曲瀟玲,焦裕冰,羅健達(dá),宋麗云,李瑩,申莉莉,楊金廣,王鳳龍
本氏煙的克隆及對馬鈴薯Y病毒侵染的抑制作用
曲瀟玲,焦裕冰,羅健達(dá),宋麗云,李瑩,申莉莉,楊金廣,王鳳龍
中國農(nóng)業(yè)科學(xué)院煙草研究所,山東青島 266101
【】馬鈴薯Y病毒(potato virus Y,PVY)是危害我國煙草生產(chǎn)的最重要病毒之一,NAC轉(zhuǎn)錄因子與植物的抗病、抗逆密切相關(guān),本論文克隆進(jìn)行生物信息學(xué)分析,并研究其在PVY侵染過程中的作用,為煙草抗病毒藥劑的開發(fā)提供靶標(biāo)。以本氏煙()為材料克隆,利用MEGA、UniProt、SMART、TMHMM Server 2.0、Sol Genomics Network、PlantCARE等技術(shù)進(jìn)行生物信息學(xué)分析;利用激光共聚焦與實(shí)時熒光定量PCR(quantitative real-time PCR,qRT-PCR)明確PVY侵染前后NbNAC062蛋白定位及mRNA表達(dá)量變化;基于病毒介導(dǎo)的基因沉默(virus-induced gene silencing,VIGS)和過表達(dá)技術(shù),構(gòu)建pTRV::NbNAC062沉默載體與pEarleyGate100::RFP::NbNAC062過表達(dá)載體,采用qRT-PCR和Western blot檢測在本氏煙中沉默與過表達(dá)后,PVY的積累量變化及未折疊蛋白應(yīng)答(unfolded protein response,UPR)相關(guān)基因的表達(dá)差異。編碼646個氨基酸,N端28—179 aa為NAC結(jié)構(gòu)域,129—185 aa為DNA結(jié)合區(qū)域,C末端621—643 aa為疏水跨膜結(jié)構(gòu),系統(tǒng)進(jìn)化樹與蛋白序列分析表明本氏煙與漸狹葉煙草親緣關(guān)系最近。啟動子中包含脫落酸、茉莉酸甲酯、水楊酸以及逆境響應(yīng)相關(guān)的多種順式作用元件。PVY侵染激活NbNAC062從細(xì)胞膜轉(zhuǎn)移至細(xì)胞核,且誘導(dǎo)上調(diào)表達(dá)。PVY侵染本氏煙5、7 d,處理組mRNA水平分別為對照組的2.52、1.95倍;PVY侵染3 d,mRNA表達(dá)量為對照組的2.39倍,PVY侵染7 d,表達(dá)量極顯著低于對照組,下調(diào)表達(dá)56.77%。本氏煙沉默并接種PVY,接種后3、5、7 d,與對照組相比,沉默組PVYmRNA上調(diào)表達(dá),分別為對照組的2.12、2.41、1.38倍,mRNA表達(dá)量則下調(diào),分別下調(diào)28.19%、58.11%、10.77%,接種后5、7 d沉默組PVY CP蛋白含量亦顯著高于對照組。過表達(dá)并接種PVY,接種后24、48、72 h,與對照組相比,過表達(dá)組PVYmRNA分別下調(diào)22.60%、34.51%、36.21%,接種48、72 h,mRNA上調(diào)表達(dá),分別為對照組的1.56、1.35倍,過表達(dá)組PVY CP蛋白含量亦低于對照組。NbNAC062屬于NAC類膜結(jié)合轉(zhuǎn)錄因子,可被PVY侵染激活轉(zhuǎn)移至細(xì)胞核,可能通過調(diào)控UPR相關(guān)基因的表達(dá),促進(jìn)細(xì)胞生存,抑制PVY早期侵染。
;馬鈴薯Y病毒;基因沉默;瞬時過表達(dá)
【研究意義】馬鈴薯Y病毒(potato virusY,PVY)是一種單鏈正義RNA病毒[1],寄主范圍廣泛,能侵染34個屬170余種植物[2]。煙草馬鈴薯Y病毒病會造成煙株花葉、脈壞死、莖壞死、點(diǎn)刻條斑等癥狀[3-4],目前已成為危害我國煙草生產(chǎn)最主要的病毒病之一[5-7]。NAC類轉(zhuǎn)錄因子與植物抗病、抗逆相關(guān)[8],研究其在PVY侵染中的調(diào)控作用,可為煙草抗病毒藥劑的開發(fā)提供靶標(biāo),對防控馬鈴薯Y病毒病具有重要意義?!厩叭搜芯窟M(jìn)展】NAC是一類植物特有的轉(zhuǎn)錄因子[9],在整個生命周期中起到重要作用。在植物生長發(fā)育中,NAC類轉(zhuǎn)錄因子參與調(diào)控種子萌發(fā)[10]、次生細(xì)胞壁生長[11]、葉片與果實(shí)衰老[12-13]等過程。