic charge/discharge curves at 0.1C in the initial two cycles,and b,c XRD patterns and SEM morphologies of β-MnO2@GO electrode at pristine,points #H and #J.d-g TEM and HRTEM images of β-MnO2@GO at fully discharged state in the first cycle.h,i XPS analyses of O 1s and Zn 2p spectra at selected points.Scale bars in c are~ 2 μm

    The proton storage behavior in β-MnO2@GO can be further confirmed by XPS analyses.Before the XPS tests,the ZSH on electrode is removed by dilute acid to eliminate the influence of by-products.Figure 3h shows the evolution of O 1sspectra in initial two cycles,where the peaks near 531.9 eV (referring to Mn-O-H bonds on [MnO6] octahedron units) increase upon discharge and decrease upon charge,which is correlated with the regular variation in Mn valence (Fig.S9).Accompanying with the proton insertion/extraction processes,the inevitable Mn3+disproportionation occurs upon discharge.As a consequence,some Mn2+ions dissolve and migrate into the electrolyte,resulting in Mn vacancies on the surface of β-MnO2.In the subsequent discharge process,Zn2+ions can easily insert into the defective structure and give rise to the transformation into ZnxMn2O4(x< 1) spinel phase in the surface region.

    Figure 3i shows the evolution of Zn 2pspectra in the initial two cycles.It can be seen that the Zn 2ppeaks become obvious starting from the second discharge process (since point #F),indicating that Zn2+cannot insert into the lattice framework of β-MnO2until there are some Mn vacancies generated after the first discharge process.The Zn2+ions in ZnxMn2O4are largely unextractable,demonstrating a low reversibility of Zn2+insertion/extraction.Similar charge storage behavior in β-MnO2is also characterized in Figs.S10-S12.Moreover,after long-term cycles,the proton storage reactions still dominate the charge storage of β-MnO2@GO electrode (Figs.S13-S15,Tables S2,S3) despite such structural evolution. VOand SC will significantly influence the proton storage behavior and ZnxMn2O4formation process,which will be discussed in the following part.

    3.4 Superior Reaction Kinetics

    As displayed in Fig.2a,the boosted rate performance is mainly attributed to the incorporation of VOin β-MnO2@GO.Figure 4a shows the calculated electron density of states of β-MnO2and β-MnO2+VOby DFT calculations.The pristine β-MnO2has a bandgap of~ 0.25 eV,while a lower value of~ 0.12 eV is obtained after introducing a VOin the supercell,indicating an enhanced electronic conductivity of β-MnO2+VO.Consistent with the above result,the β-MnO2@GO electrode presents much lower charge transfer impedance of~ 365.3 Ω cm2when compared with that of the β-MnO2electrode (~ 604.3 Ω cm2).The galvanostatic intermittent titration technique (GITT) measurements are further applied to illustrate the proton insertion kinetics (Fig.4c,d),and the detailed calculation processes of diffusion coefficients are illustrated in SI.The β-MnO2@GO electrode shows average diffusion coefficients of~ 1.13 × 10-11cm2s-1in region I (from 1.8 to 1.35 V) and~ 4.00 × 10-14cm2s-1in region II (from 1.35 to 1.05 V),which are consistently higher than that of β-MnO2electrode (~ 4.25 × 10-12cm2s-1in region I and~ 2.57 × 10-14cm2s-1in region II).

    Fig.4 a Calculated electron density of states of β-MnO2 with and without VO.Energies are referenced to the Fermi level.b EIS spectra of electrodes with β-MnO2 and β-MnO2@GO as active materials.c,d GITT curves and calculated diffusion coefficients

