• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Oxygen-Deficient β-MnO2@Graphene Oxide Cathode for High-Rate and Long-Life Aqueous Zinc Ion Batteries

    2021-10-21 03:31:00ShouxiangDingMingzhengZhangRunzhiQinJianjunFangHengyuRenHaocongYiLeleLiuWenguangZhaoYangLiLuYaoShunningLiQingheZhaoFengPan
    Nano-Micro Letters 2021年11期

    Shouxiang Ding ,Mingzheng Zhang ,Runzhi Qin ,Jianjun Fang ,Hengyu Ren ,Haocong Yi ,Lele Liu,Wenguang Zhao,Yang Li,Lu Yao,Shunning Li,Qinghe Zhao,Feng Pan

    ABSTRACT Recent years have witnessed a booming interest in grid-scale electrochemical energy storage,where much attention has been paid to the aqueous zinc ion batteries (AZIBs).Among various cathode materials for AZIBs,manganese oxides have risen to prominence due to their high energy density and low cost.However,sluggish reaction kinetics and poor cycling stability dictate against their practical application.Herein,we demonstrate the combined use of defect engineering and interfacial optimization that can simultaneously promote rate capability and cycling stability of MnO2 cathodes.β-MnO2 with abundant oxygen vacancies (VO) and graphene oxide (GO) wrapping is synthesized,in which VO in the bulk accelerate the charge/discharge kinetics while GO on the surfaces inhibits the Mn dissolution.This electrode shows a sustained reversible capacity of~ 129.6 mAh g-1 even after 2000 cycles at a current rate of 4C,outperforming the state-of-the-art MnO2-based cathodes.The superior performance can be rationalized by the direct interaction between surface VO and the GO coating layer,as well as the regulation of structural evolution of β-MnO2 during cycling.The combinatorial design scheme in this work offers a practical pathway for obtaining high-rate and long-life cathodes for AZIBs.

    KEYWORDS Manganese oxides;Oxygen defects;Surface optimization;Aqueous zinc battery

    1 Introduction

    The worldwide transition from fossil fuels to sustainable energy sources has spawned a rising demand for more reliable and low-cost batteries in the field of large-scale energy storage [1],where safety and economic issues are more of a concern than energy density.Rechargeable aqueous zinc ion batteries (AZIBs) [2],because of their non-flammability,cost effectiveness,environmental benignity,and abundant sources,offer a promising alternative to the lithium-ion battery technology in stationary grid-connected applications.Currently,the performance of AZIBs is largely limited by available cathode materials,of which renowned examples include manganese oxides [3],vanadium oxides [4],Prussian blue analogs [5,6],and organic species [7].Among them,polymorphs of MnO2have captured particular attention due to their outstanding theoretical capacity and a preferable theoretical voltage versus Zn anode [8-12].However,the development of MnO2cathodes has been impeded by scientific challenges related to the kinetic limitations and capacity fading,which can be ascribed to the sluggish Zn2+diffusion in the cathode [13] and the irreversible phase transformation [14],respectively.To realize high-rate and longlife AZIBs,it is therefore required to formulate new design strategies for MnO2-based cathode materials.

    Toward this goal,researchers have adopted various technologies,including pre-intercalation engineering [15],defect engineering [16,17],interfacial optimization [18,19],and metal-doping [20],etc.Especially,the incorporation of oxygen vacancies (VO) is an effective route to improve the rate performance of MnO2electrodes.Previous studies have suggested that electronic conductivity can be enhanced in the presence of VO[21,22] and that the under-coordinated Mn ions will potentially afford facile transport pathways for ionic charge carriers [23-26].It is worth mentioning that a recent study of β-MnO2cathode has revealed the massive proton insertion triggered by the introduction of VOinto the bulk lattice [27].These promising aspects enabled by oxygen deficiency may,however,be tarnished by a higher susceptibility to Mn dissolution,which is likely to incur phase transitions.In this regard,surface coating (SC) can be leveraged to inhibit the Mn ions diffusing into the electrolyte.For pristine MnO2cathodes,the benefits of SC have already been demonstrated in several reports with carbon-based coating materials ranging from graphene [28,29] to polymers [30,31].Yet,the pertinent combination of VOand SC has not been explored in AZIB cathodes up to date,despite its fascinating potential to promote rate capability and cycling stability at the same time.Moreover,how such coatings interact with MnO2is rarely discussed,thus depriving researchers of a rational understanding of the role played by SC.

    In this work,we report the combinatorial use of defect engineering and interfacial optimization to boost the electrochemical performance of β-MnO2cathode.Electrode with excessive VOand graphene oxide (GO) wrapping is directly synthesized via a simple hydrothermal reaction. VOplays the vital role in facilitating the transfer of electrons and protons,while GO coating suppresses the dissolution of Mn ions.As a consequence,the oxygen-deficient β-MnO2@graphene oxide architecture exhibits high capacity,superior charge/discharge rates,and excellent cycle stability.Our work highlights that the tight binding of GO to the surfaces of β-MnO2via the interaction with VOacts in synergy with the regulated formation of spinel ZnxMn2O4to guarantee the structural integrity of the electrode during long-term cycling.

    2 Experimental Section

    2.1 Synthesis of β-MnO2@GO Nanorods

    The β-MnO2@GO nanorod was synthesized via a typical hydrothermal method.30 mL 0.6 M MnSO4,2 mL 0.5 M H2SO4,and 4 mL 1 mg mL-1GO dispersed aqueous solutions were mixed and continuously stirred for 30 min.30 mL 0.1 M KMnO4was then added into the resultant solution dropwise,after which the solution was stirred at room temperature for another 30 min and then loaded into a 100 mL Teflon-lined autoclave and maintained at 120 °C for 12 h.Finally,the obtained products were collected by the filter and were washed with deionized water and absolute ethyl alcohol for three times,respectively,and then dried at 80 ℃for 12 h.The β-MnO2counterpart was synthesized with the same method without adding GO.