在植物抗逆與激素信號傳導(dǎo)中,NAC類轉(zhuǎn)錄因子參與調(diào)控植物抗病、冷脅迫、干旱脅迫以及水楊酸(salicylic acid,SA)[14]、脫落酸(abscisic acid,ABA)[15]、茉莉酸(jasmonic acid,JA)[16]等應(yīng)答反應(yīng)。內(nèi)質(zhì)網(wǎng)是真核生物蛋白形成加工的重要場所[17],蛋白的折疊合成過程復(fù)雜,易受外界環(huán)境影響。當(dāng)植物處于逆境,細(xì)胞內(nèi)未折疊蛋白與錯誤蛋白累積過量時,內(nèi)質(zhì)網(wǎng)會啟動未折疊蛋白應(yīng)答(unfolded protein response,UPR),調(diào)節(jié)一系列下游基因如分子伴侶的表達(dá),幫助蛋白正確折疊,維持內(nèi)質(zhì)網(wǎng)穩(wěn)態(tài)[18]。植物膜結(jié)合轉(zhuǎn)錄因子在UPR信號傳導(dǎo)過程中起到重要作用,NAC062則是一種參與UPR的NAC類膜結(jié)合轉(zhuǎn)錄因子。以往研究發(fā)現(xiàn),NAC062主要在干旱、寒冷、高鹽等逆境過程中起調(diào)控作用。擬南芥中NAC062蛋白在ABA介導(dǎo)的抗旱反應(yīng)中起調(diào)節(jié)作用,過表達(dá)的植株表現(xiàn)出強(qiáng)的抗旱性[19]。另外NAC062還能將冷信號整合到植物防御反應(yīng)中。當(dāng)受到冷脅迫時,NAC062蛋白發(fā)生水解[20],直接與病程相關(guān)蛋白(pathogenesis-related protein,PR)、、結(jié)合,激發(fā)病原體抗性反應(yīng)[21],促使植株對丁香假單胞菌()的侵染表現(xiàn)出較強(qiáng)的抗性。【本研究切入點(diǎn)】目前,關(guān)于NAC062的研究多數(shù)集中在模式植物擬南芥的冷害和干旱等非生物脅迫中,而在生物脅迫尤其是在病毒侵染中的功能研究較少。生物信息學(xué)分析表明啟動子序列中包含抗逆、抗病等多種脅迫響應(yīng)相關(guān)的順式作用元件,但目前尚無基因克隆及其在PVY侵染中作用的研究,鑒于NAC062在內(nèi)質(zhì)網(wǎng)脅迫應(yīng)答以及抗逆過程中的重要作用,本文探究煙草NAC062轉(zhuǎn)錄因子在PVY侵染中的功能及相關(guān)的調(diào)控信號?!緮M解決的關(guān)鍵問題】以本氏煙()為材料,克隆,進(jìn)行生物信息學(xué)分析與亞細(xì)胞定位,構(gòu)建沉默與過表達(dá)載體,研究其在PVY侵染過程中的生物學(xué)功能。
試驗(yàn)于2019—2020年在中國農(nóng)業(yè)科學(xué)院煙草研究所完成。
植物材料:本氏煙,中國農(nóng)業(yè)科學(xué)院煙草研究所保存,試驗(yàn)用煙均為5—6葉期溫室土培煙苗,溫室培養(yǎng)條件為溫度(25±1)℃,光周期16 h光照/8 h黑暗,光照強(qiáng)度2 000 lx,相對濕度65%;病毒:馬鈴薯Y病毒,中國農(nóng)業(yè)科學(xué)院煙草研究所病毒課題組保存于枯斑三生煙(var. Samsun NN)活體上;侵染性克?。篜VY-GFP[22]由中國農(nóng)業(yè)科學(xué)院煙草研究所病毒課題組提供,于TE緩沖液中,-80℃保存。
根據(jù)National Center for Biotechnology Information(https://www.ncbi.nlm.nih.gov)網(wǎng)站預(yù)測的(序列號:XM_019370781.1)序列設(shè)計引物NbNAC062 F/R(表1),以本氏煙cDNA為模板,利用Phanta Max Master Mix高保真酶(Vazyme)進(jìn)行PCR擴(kuò)增,擴(kuò)增產(chǎn)物連接至pCE2-TA/Blunt-Zero(Vazyme)載體并轉(zhuǎn)化1-T1(TransGen Biotech)大腸桿菌感受態(tài)細(xì)胞,陽性克隆送派森諾生物科技有限公司測序。利用MEGA7(https://www.megasoftware.net)、DNAMAN(https://www.lynnon.com/qa.html)、UniProt(https:// www.uniprot.org)、SMART(http://smart.embl.de)、TMHMM Server 2.0(http://www.cbs.dtu.dk/services/ TMHMM)、Sol Genomics Network(https://solgenomics. net/)、PlantCARE(http://bioinformatics.psb.ugent.be)等生物信息學(xué)工具對序列進(jìn)行分析。