    3.5 Enhanced Cycling Stability

    As illustrated in Fig.2d,e,the GO wrapping can dramatically enhance the cycling stability.In this part,the mechanism of such enhancement is comprehensively investigated.DFT calculations are applied to reveal the interaction between β-MnO2and GO.In the absence of an ether oxygen on GO,the graphene layer is weakly bound to the β-MnO2surfaces via van der Waals forces,with adsorption energies ranging from 0.21 to 0.44 eV (Fig.S16).Surface VOof β-MnO2cannot contribute to sufficiently strong interaction.However,when there exist surface VOand an ether oxygen in the vicinity,chemical bonding is established featuring Mn-O-C configuration,which pushes the adsorption energy to as high as 0.95-1.52 eV (Fig.5a).It can be drawn that VOin β-MnO2and ether oxygen on GO work in synergy to achieve an intimate self-assembled wrapping of GO on β-MnO2,which provides a direct physical barrier rendering the Mn ions tightly confined beneath the surfaces even at low valence states.

    Figure 5 b shows the structure evolution of the β-MnO2electrodes.During cycling,the characteristic peaks of β-MnO2at 28.7° and 37.5° decrease gradually and disappear after 50 cycles.Meanwhile,the characteristic peaks of ZnMn2O4at 18.7° and 36.3° emerge and increase gradually upon cycling.These results indicate a progressive structure evolution from bulk β-MnO2to ZnMn2O4spinel.Figure 5c,d shows the TEM/HRTEM images and correlated diffraction pattern of the active material in β-MnO2after 200 cycles.We observe a severe degradation on the structural integrity of β-MnO2,and the active material has completely converted into a bulk (or long-range-ordered) ZnxMn2O4spinel (x=1.000,from ICP result),as confirmed by the clear lattice fringe of (101) plane,as well as the apparent diffraction spots representing the (101),(211),and (312)plane (diffraction pattern shown in the inset of Fig.5d).The TEM EDS mapping in Fig.S17 further indicates the uniform distribution of Zn,O,and Mn elements,substantiating the generation of ZnMn2O4spinel after long-term cycling.

    Fig.5 a DFT calculated binding configuration and adsorption energies (Ea) of GO on β-MnO2 (110),(101),(100),and (001) terraces with a surface VO.b XRD patterns of β-MnO2 electrodes of pristine and at charged state after 50,100,150,and 200 cycles at current of 1C.c,d TEM morphologies of active material in β-MnO2 electrode after 200 cycles at current of 1C,showing a degradation on structural integrity,and the corresponding HRTEM images (inset,diffraction pattern of ZnMn2O4 spinel).e XRD patterns of β-MnO2@GO electrodes of pristine and at charged state after 50,100,150,and 200 cycles at current of 1C.f,g TEM morphologies of active material in β- MnO2@GO electrode after 200 cycles at current of 1C,showing a well-maintained nanorod morphology,and the corresponding HRTEM images (inset,diffraction rings showing (211) and (101) planes of nanocrystalline ZnxMn2O4 spinel)

    For β-MnO2@GO,the structural evolution is different from that of the β-MnO2,as illustrated in Fig.5e.The characteristic peaks of β-MnO2@GO retain well after 100 cycles,demonstrating the beneficial effect of GO wrapping on stabilizing the pristine lattice framework.The relative intensities of the characteristic peaks of ZnMn2O4in β-MnO2@GO electrode are much lower than that in β-MnO2electrode,indicating that GO wrapping can effectively inhibit ZnMn2O4accumulation upon long-term cycling.The nanorod morphology of β-MnO2@GO is well preserved even after 200 cycles (Fig.5f),showing an enhanced structural integrity.Figure 5g shows the HRTEM morphologies and correlated diffraction patterns of the active material,which shows vague lattice fringes referring to the (101) and(211) planes of ZnxMn2O4(x=0.846,from ICP result) spinel with lattice spacing of~ 4.90 ? and~ 2.48 ?,respectively.The correlated diffraction pattern shows two diffraction rings(inset in Fig.5g),indicating the nanocrystalline (or shortterm ordered) feature that favors proton intercalation/conversion reactions.EDS mapping results show a uniformly distributed Zn,O,and Mn elements in the active material of β-MnO2@GO electrode after 200 cycles (Fig.S18),confirming the generation of nanocrystalline ZnMn2O4.