    2.2 Materials Characterization

    The prepared materials were characterized by X-ray diffraction (XRD,Bruker D8 ADVANCE) with Cu Kα radiation.Scanning electron microscopy (SEM,ZEISS SUPRA55) and transmission electron microscopy (TEM,JEM-3200FS) were employed to investigate the micromorphology and microstructure.The thermogravimetric analysis (TGA) data were recorded in O2atmosphere using a 10 ℃ min-1heating rate from 30 to 700 ℃.X-ray photoelectron spectroscopy (XPS,ESCALAB 250Xi) was used to conduct the element composition and electronic structure analysis,in company with the energy-dispersive spectroscopy (EDS,Oxford X-Max 20)and Fourier transform infrared spectroscopy (FTIR).Electron paramagnetic resonance (EPR,Bruker A300-10/12) was performed to characterize the unpaired electron.

    2.3 Electrochemical Tests

    Electrochemical performance was tested in CR2032-type coin cells which were assembled in air condition.The working cathodes were fabricated by blending active materials,acetylene black (AB) and polyvinylidene fluoride (PVDF) in a weight ratio of 7:2:1 with N-methyl-2-pyrrolidone (NMP)used as a solvent to form a viscous slurry and coat onto Ti foil.The areal active loading for both the β-MnO2and β-MnO2@GO is about~ 2 mg cm-2.The as-prepared electrodes were dried in vacuum oven of about 110 ℃ for 24 h.Zinc foil in 10 mm and glass fiber membrane in 16 mm were used as the anode and separator,respectively.The electrolyte contained 3 M ZnSO4and 0.2 M MnSO4in aqueous solution.The LAND-CT2001A battery-testing instrument was conducted for cycle and rate test with assembled cells.EIS was performed on a Chi 660e electrochemical workstation with frequency range from 100 kHz to 0.1 Hz.

    2.4 First Principles Calculations

    Density functional theory (DFT) calculations were carried out using projected augmented wave pseudopotentials and the generalized gradient approximation in the form of the Perdew-Burke-Ernzerhof exchange-correlation functional modified for solids (PBEsol),as embedded in Vienna ab initio simulation package (VASP).The van der Waals interactions were treated using Grimme’s correction (DFT-D3).To deal with the localization of d electrons on Mn ions,Hubbard-corrected PBEsol+U(+J) functional was employed.More details are given in the Supporting Information.

    3 Results and Discussion

    3.1 Material Characterization

    XRD patterns of the prepared β-MnO2and β-MnO2@GO are shown in Fig.1a,which match very well with the standard β-MnO2(tetragonal,space group of P42/mnm,PDF #42-0735).This result indicates that GO wrapping does not alter the crystal structure of the β-MnO2.SEM results show the nanorod morphologies of β-MnO2and β-MnO2@GO with several micrometers in length and 200-300 nm in width (Fig.S1).The high-resolution TEM(HRTEM) confirms the adhesion of GO to the surfaces of β-MnO2(Fig.1b).Two lattice fringes of (101) and (110)planes are observed for β-MnO2@GO (Fig.1c),with interlayer spacing values of~ 2.40 and~ 3.13 ?,respectively,consistent with the XRD results in Fig.1a.Similar lattice fringe results are also observed for β-MnO2(Fig.S2).There exist some ambiguous areas in β-MnO2@GO,which can be ascribed to the formation of a large number of defects.

    EDS,FTIR,and XPS further justify the successful wrapping of GO (Fig.1b) in the β-MnO2@GO sample.Figure 1d reveals the uniform distributions of Mn,O,and trace amount of C elements.Comparison of FTIR results in Fig.1e demonstrates the characteristic peaks of C-O(~ 1432 cm-1) and C=C (~ 1576 cm-1) [32] in β-MnO2@GO.Three clear peaks located at~ 284.8,~ 286.0,and~ 288.8 eV in XPS C 1 s spectrum of β-MnO2@GO(Fig.1f) indicate the existence of C-C/C=C,C-O,and O-C=O bonds,respectively.

    The formation of VOcan be implied by the XPS O 1sspectra (Fig.1g),where the characteristic peak of VO(~ 531.2 eV) in β-MnO2@GO is substantially higher than that in β-MnO2.EPR spectra (Fig.S3) showing an apparent symmetrical signal atg=2.0 also suggest the high concentration of VO[33].The TGA curves of β-MnO2and β-MnO2@GO in O2-containing atmosphere are shown in Fig.1h.In the temperature range of 200-600 °C,the TGA curve of β-MnO2@GO rises,indicating the filling of VOby oxygen,in contrast to the β-MnO2sample where the mass change is negligible.Here,we cannot rule out the possibility of GO decomposition,which will contribute to mass loss.Due to the formation of more VO,Mn ions in β-MnO2@GO show lower valence than those in β-MnO2,as revealed by Mn 3sspectra in Fig.S4.Such a remarkable increase in VOconcentration is associated with both the low average oxidation state of Mn (+2.7) in the reactant solution,and the deoxygenation of GO during hydrothermal process,which will develop a strong tendency to extract the surface O ions of the as-produced β-MnO2so as to compensate the abundant dangling bonds on the reduced GO.The functional groups on GO may also accelerate the formation of β-MnO2,in which case the fast kinetics will potentially give rise to offset from the equilibrium state,for example,in the form of bulk VO.This scenario is similar to the cases of TiO2@GO [34] and other MnO2@GO electrodes in previous report,where the generation of VOin the transition metal oxides can be triggered during their hydrothermal growth in the presence of GO [35-37].