取PVY侵染的枯斑三生煙病葉1 g,加入PBS緩沖液(0.01 mol·L-1,pH 7.2—7.4)40 mL,于滅菌研缽中充分研磨后濾殘渣,得病毒接種液。對本氏煙第3—4片真葉浸潤病毒接種液,每片葉200 μL[23],以浸潤PBS緩沖液為對照,接種后1、3、5、7 d取接種葉進(jìn)行qRT-PCR。
根據(jù)序列設(shè)計含有RⅠⅠ酶切位點(diǎn)的引物TRV-NbNAC F/R(表1),以本氏煙cDNA為模板,PCR擴(kuò)增沉默片段。利用ClonExpress II One Step Cloning Kit(Vazyme)將連接至pTRV載體,構(gòu)建pTRV:: NbNAC062重組載體;將含有pTRV::NbNAC062載體的農(nóng)桿菌(OD600=0.5)浸潤本氏煙下表皮,每片葉500 μL,以浸潤含有pTRV::PDS載體的農(nóng)桿菌為陽性對照,浸潤含有pTRV00空載的農(nóng)桿菌為陰性對照,浸潤15 d檢測沉默效率并浸潤PVY接種液。接種后1、3、5、7 d取接種葉,進(jìn)行qRT-PCR與Western blot檢測PVY CP積累量及UPR相關(guān)基因表達(dá)量。另取部分沉默植株,浸潤PVY-GFP侵染性克隆,5 d后在手持紫外燈下觀察葉片熒光情況。
根據(jù)序列設(shè)計含有Ⅰ、RⅠ酶切位點(diǎn)的引物Fu-NbNAC F/R(表1),以本氏煙cDNA為模板,PCR擴(kuò)增,擴(kuò)增產(chǎn)物連接Fu46- RFP載體,構(gòu)建入門載體Fu46::RFP::NbNAC062。利用LR ClonaseTMII enzyme mix(Invitrogen)將入門載體同源重組至pEarleyGate100載體,最終構(gòu)建pEarleyGate100::RFP::NbNAC062表達(dá)載體[24]。將含有pEarleyGate100::RFP::NbNAC062載體的農(nóng)桿菌(OD600=0.5)浸潤本氏煙下表皮,每片葉500 μL,以浸潤含有pEarleyGate100::RFP的農(nóng)桿菌為對照。浸潤農(nóng)桿菌12 h后,統(tǒng)一浸潤PVY接種液,接種后24、48、72 h取接種葉進(jìn)行qRT-PCR與Western blot檢測PVY CP積累量及UPR相關(guān)基因表達(dá)量。
將含有pEarleyGate100::RFP::NbNAC062載體的農(nóng)桿菌(OD600=0.5)浸潤本氏煙下表皮,每片葉500 μL,12 h后接種PVY,溫室培養(yǎng)48 h。利用DAPI細(xì)胞核藍(lán)色染液(358 nm/461 nm,Solarbio)、BBcellProbe M01細(xì)胞膜綠色染液(488 nm/500 nm,Bestbio),進(jìn)行細(xì)胞染色后,激光共聚焦觀察NbNAC062蛋白亞細(xì)胞定位。
取各時間段處理組與對照組樣品,利用RNA isolater Total RNA Extraction Reagent(Vazyme)與Plant Protein Extraction Kit(CWBIO)提取總RNA與總蛋白。根據(jù)不同樣品的序列設(shè)計特異性熒光定量檢測引物(表1),總RNA反轉(zhuǎn)錄成cDNA(Vazyme),利用ChamQTMUniversal SYBR? qPCR Master Mix(Vazyme)試劑盒進(jìn)行qRT-PCR。以為內(nèi)參基因,2-ΔΔCt法計算相對表達(dá)量,反應(yīng)程序:95℃ 30 s;95℃10 s,60℃30 s,40個循環(huán);95℃15 s,60℃60 s,95℃15 s??偟鞍捉?jīng)SDS-PAGE電泳(180 V、32 min),濕法轉(zhuǎn)膜(100 V、90 min)后,分別4℃過夜孵育PVY抗體(Agdia,兔源),Actin抗體(CWBIO,鼠源),對應(yīng)二抗Goat Anti-Rabbit IgG(CWBIO),Goat Anti-Mouse IgG(CWBIO)25℃孵育2 h后觀察Western blot結(jié)果。