    Overall,the combinatorial incorporation of VOand SC in β-MnO2could help in achieving better electrochemical performance on the following mechanistic aspects:(1) both VOand GO wrapping could facilitate electron transport;(2)intimate adhesion of GO on the defective surface could pose barrier to the dissolution of Mn ions;(3) combination of VOand GO wrapping can retard the ZnxMn2O4accumulation and regulate the structural evolution.

    4 Conclusions

    In this work,the concurrent application of both defect engineering and interfacial optimization to a manganese oxide electrode for AZIBs is for the first time demonstrated.Oxygen vacancies are spontaneously introduced into β-MnO2during its synthesis in the presence of GO that eventually builds a coating layer on the active material.For the as-prepared oxygen-deficient β-MnO2@GO cathode,the successful suppression of Mn dissolution during electrochemical cycling is made possible,along with an apparent enhancement in charge/discharge kinetics.This electrode delivers a capacity of~ 129.6 mAh g-1even after 2000 cycles at a current rate of 4C,which is much superior than that of pristine β-MnO2electrode.The excellent cycle stability is rooted in the strong binding between the surface VOand ether oxygen on GO,as well as the regulated structural evolution into the nanocrystalline ZnxMn2O4phase.The results in this work highlight the advantages of integrating multiple strategies in the design of AZIB electrodes via bottom-up synthetic approaches,which will cast light on the feasibility of AZIBs in meeting the high-rate and long-life requirements for large-scale energy storage applications.

    AcknowledgementsThis work is financially supported by the Stable Support Funding for Universities in Shenzhen (Nos.GXWD20201231165807007-20200807111854001).

    Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License,which permits use,sharing,adaptation,distribution and reproduction in any medium or format,as long as you give appropriate credit to the original author(s) and the source,provide a link to the Creative Commons licence,and indicate if changes were made.The images or other third party material in this article are included in the article’s Creative Commons licence,unless indicated otherwise in a credit line to the material.If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use,you will need to obtain permission directly from the copyright holder.To view a copy of this licence,visit http:// creat iveco mmons.org/ licen ses/ by/4.0/.

    Supplementary InformationThe online version contains supplementary material available at https:// doi.org/ 10.1007/s40820-021-00691-7.