    Fig.1 a XRD patterns of β-MnO2 and β-MnO2@GO.b-d TEM,HRTEM morphologies,and correlated EDS mapping results of β-MnO2@GO (the insets in b and c show the presence of GO layer and the diffraction pattern,respectively).e comparison of FTIR spectra of β-MnO2 and β-MnO2@GO.f XPS peaks of C 1s and g O 1s spectra.h TGA curves of β-MnO2 and β-MnO2@GO in an O2-containing atmosphere

    3.2 Electrochemical Performance

    Coin-type cells are assembled with Zn plate as anode and aqueous 3 M ZnSO4+0.2 M MnSO4as electrolyte.The role of the pre-added Mn2+in the electrolyte is to suppress the Mn2+dissolution upon discharge processes,and the optimized Mn2+concentration in electrolyte is~ 0.2 M (Fig.S5).Figure 2a compares the rate performance of the β-MnO2and β-MnO2@GO electrodes.It can be seen that both electrodes show similar capacity activation process in the initial eight cycles at a current of 0.1C (1C=308 mA g-1),indicating that GO wrapping shows little influence on the capacity delivery of β-MnO2at low current rates.After eight cycles,the discharge capacity of β-MnO2@GO is stabilized at~ 322.6 mAh g-1.Figure 2b shows the galvanostatic charge/discharge (GCD) curves of the β-MnO2and β-MnO2@GO electrodes at a current of 0.1C in the second cycle,indicating that GO wrapping can induce an elevated discharge platform,i.e.,a smaller polarization.Figures 2c and S6 show the GCD curves of the β-MnO2@GO and β-MnO2electrodes at various current rates,respectively.The discharge capacities of β-MnO2@GO are~ 312.4,~ 290.9,~ 2 59.6,~ 211.7,~ 158.6,~ 132.5,~ 106.8,and~ 94.9 mAh g-1at current rates of 0.25,0.5,1,2,4,6,8,and 10C,respectively,which are much higher than those of β-MnO2.

    Figure 2 d,e provides the cycling performances of β-MnO2and β-MnO2@GO electrodes at current rates of 1C and 4C,respectively.It can be seen that the cycling performances follow the similar trend:The discharge capacity is activated in the initial cycles and then continuously reduces in the subsequent cycles.This kind of capacity variation is similar to other manganese oxide electrodes in previous reports [38,39],and the initial capacity activation process can be attributed to the bulk-nanocrystalline evolution during cycling.For β-MnO2@GO,at a current rate of 1C,the discharge capacity first increases to~ 278.6 mAh g-1in 50 cycles and then reduces slowly to~ 236.6 mAh g-1in 200 cycles.Furthermore,at a current rate of 4C,the discharge capacity first increases to~ 166.9 mAh g-1in 220 cycles and then reduces slowly to~ 129.6 mAh g-1in 2000 cycles,with nearly no capacity fading as compared with the initial discharge capacity (~ 106.7 mAh g-1).The capacity,rate,and cycling performances of β-MnO2@GO are among the best reported manganese oxides (Table S1).Therefore,the combination of VOand GO wrapping on β-MnO2not only enhances the charge/discharge kinetics for superior rate performances,but also improves the cycling stability of the electrode.

    Fig.2 a,b Comparison of rate performances and the galvanostatic charge/discharge (GCD) curves at the second cycle (at current of 0.1C) of β-MnO2 and β-MnO2@GO electrodes.c GCD curves of β-MnO2@GO electrodes at various rate currents.Cycling performances of β-MnO2 and β-MnO2@GO electrodes at the rate currents of e 1C and f 4C

    3.3 Charge Storage Mechanism

    Insights into the charge storage mechanism is highly significant to understand the enhanced electrochemical performances of β-MnO2@GO.Herein,XRD,SEM,TEM,and XPS are comprehensively applied to reveal the charge storage mechanism and the correlated structural evolution of β-MnO2@GO upon cycles.Figure 3a shows the GCD curves of β-MnO2@GO electrode in the initial two cycles(at current rate of 0.1C),with the correlated XRD patterns at selected states (from point #A to #J) given in Fig.3b.It can be seen that the (110),(101),(211) peaks of β-MnO2@GO located at 28.62°,37.28°,56.60° shift negligibly upon discharge/charge processes.After discharge (i.e.,at point#B in the first cycle,and point #H in the second cycle),two diffraction peaks at 16.35° and 33.95° emerge,corresponding well to the monoclinic MnOOH (orthorhombic,Pnma(62),PDF #88-0648),a typical product of proton conversion in MnO2[40,41].Meanwhile,zinc sulfate hydroxide hydrate by-product (Zn4(OH)6·ZnSO4·xH2O,abbreviated as“ZSH,” PDF #44-0673) is generated upon discharge,featuring a set of strong diffraction peaks located at 8.12°,15.08°,21.56°,and 24.57°,which is a critical evidence for proton intercalation into the lattice framework of MnO2[20].The presence of ZSH on the electrode can be further confirmed by the morphology evolutions of β-MnO2@GO electrodes,(Figs.3c,S7),and the detailed analysis for the morphology evolutions is shown in Supporting Information.

    As reported previously,for β-MnO2,protons rather than Zn2+ions tend to intercalate into the [1 × 1] tunnel framework,owing to the large ion radius and high charge density of the divalent Zn2+ions [24].Hence,the charge storage in β-MnO2@GO is likely to be dominated by the proton intercalation/conversion reactions.When the amount of intercalated proton in surface area exceeds a threshold,it converts to the orthorhombic MnOOH,which explains the co-existence of diffraction patterns of MnOOH (surface area) and protonated β-HxMnO2(internal area) phases [27]upon discharge in Fig.3b.Furthermore,some weak peaks locating at 32.97° and 58.70° are observed upon discharge in the second cycle,which is indexed to the ZnMn2O4phase (hetaerolite,141/amd,PDF No.24-1133) [3,42].HRTEM is also applied to reveal the lattice structures of β-HxMnO2,MnOOH,and ZnMn2O4phases in the discharged electrode,as shown in Fig.3d-g.The nanorod morphology of β-MnO2@GO maintains well upon discharge.We note that the internal part (region I) remains the pristine crystal lattice of β-MnO2(Fig.3e),while the surface parts (i.e.,in region II and III) show a different scenario.The magnified HRTEM images and the correlated diffraction patterns in region II and III (Fig.3f,g)show the lattice fringes corresponding to (200) plane of MnOOH and (103) plane of ZnMn2O4,respectively.The detailed analyses of diffraction patterns from regions I to III are illustrated in Fig.S8.