以本氏煙cDNA為模板,NbNAC062 F/R為引物(表1),PCR擴(kuò)增出1 944 bp CDS序列,編碼646個氨基酸。CDS序列于NCBI全網(wǎng)比對,發(fā)現(xiàn)與漸狹葉煙草()、栽培煙草()、林煙草()、絨毛狀煙草()的序列最為相似,相似度分別為96.04%、95.88%、95.88%、94.91%,對應(yīng)蛋白序列相似度為95.83%、94.28%、94.28%、93.04%。其他物種核苷酸序列相似度為83.71%—85.27%,對應(yīng)蛋白序列相似度為74.73%—79.35%。利用MEGA7,鄰接法、自舉抽樣各分支置信度為1 000構(gòu)建系統(tǒng)發(fā)育樹(圖1)[25]。利用DNAMAN進(jìn)行氨基酸序列比對(圖2-A),結(jié)果均顯示,擴(kuò)增序列與漸狹葉煙草序列相似度最高,表明擴(kuò)增序列為本氏煙的同源序列,命名為。
表1 本試驗(yàn)所用引物
圖1 NbNAC062系統(tǒng)發(fā)育分析
利用UniProt[26]、SMART[27-29]、TMHMM Server 2.0[30]對NbNAC062蛋白進(jìn)行序列分析,發(fā)現(xiàn)第28—179 aa為NAC結(jié)構(gòu)域,第129—185 aa為DNA結(jié)合區(qū)域,第621—643 aa為C端疏水跨膜域(圖2-B)。
序列于Sol Genomics Network網(wǎng)站比對獲取其啟動子。PlantCARE分析發(fā)現(xiàn)啟動子序列中包含多種脅迫反應(yīng)順式作用元件,包括脫落酸反應(yīng)順式作用元件ABRE、茉莉酸甲酯反應(yīng)順式作用元件TGACG-motif和CGTCA-motif、參與轉(zhuǎn)錄表達(dá)的水楊酸響應(yīng)元件as-1,以及參與干旱、高鹽、低溫等脅迫應(yīng)答相關(guān)的順式作用元件DRE、MYB、MYC。
A:NbNAC062蛋白氨基酸序列對比分析。深藍(lán)色為氨基酸完全相同,粉色為有一個氨基酸不同,淺藍(lán)色為兩個氨基酸不同。紅、黃、綠色箭頭線分別代表NAC結(jié)構(gòu)域、DNA結(jié)合區(qū)域、TMD跨膜結(jié)構(gòu)域Comparative analysis of NbNAC062 protein amino acid sequence. Dark blue indicates that the amino acids are identical, pink indicates that there is only one amino acid difference, light blue indicates that there are two amino acids differences. The red, yellow, and green arrow lines represent the NAC domain, the DNA binding region, and the TMD transmembrane domain in turn;B:NbNAC062蛋白結(jié)構(gòu)域分析Protein domain analysis of NbNAC062
本氏煙接種PVY后1、3、5、7 d取接種葉進(jìn)行qRT-PCR與統(tǒng)計分析。結(jié)果表明PVY侵染導(dǎo)致表達(dá)量上調(diào),其中接種PVY 5 d,mRNA水平顯著高于接種PBS對照組,為對照組的2.52倍;接種PVY 7 d,mRNA水平極顯著高于對照組,為對照組的1.95倍(圖3-A)。qRT-PCR檢測UPR相關(guān)基因發(fā)現(xiàn),接種PVY后1、3、5 d,mRNA表達(dá)量逐漸上調(diào),其中接種PVY 3 d,mRNA水平極顯著高于對照組,為對照組的2.39倍,接種后7 d,表達(dá)量極顯著低于對照組,下調(diào)表達(dá)56.77%(圖3-B),說明及可能在PVY侵染中發(fā)揮作用。
含pEarleyGate100::RFP::NbNAC062載體的農(nóng)桿菌介導(dǎo)浸潤本氏煙下表皮,12 h后接種PVY,溫室培養(yǎng)48 h進(jìn)行激光共聚焦觀察。結(jié)果表明,PVY侵染前,NbNAC062蛋白定位于細(xì)胞膜,PVY侵染后部分NbNAC062蛋白轉(zhuǎn)移至細(xì)胞核(圖4)。