    精品久久久久久,| 国产男人的电影天堂91| 一级av片app| 精品久久久久久久久亚洲 | av天堂中文字幕网| 99久久精品国产国产毛片| 国产乱人伦免费视频| 国产高清有码在线观看视频| 大型黄色视频在线免费观看| 亚洲av电影不卡..在线观看| 亚洲 国产 在线| 免费人成视频x8x8入口观看| 日韩欧美国产在线观看| 久久久久性生活片| 亚洲一区高清亚洲精品| 久99久视频精品免费| 淫秽高清视频在线观看| 精品久久久久久久久久久久久| 色综合亚洲欧美另类图片| 一卡2卡三卡四卡精品乱码亚洲| 一级毛片久久久久久久久女| 能在线免费观看的黄片| 欧洲精品卡2卡3卡4卡5卡区| 九九爱精品视频在线观看| 禁无遮挡网站| 我要看日韩黄色一级片| 亚洲国产欧洲综合997久久,| 成人国产麻豆网| 国产一区二区激情短视频| 欧美性感艳星| 久久亚洲精品不卡| 黄色一级大片看看| 亚洲在线观看片| 熟女人妻精品中文字幕| 琪琪午夜伦伦电影理论片6080| 国产高清激情床上av| 99久久精品热视频| 久久亚洲真实| 99热这里只有精品一区| 欧美日韩瑟瑟在线播放| 亚洲成人中文字幕在线播放| 狂野欧美激情性xxxx在线观看| 极品教师在线免费播放| 俄罗斯特黄特色一大片| 色吧在线观看| 精品人妻偷拍中文字幕| 欧美日韩瑟瑟在线播放| 久久久久久久久久成人| 别揉我奶头 嗯啊视频| 特大巨黑吊av在线直播| 性插视频无遮挡在线免费观看| 国产精品精品国产色婷婷| 精品午夜福利在线看| 大型黄色视频在线免费观看| 搞女人的毛片| 黄色欧美视频在线观看| 欧美色视频一区免费| 国产一区二区在线av高清观看| 91午夜精品亚洲一区二区三区 | 欧美日本亚洲视频在线播放| 中文字幕高清在线视频| 熟女人妻精品中文字幕| 国产精品自产拍在线观看55亚洲| 久久久久久久久大av| 日韩中文字幕欧美一区二区| 国产黄片美女视频| 国产毛片a区久久久久| 伦理电影大哥的女人| 亚洲欧美日韩高清在线视频| 国产中年淑女户外野战色| 禁无遮挡网站| 日本 欧美在线| 亚洲黑人精品在线| 亚洲av第一区精品v没综合| 色吧在线观看| 在线免费观看的www视频| 99久久中文字幕三级久久日本| 国产一区二区亚洲精品在线观看| 亚洲av美国av| 91久久精品国产一区二区三区| 日韩强制内射视频| 狂野欧美激情性xxxx在线观看| 美女xxoo啪啪120秒动态图| 91久久精品国产一区二区成人| 国产私拍福利视频在线观看| 欧美日韩精品成人综合77777| 久久国产乱子免费精品| 亚洲精品成人久久久久久| 日本五十路高清| 色吧在线观看| 欧美成人性av电影在线观看| 嫩草影院精品99| 国产精品爽爽va在线观看网站| 久久久久久国产a免费观看| 亚洲精品国产成人久久av| a在线观看视频网站| 亚洲天堂国产精品一区在线| 夜夜看夜夜爽夜夜摸| 久久久久久久久大av| 亚洲欧美清纯卡通| 可以在线观看毛片的网站| 在线观看免费视频日本深夜| 久久香蕉精品热| 别揉我奶头 嗯啊视频| 国产精品自产拍在线观看55亚洲| 成人特级黄色片久久久久久久| 午夜激情福利司机影院| 免费搜索国产男女视频| 久久久久久伊人网av| 在线a可以看的网站| 国产aⅴ精品一区二区三区波| 精品国内亚洲2022精品成人| 国产久久久一区二区三区| 麻豆精品久久久久久蜜桃| 亚洲精品日韩av片在线观看| 久久久久免费精品人妻一区二区| 亚洲精华国产精华精| 99国产极品粉嫩在线观看| 老司机深夜福利视频在线观看| 99热这里只有是精品在线观看| 久久天躁狠狠躁夜夜2o2o| 