    Fig.3 a Galvanostatic charge/discharge curves at 0.1C in the initial two cycles,and b,c XRD patterns and SEM morphologies of β-MnO2@GO electrode at pristine,points #H and #J.d-g TEM and HRTEM images of β-MnO2@GO at fully discharged state in the first cycle.h,i XPS analyses of O 1s and Zn 2p spectra at selected points.Scale bars in c are~ 2 μm

    The proton storage behavior in β-MnO2@GO can be further confirmed by XPS analyses.Before the XPS tests,the ZSH on electrode is removed by dilute acid to eliminate the influence of by-products.Figure 3h shows the evolution of O 1sspectra in initial two cycles,where the peaks near 531.9 eV (referring to Mn-O-H bonds on [MnO6] octahedron units) increase upon discharge and decrease upon charge,which is correlated with the regular variation in Mn valence (Fig.S9).Accompanying with the proton insertion/extraction processes,the inevitable Mn3+disproportionation occurs upon discharge.As a consequence,some Mn2+ions dissolve and migrate into the electrolyte,resulting in Mn vacancies on the surface of β-MnO2.In the subsequent discharge process,Zn2+ions can easily insert into the defective structure and give rise to the transformation into ZnxMn2O4(x< 1) spinel phase in the surface region.

    Figure 3i shows the evolution of Zn 2pspectra in the initial two cycles.It can be seen that the Zn 2ppeaks become obvious starting from the second discharge process (since point #F),indicating that Zn2+cannot insert into the lattice framework of β-MnO2until there are some Mn vacancies generated after the first discharge process.The Zn2+ions in ZnxMn2O4are largely unextractable,demonstrating a low reversibility of Zn2+insertion/extraction.Similar charge storage behavior in β-MnO2is also characterized in Figs.S10-S12.Moreover,after long-term cycles,the proton storage reactions still dominate the charge storage of β-MnO2@GO electrode (Figs.S13-S15,Tables S2,S3) despite such structural evolution. VOand SC will significantly influence the proton storage behavior and ZnxMn2O4formation process,which will be discussed in the following part.

    3.4 Superior Reaction Kinetics

    As displayed in Fig.2a,the boosted rate performance is mainly attributed to the incorporation of VOin β-MnO2@GO.Figure 4a shows the calculated electron density of states of β-MnO2and β-MnO2+VOby DFT calculations.The pristine β-MnO2has a bandgap of~ 0.25 eV,while a lower value of~ 0.12 eV is obtained after introducing a VOin the supercell,indicating an enhanced electronic conductivity of β-MnO2+VO.Consistent with the above result,the β-MnO2@GO electrode presents much lower charge transfer impedance of~ 365.3 Ω cm2when compared with that of the β-MnO2electrode (~ 604.3 Ω cm2).The galvanostatic intermittent titration technique (GITT) measurements are further applied to illustrate the proton insertion kinetics (Fig.4c,d),and the detailed calculation processes of diffusion coefficients are illustrated in SI.The β-MnO2@GO electrode shows average diffusion coefficients of~ 1.13 × 10-11cm2s-1in region I (from 1.8 to 1.35 V) and~ 4.00 × 10-14cm2s-1in region II (from 1.35 to 1.05 V),which are consistently higher than that of β-MnO2electrode (~ 4.25 × 10-12cm2s-1in region I and~ 2.57 × 10-14cm2s-1in region II).

    Fig.4 a Calculated electron density of states of β-MnO2 with and without VO.Energies are referenced to the Fermi level.b EIS spectra of electrodes with β-MnO2 and β-MnO2@GO as active materials.c,d GITT curves and calculated diffusion coefficients

    3.5 Enhanced Cycling Stability

    As illustrated in Fig.2d,e,the GO wrapping can dramatically enhance the cycling stability.In this part,the mechanism of such enhancement is comprehensively investigated.DFT calculations are applied to reveal the interaction between β-MnO2and GO.In the absence of an ether oxygen on GO,the graphene layer is weakly bound to the β-MnO2surfaces via van der Waals forces,with adsorption energies ranging from 0.21 to 0.44 eV (Fig.S16).Surface VOof β-MnO2cannot contribute to sufficiently strong interaction.However,when there exist surface VOand an ether oxygen in the vicinity,chemical bonding is established featuring Mn-O-C configuration,which pushes the adsorption energy to as high as 0.95-1.52 eV (Fig.5a).It can be drawn that VOin β-MnO2and ether oxygen on GO work in synergy to achieve an intimate self-assembled wrapping of GO on β-MnO2,which provides a direct physical barrier rendering the Mn ions tightly confined beneath the surfaces even at low valence states.

    Figure 5 b shows the structure evolution of the β-MnO2electrodes.During cycling,the characteristic peaks of β-MnO2at 28.7° and 37.5° decrease gradually and disappear after 50 cycles.Meanwhile,the characteristic peaks of ZnMn2O4at 18.7° and 36.3° emerge and increase gradually upon cycling.These results indicate a progressive structure evolution from bulk β-MnO2to ZnMn2O4spinel.Figure 5c,d shows the TEM/HRTEM images and correlated diffraction pattern of the active material in β-MnO2after 200 cycles.We observe a severe degradation on the structural integrity of β-MnO2,and the active material has completely converted into a bulk (or long-range-ordered) ZnxMn2O4spinel (x=1.000,from ICP result),as confirmed by the clear lattice fringe of (101) plane,as well as the apparent diffraction spots representing the (101),(211),and (312)plane (diffraction pattern shown in the inset of Fig.5d).The TEM EDS mapping in Fig.S17 further indicates the uniform distribution of Zn,O,and Mn elements,substantiating the generation of ZnMn2O4spinel after long-term cycling.