*表示差異顯著P<0.05,**表示差異極顯著P<0.01。下同
A:NbNAC062蛋白亞細(xì)胞定位,BBcellProbe M01為細(xì)胞膜綠色染料,激發(fā)波長/發(fā)射波長為488 nm/500 nm Subcellular localization of NbNAC062 protein, BBcellProbe M01 is cell membrane green dye, excitation wavelength/emission wavelength is 488 nm/500 nm;B:PVY侵染后NbNAC062蛋白亞細(xì)胞定位,DAPI為細(xì)胞核藍(lán)色染料,激發(fā)波長/發(fā)射波長為358 nm/461 nm Subcellular localization of NbNAC062 protein after PVY infection, DAPI is nuclear blue dye, excitation wavelength/emission wavelength is 358 nm/461 nm
含pTRV::NbNAC062沉默載體的農(nóng)桿菌介導(dǎo)浸潤本氏煙第7天,沉默組與陰性對照組pTRV00表型無明顯變化,陽性對照組pTRV::PDS葉片開始出現(xiàn)白化現(xiàn)象。第15天,qRT-PCR檢測沉默效率為84.25%(圖5)。接種PVY后,1、3、5、7 d取接種葉進(jìn)行qRT-PCR與Western blot檢測PVY CP積累量。qRT-PCR結(jié)果顯示,3、5、7 d沉默組本氏煙PVYmRNA顯著高于對照組,分別為對照組的2.12、2.41、1.38倍。Western blot顯示5、7 d沉默組PVY CP蛋白含量顯著高于對照組。通過PVYmRNA和蛋白在沉默植株中積累的分析表明,表達(dá)的下調(diào)顯著促進(jìn)了PVY的積累。qRT-PCR檢測表達(dá),3、5、7 d沉默組mRNA表達(dá)量逐漸下調(diào),分別下調(diào)表達(dá)28.19%、58.11%、10.77%,說明沉默抑制了的表達(dá)(圖6)。手持紫外燈下觀察,沉默組PVY-GFP熒光強(qiáng)度高于對照組(圖5),也說明本氏煙沉默促進(jìn)了PVY的侵染。
A:沉默第7天處理組pTRV::NbNAC062、陰性對照組pTRV00、陽性對照組pTRV::PDS表型On the 7th day of silence, the phenotype of pTRV::NbNAC062 treatment group, pTRV00 negative control group and pTRV::PDS positive control group;B:沉默NbNAC062第15天沉默效率Silencing efficiency of NbNAC062 on the 15th day;C:NbNAC062沉默植株接種PVY-GFP第5天葉片熒光情況Fluorescence of leaves on the 5th day after silencing NbNAC062 inoculated with PVY-GFP
含過表達(dá)載體的農(nóng)桿菌介導(dǎo)浸潤本氏煙12 h后,浸潤PVY接種液,接種后24、48、72 h取接種葉進(jìn)行qRT-PCR與Western blot檢測PVY CP積累量,結(jié)果表明,過表達(dá)組PVYmRNA含量基本持平,對照組呈上升趨勢,接種72 h,過表達(dá)組PVYmRNA含量顯著低于對照組,下調(diào)表達(dá)36.21%。Western blot結(jié)果顯示,接種48、72 h,過表達(dá)組PVY蛋白含量低于對照組,說明過表達(dá)抑制PVY的侵染。qRT-PCR檢測表達(dá),接種48、72 h,過表達(dá)組mRNA表達(dá)量極顯著高于對照組,分別為對照組的1.56、1.35倍,說明過表達(dá)促進(jìn)了的表達(dá)(圖7)。