亚洲欧美日韩高清专用| 国内精品久久久久久久电影| 中文字幕人妻熟人妻熟丝袜美| 亚洲中文日韩欧美视频| 亚洲自拍偷在线| 琪琪午夜伦伦电影理论片6080| 成人无遮挡网站| 床上黄色一级片| 亚洲av免费在线观看| 亚洲18禁久久av| 国产精品国产三级国产av玫瑰| 久久亚洲真实| 亚洲在线自拍视频| 大型黄色视频在线免费观看| 精品免费久久久久久久清纯| 亚洲图色成人| 免费观看在线日韩| 国产精品日韩av在线免费观看| 国产成人影院久久av| 夜夜夜夜夜久久久久| 桃红色精品国产亚洲av| 欧美激情在线99| 亚洲va在线va天堂va国产| 日本一二三区视频观看| 色尼玛亚洲综合影院| 欧美区成人在线视频| 精品午夜福利在线看| 无人区码免费观看不卡| 久久久久国产精品人妻aⅴ院| 午夜a级毛片| 69av精品久久久久久| 乱系列少妇在线播放| 最近最新免费中文字幕在线| 欧美成人a在线观看| 亚洲人成网站在线播放欧美日韩| 国产高清不卡午夜福利| 国内精品美女久久久久久| 日本-黄色视频高清免费观看| 不卡一级毛片| 久久热精品热| 久久久久久九九精品二区国产| 亚洲 国产 在线| 成人一区二区视频在线观看| 尾随美女入室| 免费人成在线观看视频色| 少妇的逼水好多| 欧美潮喷喷水| 联通29元200g的流量卡| 麻豆久久精品国产亚洲av| 老熟妇乱子伦视频在线观看| 老熟妇乱子伦视频在线观看| 日韩中文字幕欧美一区二区| 两个人的视频大全免费| 精华霜和精华液先用哪个| a级毛片a级免费在线| 给我免费播放毛片高清在线观看| 赤兔流量卡办理| 国产真实伦视频高清在线观看 | av在线亚洲专区| 久久国产乱子免费精品| 97热精品久久久久久| 久久精品国产亚洲av天美| 国产毛片a区久久久久| av在线蜜桃| 精品福利观看| 在线a可以看的网站| 欧美一区二区精品小视频在线| 国产三级中文精品| 搡女人真爽免费视频火全软件 | 亚洲最大成人手机在线| 91在线观看av| 91麻豆精品激情在线观看国产| 熟女人妻精品中文字幕| 亚洲av五月六月丁香网| 国产精品三级大全| aaaaa片日本免费| 亚洲人成网站高清观看| 91精品国产九色| 特大巨黑吊av在线直播| 校园春色视频在线观看| 亚洲久久久久久中文字幕| 久久精品国产亚洲av天美| 久久精品国产鲁丝片午夜精品 | 国产三级中文精品| 成年女人永久免费观看视频| 国产精品久久视频播放| 国产精品自产拍在线观看55亚洲| 性色avwww在线观看| 老司机午夜福利在线观看视频| 国产在视频线在精品| 久久久久精品国产欧美久久久| 老司机深夜福利视频在线观看| 在线观看66精品国产| 三级男女做爰猛烈吃奶摸视频| av在线观看视频网站免费| 免费看a级黄色片| 免费不卡的大黄色大毛片视频在线观看 | 制服丝袜大香蕉在线| 亚洲狠狠婷婷综合久久图片| 午夜免费激情av| 欧美成人a在线观看| 啪啪无遮挡十八禁网站| 免费看av在线观看网站| 久久99热6这里只有精品| 国产精品一区www在线观看 | 99久久成人亚洲精品观看| 亚洲在线自拍视频| 日日摸夜夜添夜夜添小说| 亚洲性久久影院| 中国美白少妇内射xxxbb| 成年版毛片免费区| 欧美绝顶高潮抽搐喷水| 亚洲国产高清在线一区二区三| 又粗又爽又猛毛片免费看| 日韩精品青青久久久久久| 亚洲欧美日韩无卡精品| 久久精品综合一区二区三区| 亚洲内射少妇av| 国产精品精品国产色婷婷| 国产精品久久电影中文字幕| 永久网站在线| 国产精品一及| 一个人免费在线观看电影| 99热网站在线观看| 