    Fig.5 a DFT calculated binding configuration and adsorption energies (Ea) of GO on β-MnO2 (110),(101),(100),and (001) terraces with a surface VO.b XRD patterns of β-MnO2 electrodes of pristine and at charged state after 50,100,150,and 200 cycles at current of 1C.c,d TEM morphologies of active material in β-MnO2 electrode after 200 cycles at current of 1C,showing a degradation on structural integrity,and the corresponding HRTEM images (inset,diffraction pattern of ZnMn2O4 spinel).e XRD patterns of β-MnO2@GO electrodes of pristine and at charged state after 50,100,150,and 200 cycles at current of 1C.f,g TEM morphologies of active material in β- MnO2@GO electrode after 200 cycles at current of 1C,showing a well-maintained nanorod morphology,and the corresponding HRTEM images (inset,diffraction rings showing (211) and (101) planes of nanocrystalline ZnxMn2O4 spinel)

    For β-MnO2@GO,the structural evolution is different from that of the β-MnO2,as illustrated in Fig.5e.The characteristic peaks of β-MnO2@GO retain well after 100 cycles,demonstrating the beneficial effect of GO wrapping on stabilizing the pristine lattice framework.The relative intensities of the characteristic peaks of ZnMn2O4in β-MnO2@GO electrode are much lower than that in β-MnO2electrode,indicating that GO wrapping can effectively inhibit ZnMn2O4accumulation upon long-term cycling.The nanorod morphology of β-MnO2@GO is well preserved even after 200 cycles (Fig.5f),showing an enhanced structural integrity.Figure 5g shows the HRTEM morphologies and correlated diffraction patterns of the active material,which shows vague lattice fringes referring to the (101) and(211) planes of ZnxMn2O4(x=0.846,from ICP result) spinel with lattice spacing of~ 4.90 ? and~ 2.48 ?,respectively.The correlated diffraction pattern shows two diffraction rings(inset in Fig.5g),indicating the nanocrystalline (or shortterm ordered) feature that favors proton intercalation/conversion reactions.EDS mapping results show a uniformly distributed Zn,O,and Mn elements in the active material of β-MnO2@GO electrode after 200 cycles (Fig.S18),confirming the generation of nanocrystalline ZnMn2O4.

    Overall,the combinatorial incorporation of VOand SC in β-MnO2could help in achieving better electrochemical performance on the following mechanistic aspects:(1) both VOand GO wrapping could facilitate electron transport;(2)intimate adhesion of GO on the defective surface could pose barrier to the dissolution of Mn ions;(3) combination of VOand GO wrapping can retard the ZnxMn2O4accumulation and regulate the structural evolution.

    4 Conclusions

    In this work,the concurrent application of both defect engineering and interfacial optimization to a manganese oxide electrode for AZIBs is for the first time demonstrated.Oxygen vacancies are spontaneously introduced into β-MnO2during its synthesis in the presence of GO that eventually builds a coating layer on the active material.For the as-prepared oxygen-deficient β-MnO2@GO cathode,the successful suppression of Mn dissolution during electrochemical cycling is made possible,along with an apparent enhancement in charge/discharge kinetics.This electrode delivers a capacity of~ 129.6 mAh g-1even after 2000 cycles at a current rate of 4C,which is much superior than that of pristine β-MnO2electrode.The excellent cycle stability is rooted in the strong binding between the surface VOand ether oxygen on GO,as well as the regulated structural evolution into the nanocrystalline ZnxMn2O4phase.The results in this work highlight the advantages of integrating multiple strategies in the design of AZIB electrodes via bottom-up synthetic approaches,which will cast light on the feasibility of AZIBs in meeting the high-rate and long-life requirements for large-scale energy storage applications.

    AcknowledgementsThis work is financially supported by the Stable Support Funding for Universities in Shenzhen (Nos.GXWD20201231165807007-20200807111854001).

    Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License,which permits use,sharing,adaptation,distribution and reproduction in any medium or format,as long as you give appropriate credit to the original author(s) and the source,provide a link to the Creative Commons licence,and indicate if changes were made.The images or other third party material in this article are included in the article’s Creative Commons licence,unless indicated otherwise in a credit line to the material.If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use,you will need to obtain permission directly from the copyright holder.To view a copy of this licence,visit http:// creat iveco mmons.org/ licen ses/ by/4.0/.

    Supplementary InformationThe online version contains supplementary material available at https:// doi.org/ 10.1007/s40820-021-00691-7.