NAC062是一種膜結(jié)合轉(zhuǎn)錄因子,屬于NAC類轉(zhuǎn)錄因子,N端有NAC保守結(jié)構(gòu)域,C末端有疏水跨膜結(jié)構(gòu)[31],主要參與植物抗逆反應(yīng)、激素信號傳導(dǎo)以及生長發(fā)育等過程。擬南芥中,被發(fā)現(xiàn)可被高鹽等非生物脅迫以及ABA等植物激素觸發(fā),參與植物抗旱反應(yīng);冷脅迫可使AtNAC062蛋白從細(xì)胞膜釋放并進(jìn)入細(xì)胞核,調(diào)節(jié)的表達(dá),增強(qiáng)植株對病原菌的抗性反應(yīng)。本研究以本氏煙cDNA為模板,擴(kuò)增得到序列,編碼646個氨基酸,N端28—179 aa為NAC結(jié)構(gòu)域,129—185 aa為DNA結(jié)合區(qū)域,C末端621—643 aa為疏水跨膜結(jié)構(gòu),與AtNAC062結(jié)構(gòu)相同。啟動子序列中包含多種脅迫反應(yīng)順式作用元件,例如轉(zhuǎn)錄表達(dá)的水楊酸響應(yīng)元件as-1,脫落酸反應(yīng)順式作用元件ABRE以及DRE、MYB、MYC等參與干旱、高鹽、低溫等脅迫誘導(dǎo)相關(guān)的順式作用元件,說明同類似,可參與抗逆、抗病反應(yīng)。
A:沉默NbNAC062后PVY侵染1、3、5、7 d,qRT-PCR檢測PVY CP mRNA變化Changes of PVY CP mRNA are detected by qRT-PCR when PVY infection was 1, 3, 5, 7 days after silencing NbNAC062;B:沉默NbNAC062后PVY侵染1、3、5、7 d,qRT-PCR檢測BiP變化Changes of BiP are detected by qRT-PCR when PVY infection was 1, 3, 5, 7 days after silencing NbNAC062;C:沉默NbNAC062后PVY侵染1、3、5、7 d,western blot檢測PVY蛋白量變化。每天取樣組中左側(cè)為對照右側(cè)為處理Changes of PVY protein are detected by western blot when PVY infection was 1, 3, 5, 7 days after silencing NbNAC062. In the daily sampling group, the left side is the control and the right side is the treatment;D:C對應(yīng)的Actin western blot蛋白雜交圖The western blot protein hybridization map of Actin corresponding to C
除冷脅迫外,內(nèi)質(zhì)網(wǎng)脅迫(endoplasmic reticulum stress,ER stress)也可激活NAC062發(fā)揮作用。許多RNA病毒可以利用內(nèi)質(zhì)網(wǎng)的蛋白合成功能附著在內(nèi)質(zhì)網(wǎng)上,完成自身的復(fù)制組裝[32-34]。作為RNA病毒的PVY,其進(jìn)入宿主細(xì)胞后,誘導(dǎo)內(nèi)質(zhì)網(wǎng)形成囊泡狀結(jié)構(gòu),以構(gòu)建病毒復(fù)制復(fù)合體(viral replication complex,VRC),完成自身增殖,因而PVY的復(fù)制增殖與內(nèi)質(zhì)網(wǎng)密切相關(guān)[35]。與此同時,大量病毒蛋白的聚集會造成內(nèi)質(zhì)網(wǎng)脅迫[36],細(xì)胞啟動UPR,以維持內(nèi)質(zhì)網(wǎng)穩(wěn)態(tài)。NAC類轉(zhuǎn)錄因子在UPR信號傳導(dǎo)中起到重要作用。擬南芥中,AtNAC062通常以休眠形式定位于細(xì)胞膜,內(nèi)質(zhì)網(wǎng)脅迫誘導(dǎo)劑tunicamycin,)處理后,引發(fā)ER stress,AtNAC062被激活從細(xì)胞膜轉(zhuǎn)移至細(xì)胞核,調(diào)節(jié)下游UPR相關(guān)基因等的表達(dá)[37]。分子伴侶是蛋白質(zhì)折疊過程中十分重要的輔助因子,能與非自然狀態(tài)的蛋白短暫互作,幫助它們穩(wěn)定原生狀態(tài),防止錯誤折疊。BiP(binding protein)蛋白是一種常見的分子伴侶,在內(nèi)質(zhì)網(wǎng)腔中含量較高,是UPR途徑中維持內(nèi)質(zhì)網(wǎng)穩(wěn)態(tài)的重要基因。