久久婷婷人人爽人人干人人爱| 免费不卡的大黄色大毛片视频在线观看 | 久久久色成人| 国产单亲对白刺激| 国产在线精品亚洲第一网站| 91在线观看av| 国产精品电影一区二区三区| 国产精品久久久久久久久免| 亚洲久久久久久中文字幕| 小蜜桃在线观看免费完整版高清| 国产成人a区在线观看| 国产黄片美女视频| 亚洲专区国产一区二区| 熟妇人妻久久中文字幕3abv| 午夜精品一区二区三区免费看| 久久精品国产亚洲av天美| 免费看光身美女| 成年女人看的毛片在线观看| 香蕉av资源在线| 高清毛片免费观看视频网站| 精品久久久久久久人妻蜜臀av| 欧美一区二区精品小视频在线| 丰满人妻一区二区三区视频av| 哪里可以看免费的av片| 国产成年人精品一区二区| 亚洲熟妇熟女久久| 亚州av有码| 国产黄色小视频在线观看| 狂野欧美白嫩少妇大欣赏| 日本熟妇午夜| 日韩欧美精品v在线| 亚洲黑人精品在线| 国产人妻一区二区三区在| 日韩欧美在线二视频| 日日夜夜操网爽| 国产一区二区三区视频了| 国产高清视频在线观看网站| 久久久久久久精品吃奶| 国内久久婷婷六月综合欲色啪| 欧美潮喷喷水| av.在线天堂| 香蕉av资源在线| 嫩草影院入口| 亚洲男人的天堂狠狠| 国产极品精品免费视频能看的| 日韩欧美三级三区| 毛片女人毛片| 简卡轻食公司| av黄色大香蕉| 国产黄片美女视频| 婷婷色综合大香蕉| 中文字幕熟女人妻在线| 久久久久性生活片| 真实男女啪啪啪动态图| 黄色日韩在线| 一级a爱片免费观看的视频| 亚洲无线在线观看| 三级毛片av免费| 成人一区二区视频在线观看| 精品一区二区三区人妻视频| 一进一出好大好爽视频| 三级毛片av免费| 色哟哟哟哟哟哟| 一边摸一边抽搐一进一小说| 又黄又爽又免费观看的视频| 国产黄a三级三级三级人| 熟女人妻精品中文字幕| 麻豆av噜噜一区二区三区| 波多野结衣巨乳人妻| 亚洲成人中文字幕在线播放| 九九久久精品国产亚洲av麻豆| 最近中文字幕高清免费大全6 | x7x7x7水蜜桃| 色5月婷婷丁香| 亚洲国产高清在线一区二区三| 国产男人的电影天堂91| 精品久久久久久久末码| 国产又黄又爽又无遮挡在线| 国产精品国产高清国产av| 国产精品免费一区二区三区在线| 蜜桃亚洲精品一区二区三区| 无遮挡黄片免费观看| 午夜激情福利司机影院| av.在线天堂| 久久久精品欧美日韩精品| 欧美色欧美亚洲另类二区| 级片在线观看| av福利片在线观看| 日韩人妻高清精品专区| 久久久久国内视频| 国产黄片美女视频| 国产精品久久久久久av不卡| 国产白丝娇喘喷水9色精品| 观看美女的网站| 亚洲成av人片在线播放无| 久久人人爽人人爽人人片va| 国产精品一区二区免费欧美| eeuss影院久久| 午夜激情欧美在线| 亚洲第一区二区三区不卡| 黄色视频,在线免费观看| 国产中年淑女户外野战色| 亚洲av一区综合| 亚洲成人久久爱视频| 九色国产91popny在线| 又紧又爽又黄一区二区| 88av欧美| 久99久视频精品免费| 亚洲三级黄色毛片| 成人毛片a级毛片在线播放| 最近视频中文字幕2019在线8| 99久国产av精品| 亚洲欧美日韩东京热| 国产不卡一卡二| 成人二区视频| 婷婷色综合大香蕉| 免费看日本二区| 午夜福利18| 亚洲人成伊人成综合网2020| 日本五十路高清| 韩国av在线不卡| 日韩人妻高清精品专区| 美女 人体艺术 gogo| 成人特级黄色片久久久久久久| 色哟哟·www| 精品人妻熟女av久视频| 亚洲天堂国产精品一区在线| 色综合色国产| 丰满的人妻完整版| 