    亚洲电影在线观看av| 99久久精品一区二区三区| 操出白浆在线播放| av视频在线观看入口| 免费av毛片视频| 国产av在哪里看| 国产精品98久久久久久宅男小说| 国产探花在线观看一区二区| 两人在一起打扑克的视频| 久久精品91无色码中文字幕| 国产一区二区激情短视频| 在线观看一区二区三区| 亚洲 国产 在线| 白带黄色成豆腐渣| 天堂网av新在线| 国产久久久一区二区三区| 成人av在线播放网站| 亚洲欧美日韩卡通动漫| 国产黄a三级三级三级人| 亚洲片人在线观看| 国产精品久久久久久亚洲av鲁大| 婷婷精品国产亚洲av| 丁香六月欧美| 最新美女视频免费是黄的| x7x7x7水蜜桃| a在线观看视频网站| 国产精品久久久久久久电影 | 久久国产乱子伦精品免费另类| 国产午夜福利久久久久久| 成年版毛片免费区| 欧美乱码精品一区二区三区| 人妻丰满熟妇av一区二区三区| svipshipincom国产片| 成年免费大片在线观看| 后天国语完整版免费观看| 国产黄色小视频在线观看| 欧美一区二区国产精品久久精品| 国产精品,欧美在线| 国产一区二区在线观看日韩| 久久99精品国语久久久| 男女下面进入的视频免费午夜| 久久久午夜欧美精品| 久久精品91蜜桃| 成年版毛片免费区| 亚洲在久久综合| 午夜免费男女啪啪视频观看| 午夜精品一区二区三区免费看| 欧美另类亚洲清纯唯美| 麻豆乱淫一区二区| 男人和女人高潮做爰伦理| 亚洲高清免费不卡视频| 免费观看人在逋| 淫秽高清视频在线观看| 精品午夜福利在线看| www.色视频.com| 久久精品久久久久久噜噜老黄 | 日本欧美国产在线视频| 99国产精品一区二区蜜桃av| 美女xxoo啪啪120秒动态图| 国产精品三级大全| 亚洲av福利一区| www.色视频.com| 搡女人真爽免费视频火全软件| 国产精品无大码| 亚洲精品,欧美精品| 国产高潮美女av| 永久网站在线| 99久久九九国产精品国产免费| 亚洲,欧美,日韩| 国产又色又爽无遮挡免| 成人欧美大片| 精品久久久噜噜| 久久人妻av系列| 99久久成人亚洲精品观看| 99热全是精品| 亚洲av一区综合| 中国国产av一级| 男女国产视频网站| 有码 亚洲区| 九色成人免费人妻av| 国产精品一区二区三区四区久久| 美女国产视频在线观看| 看非洲黑人一级黄片| 欧美日韩在线观看h| 国产亚洲5aaaaa淫片| 欧美又色又爽又黄视频| 久久欧美精品欧美久久欧美| 国产乱人视频| 精品人妻偷拍中文字幕| 成人毛片60女人毛片免费| 国产午夜福利久久久久久| 欧美日韩一区二区视频在线观看视频在线 | 亚洲精品456在线播放app| 麻豆av噜噜一区二区三区| 非洲黑人性xxxx精品又粗又长| 久99久视频精品免费| 在线免费十八禁| 国产精品一区www在线观看| 99在线视频只有这里精品首页| 国产精品熟女久久久久浪| 午夜免费激情av| 一级毛片我不卡| 一本久久精品| 国内精品宾馆在线| 老司机影院成人| 国产精品一区www在线观看| 日韩 亚洲 欧美在线| 国产中年淑女户外野战色| 非洲黑人性xxxx精品又粗又长| 中文字幕精品亚洲无线码一区| 最近2019中文字幕mv第一页| 亚洲成人久久爱视频| 午夜激情福利司机影院| 久久精品夜色国产| 少妇人妻精品综合一区二区| 少妇人妻精品综合一区二区| 国产精品国产三级国产专区5o | 我的老师免费观看完整版| 男的添女的下面高潮视频| 久久精品人妻少妇| 久久99精品国语久久久| 亚洲欧美日韩无卡精品| av播播在线观看一区| 国产一区二区三区av在线| 欧美日韩精品成人综合77777| av国产免费在线观看| 欧美bdsm另类| www.色视频.com| 亚州av有码| 亚洲国产欧美人成| 久久久久久大精品| 我要搜黄色片| 毛片一级片免费看久久久久| 插阴视频在线观看视频| 午夜精品在线福利| 简卡轻食公司| 国产精品久久久久久久久免| 蜜桃亚洲精品一区二区三区| 久久久久久久国产电影| 99久久成人亚洲精品观看| 国产一区有黄有色的免费视频 | 2021少妇久久久久久久久久久| 男人和女人高潮做爰伦理| 精品一区二区三区视频在线| 99热6这里只有精品| 成人鲁丝片一二三区免费| 成人亚洲精品av一区二区| 色尼玛亚洲综合影院| 99热这里只有是精品50| 天堂av国产一区二区熟女人妻| 日日摸夜夜添夜夜添av毛片| 岛国毛片在线播放| 国产老妇女一区| 午夜福利网站1000一区二区三区| 婷婷色麻豆天堂久久 | 韩国av在线不卡| 一级av片app| 国产精品永久免费网站| 欧美一级a爱片免费观看看| 国产激情偷乱视频一区二区| 欧美+日韩+精品| 国语自产精品视频在线第100页| 日本黄色视频三级网站网址| 久久热精品热| 精华霜和精华液先用哪个| 精品一区二区免费观看| 高清av免费在线| 中国国产av一级| 久久韩国三级中文字幕| 日本欧美国产在线视频| 韩国av在线不卡| 欧美极品一区二区三区四区| 亚洲天堂国产精品一区在线| 国产探花在线观看一区二区| 欧美3d第一页| 国产在线一区二区三区精 | 精品国产露脸久久av麻豆 | 啦啦啦观看免费观看视频高清| 久久亚洲国产成人精品v| 99久久九九国产精品国产免费| 日本-黄色视频高清免费观看| 亚洲精品乱码久久久久久按摩| 精品人妻视频免费看| 我的女老师完整版在线观看| 欧美一区二区国产精品久久精品| 91在线精品国自产拍蜜月| 国语对白做爰xxxⅹ性视频网站| 乱系列少妇在线播放| 极品教师在线视频| 国产色爽女视频免费观看| 久久久欧美国产精品| 三级经典国产精品| 欧美精品一区二区大全| 97人妻精品一区二区三区麻豆| 色吧在线观看| 丰满乱子伦码专区| 少妇猛男粗大的猛烈进出视频 | 久久精品91蜜桃| 2021天堂中文幕一二区在线观| 久久99热这里只有精品18| 成年女人永久免费观看视频| 亚洲av熟女| 好男人在线观看高清免费视频| 久久久国产成人精品二区| 老师上课跳d突然被开到最大视频| 秋霞伦理黄片| 亚洲国产精品合色在线| 国产免费一级a男人的天堂| 日本与韩国留学比较| 美女黄网站色视频| 国产精品女同一区二区软件| 能在线免费看毛片的网站| 免费黄色在线免费观看| av线在线观看网站| 亚洲人成网站在线观看播放| 国产黄片美女视频| 又粗又爽又猛毛片免费看| 午夜a级毛片| 97在线视频观看| 午夜福利在线观看吧| 国产中年淑女户外野战色| 色尼玛亚洲综合影院| 国产成人午夜福利电影在线观看| 黄色日韩在线| 欧美又色又爽又黄视频| 高清日韩中文字幕在线| 欧美一区二区亚洲| 精品欧美国产一区二区三| 久久精品国产99精品国产亚洲性色| 又黄又爽又刺激的免费视频.| 内射极品少妇av片p| 身体一侧抽搐| 久久精品久久久久久噜噜老黄 | 男女那种视频在线观看| 久久精品国产亚洲av涩爱| 纵有疾风起免费观看全集完整版 | 熟妇人妻久久中文字幕3abv| 欧美三级亚洲精品| 色综合亚洲欧美另类图片| 丝袜美腿在线中文| 国产中年淑女户外野战色| 尤物成人国产欧美一区二区三区| 久久久欧美国产精品| 全区人妻精品视频| 免费观看a级毛片全部| 精品久久久久久久久av| 亚洲aⅴ乱码一区二区在线播放| 国产黄色视频一区二区在线观看 | 国产三级中文精品| 国产精品,欧美在线| 天美传媒精品一区二区| 在线免费十八禁| 亚洲国产精品国产精品| 国产午夜精品一二区理论片| 美女脱内裤让男人舔精品视频| 久久国产乱子免费精品| 国产成人福利小说| 日韩高清综合在线| 欧美3d第一页| 国产伦精品一区二区三区四那| 亚洲成人av在线免费| 国产午夜精品久久久久久一区二区三区| 国产精品一区二区三区四区久久| 69av精品久久久久久| 麻豆乱淫一区二区| 亚洲三级黄色毛片| 国产老妇女一区| 欧美日韩精品成人综合77777| 国产视频首页在线观看| 毛片女人毛片| 亚洲精品一区蜜桃| 搞女人的毛片| 国产三级中文精品| 欧美精品国产亚洲| 嫩草影院入口| 久热久热在线精品观看| 亚洲av中文字字幕乱码综合| 久久精品91蜜桃| 日本wwww免费看| 免费观看性生交大片5| 日韩 亚洲 欧美在线| 日本一本二区三区精品| 少妇裸体淫交视频免费看高清| 国产真实乱freesex| 尤物成人国产欧美一区二区三区| 少妇熟女aⅴ在线视频| 日产精品乱码卡一卡2卡三| 高清av免费在线| 99久久精品国产国产毛片| 国产久久久一区二区三区| 亚洲在久久综合| 人人妻人人澡欧美一区二区| 国产精品三级大全| 毛片女人毛片| 亚洲天堂国产精品一区在线| www.av在线官网国产| 黄片无遮挡物在线观看| 久久久久久大精品| 国产人妻一区二区三区在| 最近最新中文字幕大全电影3| 久久久久久久久久久免费av| 免费观看a级毛片全部| 欧美性感艳星| 国产麻豆成人av免费视频| 日韩视频在线欧美| 日本-黄色视频高清免费观看| 亚洲伊人久久精品综合 | 国产69精品久久久久777片| 国产精品野战在线观看| 国产女主播在线喷水免费视频网站 | 久久亚洲国产成人精品v| 日韩av不卡免费在线播放| АⅤ资源中文在线天堂| 亚洲四区av| 十八禁国产超污无遮挡网站| 国产老妇女一区| 久久99热这里只有精品18| av卡一久久| 九九爱精品视频在线观看| 欧美不卡视频在线免费观看| 少妇人妻一区二区三区视频| 偷拍熟女少妇极品色| 国产中年淑女户外野战色| 波多野结衣巨乳人妻| 成人毛片a级毛片在线播放| 国产亚洲91精品色在线| 男插女下体视频免费在线播放| 尤物成人国产欧美一区二区三区| 久久久久久久久久久免费av| 少妇丰满av| 91久久精品国产一区二区成人| 18禁动态无遮挡网站| 久久久久国产网址| 精品久久久久久久久亚洲| 91在线精品国自产拍蜜月| 久久草成人影院| 国产探花极品一区二区| 国产 一区精品| 国产高清有码在线观看视频| 特大巨黑吊av在线直播| 亚洲欧美日韩东京热| 五月伊人婷婷丁香| 亚洲欧美日韩卡通动漫| 亚洲av电影不卡..在线观看| 精品酒店卫生间| 国产不卡一卡二| 91久久精品国产一区二区成人| 亚洲国产成人一精品久久久| 国产精品国产高清国产av| 午夜a级毛片| av国产久精品久网站免费入址| 99久久成人亚洲精品观看| 欧美区成人在线视频| 日韩大片免费观看网站 | 国产精品永久免费网站| 精品不卡国产一区二区三区| 免费电影在线观看免费观看| 一本久久精品| 国产色婷婷99| 午夜福利网站1000一区二区三区| 变态另类丝袜制服| 乱系列少妇在线播放| 国产成人一区二区在线| 国产三级在线视频| 观看美女的网站| 午夜福利成人在线免费观看| 大香蕉久久网| 色综合亚洲欧美另类图片| 亚洲国产最新在线播放| 日韩欧美国产在线观看| 人体艺术视频欧美日本| 国产精品国产三级国产av玫瑰| 午夜福利视频1000在线观看| 天堂影院成人在线观看| 国产免费福利视频在线观看| 长腿黑丝高跟| 免费在线观看成人毛片| 日韩国内少妇激情av| 亚洲欧美日韩无卡精品| 亚洲av熟女| 国产在视频线在精品| 寂寞人妻少妇视频99o| 国产黄a三级三级三级人| 一级黄片播放器| 天天一区二区日本电影三级| 国产伦精品一区二区三区视频9| 国语对白做爰xxxⅹ性视频网站| 精品久久久噜噜| 波多野结衣高清无吗| 日韩成人av中文字幕在线观看| 国产精品久久电影中文字幕| 欧美区成人在线视频| 国产精品一区二区三区四区久久| av女优亚洲男人天堂| 91精品一卡2卡3卡4卡| 亚洲欧美精品专区久久| 色播亚洲综合网| 国产综合懂色| 男的添女的下面高潮视频| 99在线人妻在线中文字幕| 三级毛片av免费| 久久久久免费精品人妻一区二区| 国产极品天堂在线| 青青草视频在线视频观看| 成年av动漫网址| 成年女人看的毛片在线观看| 欧美一区二区国产精品久久精品| 韩国高清视频一区二区三区| 99久久九九国产精品国产免费| 国产私拍福利视频在线观看| 人妻少妇偷人精品九色| 欧美+日韩+精品| 日本wwww免费看| 久久久国产成人免费| 欧美三级亚洲精品| 