国产人妻一区二区三区在| 天堂网av新在线| 自拍偷自拍亚洲精品老妇| 亚洲成人久久爱视频| 国产爱豆传媒在线观看| 非洲黑人性xxxx精品又粗又长| 永久网站在线| 99精品久久久久人妻精品| 日韩欧美 国产精品| 久久久国产成人免费| 成人av一区二区三区在线看| 一区福利在线观看| 99九九线精品视频在线观看视频| 精品久久久久久久久久久久久| 成人毛片a级毛片在线播放| 国产精品,欧美在线| 日韩欧美免费精品| 亚洲人与动物交配视频| 尾随美女入室| 波多野结衣高清无吗| 我要搜黄色片| 久久久久精品国产欧美久久久| 亚洲专区中文字幕在线| 99热6这里只有精品| 亚洲专区中文字幕在线| 夜夜夜夜夜久久久久| 日本与韩国留学比较| 日本撒尿小便嘘嘘汇集6| 又粗又爽又猛毛片免费看| 在线免费观看不下载黄p国产 | 国产精品久久久久久av不卡| 中文亚洲av片在线观看爽| 99久久精品国产国产毛片| 国产探花极品一区二区| 99久久精品热视频| 午夜老司机福利剧场| 男女那种视频在线观看| 国产亚洲精品久久久久久毛片| 久久精品夜夜夜夜夜久久蜜豆| 亚洲va在线va天堂va国产| 波多野结衣巨乳人妻| 日韩中字成人| 高清在线国产一区| 波多野结衣高清作品| 日日夜夜操网爽| 欧美性猛交黑人性爽| 国产精品不卡视频一区二区| 狠狠狠狠99中文字幕| 人妻制服诱惑在线中文字幕| 最近最新免费中文字幕在线| 欧美日韩黄片免| 久久国内精品自在自线图片| 亚洲av二区三区四区| 国产一区二区在线av高清观看| 91久久精品国产一区二区成人| 中文字幕免费在线视频6| 精品福利观看| 女生性感内裤真人,穿戴方法视频| 精品99又大又爽又粗少妇毛片 | 午夜亚洲福利在线播放| 欧美日韩瑟瑟在线播放| 精品久久久久久久末码| 不卡一级毛片| 国产麻豆成人av免费视频| 国内精品美女久久久久久| 能在线免费观看的黄片| 亚洲自拍偷在线| 中文字幕免费在线视频6| 国产不卡一卡二| 干丝袜人妻中文字幕| 22中文网久久字幕| 两个人视频免费观看高清| 色尼玛亚洲综合影院| 久久人人精品亚洲av| 日本欧美国产在线视频| 欧美高清成人免费视频www| 他把我摸到了高潮在线观看| 蜜桃亚洲精品一区二区三区| 国产精品久久久久久久电影| 免费人成视频x8x8入口观看| 91精品国产九色| 中文字幕高清在线视频| 欧美黑人欧美精品刺激| 亚洲在线自拍视频| 深夜精品福利| 国产色爽女视频免费观看| 国产蜜桃级精品一区二区三区| 男女边吃奶边做爰视频| 99在线人妻在线中文字幕| 成人鲁丝片一二三区免费| 亚洲中文字幕日韩| a级毛片免费高清观看在线播放| 非洲黑人性xxxx精品又粗又长| 天天一区二区日本电影三级| 一区福利在线观看| 久久久色成人| 国产精品99久久久久久久久| 日韩欧美三级三区| 国产单亲对白刺激| 国产女主播在线喷水免费视频网站 | 一进一出抽搐动态| 在线观看av片永久免费下载| 99riav亚洲国产免费| 欧美日韩综合久久久久久 | 久久久久久久亚洲中文字幕| 日韩欧美一区二区三区在线观看| 中出人妻视频一区二区| 久久人人精品亚洲av| 97超级碰碰碰精品色视频在线观看| 嫩草影视91久久| 99精品久久久久人妻精品| 精品一区二区三区视频在线观看免费| 一区二区三区免费毛片| 波野结衣二区三区在线| 69人妻影院| 两性午夜刺激爽爽歪歪视频在线观看| 国产一区二区亚洲精品在线观看| 日韩大尺度精品在线看网址| 国产国拍精品亚洲av在线观看| av在线老鸭窝| 国产精品久久久久久精品电影| 又爽又黄a免费视频| 