国产一区二区亚洲精品在线观看| 免费看av在线观看网站| av福利片在线观看| 最近最新中文字幕免费大全7| 精品人妻熟女av久视频| 一个人看视频在线观看www免费| 色综合亚洲欧美另类图片| 成人av在线播放网站| 麻豆成人av视频| 国产精品久久久久久精品电影| 亚洲av免费高清在线观看| 97超碰精品成人国产| 成人国产麻豆网| 99在线视频只有这里精品首页| 91狼人影院| 国产成人91sexporn| 欧美xxxx性猛交bbbb| 欧美激情久久久久久爽电影| 日韩三级伦理在线观看| 久久久久性生活片| 欧美不卡视频在线免费观看| 国产欧美另类精品又又久久亚洲欧美| 99热全是精品| 99久久九九国产精品国产免费| 日韩三级伦理在线观看| 韩国av在线不卡| 亚洲成色77777| 97在线视频观看| 一卡2卡三卡四卡精品乱码亚洲| 精品熟女少妇av免费看| 青春草亚洲视频在线观看| 亚洲精品乱码久久久v下载方式| 国产精品一区二区性色av| 国产精品女同一区二区软件| 99久久成人亚洲精品观看| 国产爱豆传媒在线观看| 日日干狠狠操夜夜爽| 亚洲在线观看片| 国产午夜精品久久久久久一区二区三区| a级一级毛片免费在线观看| 国产极品天堂在线| 能在线免费看毛片的网站| 午夜免费男女啪啪视频观看| 日韩精品有码人妻一区| 日本欧美国产在线视频| 伦精品一区二区三区| 99久久中文字幕三级久久日本| 少妇人妻精品综合一区二区| 国产黄片美女视频| 久久久久久久午夜电影| 高清毛片免费看| 大话2 男鬼变身卡| 91在线精品国自产拍蜜月| 日本一本二区三区精品| 国产三级在线视频| 免费观看的影片在线观看| 国产免费男女视频| 99在线人妻在线中文字幕| 国产91av在线免费观看| 男女啪啪激烈高潮av片| 一区二区三区免费毛片| 97超碰精品成人国产| 最近最新中文字幕免费大全7| 国产精品国产三级国产专区5o | 超碰av人人做人人爽久久| 亚洲人成网站高清观看| 91av网一区二区| 亚洲国产精品成人久久小说| 国产精品一区二区三区四区免费观看| 有码 亚洲区| 高清毛片免费看| 只有这里有精品99| 欧美成人一区二区免费高清观看| 亚洲欧美成人精品一区二区| 亚洲精品乱久久久久久| 中文字幕制服av| 神马国产精品三级电影在线观看| 丰满少妇做爰视频| 国产伦一二天堂av在线观看| 国产成人精品婷婷| 欧美成人午夜免费资源| 蜜臀久久99精品久久宅男| 国产亚洲精品久久久com| 九草在线视频观看| 亚洲精品国产成人久久av| 国产大屁股一区二区在线视频| 在线观看一区二区三区| 晚上一个人看的免费电影| 边亲边吃奶的免费视频| 能在线免费看毛片的网站| 精品少妇黑人巨大在线播放 | 中文在线观看免费www的网站| 日韩欧美精品v在线| av女优亚洲男人天堂| 成人亚洲欧美一区二区av| 青青草视频在线视频观看| 成人一区二区视频在线观看| 美女国产视频在线观看| 91精品国产九色| 亚洲精品亚洲一区二区| 2021少妇久久久久久久久久久| 女人久久www免费人成看片 | 欧美潮喷喷水| av免费在线看不卡| 欧美另类亚洲清纯唯美| av播播在线观看一区| 能在线免费观看的黄片| 亚洲中文字幕日韩| 免费搜索国产男女视频| 91狼人影院| 97在线视频观看| 亚洲人成网站高清观看| 亚洲美女视频黄频| 久久草成人影院| 日产精品乱码卡一卡2卡三| av女优亚洲男人天堂| 精品国产露脸久久av麻豆 | 97人妻精品一区二区三区麻豆| 亚洲欧美一区二区三区国产| 国产午夜福利久久久久久| 精品久久久久久久末码| 一个人看视频在线观看www免费| 国产视频首页在线观看| 联通29元200g的流量卡| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲丝袜综合中文字幕| 亚洲av免费在线观看| 国产精品永久免费网站| 欧美bdsm另类| 国产一级毛片在线| 国产三级在线视频| 在线免费观看不下载黄p国产| 国产精品一区二区性色av| 一区二区三区乱码不卡18| 欧美不卡视频在线免费观看| 天美传媒精品一区二区| 国产精品不卡视频一区二区| 久久久久久国产a免费观看| 日韩视频在线欧美| 国产欧美另类精品又又久久亚洲欧美| 国产在线一区二区三区精 | 免费大片18禁| 在线播放无遮挡| or卡值多少钱| 久热久热在线精品观看| 国产精品国产三级专区第一集| 能在线免费观看的黄片| 成人毛片60女人毛片免费| 亚洲四区av| 亚洲欧美精品自产自拍| 久久久久九九精品影院| 欧美最新免费一区二区三区| 99久久无色码亚洲精品果冻| 人妻制服诱惑在线中文字幕| 日本免费a在线| 高清视频免费观看一区二区 | 精品久久国产蜜桃| 欧美97在线视频| 亚洲av成人av| 欧美一级a爱片免费观看看| 日韩欧美三级三区| 日本一本二区三区精品| 我的女老师完整版在线观看| 日韩欧美国产在线观看| 亚洲伊人久久精品综合 | 少妇熟女aⅴ在线视频| 一个人免费在线观看电影| 欧美+日韩+精品| 精品免费久久久久久久清纯| 亚洲在久久综合| 天美传媒精品一区二区| 伊人久久精品亚洲午夜| 免费观看性生交大片5| 人妻制服诱惑在线中文字幕| 午夜亚洲福利在线播放| 两性午夜刺激爽爽歪歪视频在线观看| 一级二级三级毛片免费看| 国产伦理片在线播放av一区| 国产精品女同一区二区软件| 国产伦在线观看视频一区| 在线观看美女被高潮喷水网站| 欧美激情国产日韩精品一区| 精品免费久久久久久久清纯| 天天一区二区日本电影三级| 狠狠狠狠99中文字幕| 女人久久www免费人成看片 | 熟妇人妻久久中文字幕3abv| 搡老妇女老女人老熟妇| 黄色配什么色好看| 性插视频无遮挡在线免费观看| 三级经典国产精品| 一边摸一边抽搐一进一小说| 99视频精品全部免费 在线| 午夜免费激情av| 日本黄大片高清| 亚洲欧美中文字幕日韩二区| 国产爱豆传媒在线观看| 少妇人妻精品综合一区二区| 国产av在哪里看| 国产精品伦人一区二区|