久久精品国产自在天天线| 成人鲁丝片一二三区免费| 最好的美女福利视频网| 国产真实乱freesex| 国产大屁股一区二区在线视频| 久久久久国产精品人妻aⅴ院| 色在线成人网| 国产69精品久久久久777片| 午夜福利在线观看免费完整高清在 | 国内毛片毛片毛片毛片毛片| 中文字幕久久专区| 亚洲乱码一区二区免费版| 日本黄色片子视频| 国产一区二区三区视频了| 99久久精品一区二区三区| 日本五十路高清| 91久久精品国产一区二区成人| 国产色婷婷99| 国产高清视频在线观看网站| 又黄又爽又刺激的免费视频.| 男人舔女人下体高潮全视频| 亚洲av免费高清在线观看| 日本-黄色视频高清免费观看| 欧美性感艳星| 在线观看舔阴道视频| 国产精品一区二区性色av| 久久久久九九精品影院| 亚洲av成人精品一区久久| 国产精品,欧美在线| 中文字幕人妻熟人妻熟丝袜美| 亚洲成人中文字幕在线播放| 久久久国产成人免费| 国产精品一区二区性色av| 69av精品久久久久久| 久久久久久久久中文| 久久久久久国产a免费观看| 黄色欧美视频在线观看| 99九九线精品视频在线观看视频| 欧美日韩综合久久久久久 | 国产精品一区二区三区四区免费观看 | 免费不卡的大黄色大毛片视频在线观看 | 在线播放国产精品三级| 日韩欧美国产一区二区入口| 国产人妻一区二区三区在| 国产一区二区三区视频了| 日本一二三区视频观看| 白带黄色成豆腐渣| 亚洲精品国产成人久久av| 免费人成在线观看视频色| 国产一区二区在线av高清观看| 成人美女网站在线观看视频| 国产真实伦视频高清在线观看 | 波多野结衣高清无吗| 国产久久久一区二区三区| 婷婷六月久久综合丁香| 日本一本二区三区精品| 男女边吃奶边做爰视频| 一个人看的www免费观看视频| 国产精品美女特级片免费视频播放器| 日韩精品有码人妻一区| 尤物成人国产欧美一区二区三区| 香蕉av资源在线| 亚洲在线自拍视频| 波多野结衣高清作品| 亚洲精品乱码久久久v下载方式| 日韩欧美精品v在线| x7x7x7水蜜桃| 22中文网久久字幕| aaaaa片日本免费| 欧美一区二区精品小视频在线| 亚洲国产色片| 国产精品久久久久久久电影| 18禁裸乳无遮挡免费网站照片| 久久久久久久久久成人| 女生性感内裤真人,穿戴方法视频| 国产在线男女| 女生性感内裤真人,穿戴方法视频| a级一级毛片免费在线观看| 麻豆国产97在线/欧美| 国产精品国产高清国产av| 乱系列少妇在线播放| 搡女人真爽免费视频火全软件 | 午夜视频国产福利| 成人无遮挡网站| 神马国产精品三级电影在线观看| 国产69精品久久久久777片| 国产不卡一卡二| 日韩欧美国产在线观看| 国产精品人妻久久久影院| 亚洲精品乱码久久久v下载方式| 国产精品av视频在线免费观看| 欧美另类亚洲清纯唯美| 男女做爰动态图高潮gif福利片| 国产v大片淫在线免费观看| 日韩精品有码人妻一区| 国产av一区在线观看免费| www.色视频.com| 级片在线观看| 九色成人免费人妻av| 小蜜桃在线观看免费完整版高清| 舔av片在线| 国产色爽女视频免费观看| 亚洲内射少妇av| 国内精品久久久久精免费| 18禁黄网站禁片免费观看直播| 直男gayav资源| 色综合亚洲欧美另类图片| 欧美成人免费av一区二区三区| 亚洲美女黄片视频| 欧美色视频一区免费| 91狼人影院| 日本免费a在线| 国产黄片美女视频| 成人av在线播放网站| 久久热精品热| 国产大屁股一区二区在线视频| 嫩草影院新地址| 久久精品人妻少妇| 国产 一区 欧美 日韩|