本研究發(fā)現(xiàn)PVY侵染本氏煙前后,激光共聚焦觀察NbNAC062蛋白從細(xì)胞膜轉(zhuǎn)移至細(xì)胞核,PVY侵染前期,UPR相關(guān)基因表達(dá)量逐漸上調(diào),接種PVY 3 d,表達(dá)量為對照組的2.39倍,接種7 d后,表達(dá)量開始下調(diào),下調(diào)表達(dá)56.77%。說明PVY侵染會激活NbNAC062蛋白至細(xì)胞核發(fā)揮轉(zhuǎn)錄作用,及UPR相關(guān)基因在PVY侵染中發(fā)揮作用。伴隨的沉默與過量表達(dá),的表達(dá)量也相應(yīng)發(fā)生下調(diào)和上調(diào),分別下調(diào)10.77%—58.11%,上調(diào)1.35—1.56倍,說明NbNAC062轉(zhuǎn)錄因子可能調(diào)控的表達(dá),內(nèi)質(zhì)網(wǎng)脅迫時,通過加強(qiáng)轉(zhuǎn)錄達(dá)到維持內(nèi)質(zhì)網(wǎng)穩(wěn)態(tài)的作用,本研究還發(fā)現(xiàn)PVY侵染引起表達(dá)上調(diào),綜上推測,PVY利用內(nèi)質(zhì)網(wǎng)完成自身復(fù)制增殖時造成ER stress,寄主通過NbNAC062轉(zhuǎn)錄因子,上調(diào)表達(dá)維持內(nèi)質(zhì)網(wǎng)穩(wěn)態(tài),調(diào)節(jié)細(xì)胞穩(wěn)定性來增強(qiáng)寄主基礎(chǔ)抗性。
A:過表達(dá)NbNAC062后PVY侵染1、3、5、7 d,qRT-PCR檢測PVY CP mRNA變化Changes of PVY CP mRNA are detected by qRT-PCR when PVY infection was 1, 3, 5, 7 days after overexpression NbNAC062;B:過表達(dá)NbNAC062后PVY侵染1、3、5、7 d,qRT-PCR檢測BiP變化Changes of BiP are detected by qRT-PCR when PVY infection was 1, 3, 5, 7 days after overexpression NbNAC062;C:過表達(dá)NbNAC062后PVY侵染1、3、5、7 d,western blot檢測PVY蛋白量變化。每天取樣組中左側(cè)為對照右側(cè)為處理Changes of PVY protein are detected by Western blot when PVY infection was 1, 3, 5, 7 days after overexpression NbNAC062. In the daily sampling group, the left side is the control and the right side is the treatment;D:C對應(yīng)的Actin western blot蛋白雜交圖The western blot protein hybridization map of Actin corresponding to C
目前,關(guān)于的研究多數(shù)集中在非生物脅迫中,關(guān)于其增強(qiáng)病原菌抗性的研究也是基于冷脅迫誘導(dǎo),其在生物脅迫中的功能研究較少,尤其是在病毒侵染方面。本研究利用病毒介導(dǎo)的基因沉默(virus- induced gene silencing,VIGS)與瞬時過表達(dá)技術(shù),研究在PVY侵染過程中的作用,發(fā)現(xiàn)的表達(dá)量與PVY的積累量呈負(fù)相關(guān),證明對PVY侵染具有抑制作用,并調(diào)節(jié)下游相關(guān)基因的表達(dá),后續(xù)研究會通過敲除和過表達(dá)突變體,進(jìn)一步確認(rèn)這一結(jié)果。本試驗(yàn)為研究PVY侵染過程中寄主自我防衛(wèi)機(jī)制提供了新思路。目前,我國傳統(tǒng)的農(nóng)業(yè)、物理和化學(xué)防治方法對于病毒病的防治效果并不理想[38],鑒于對PVY的抑制作用,未來可考慮利用納米材料包裹,開發(fā)抗病毒納米藥劑。
NbNAC062屬于NAC類膜結(jié)合轉(zhuǎn)錄因子,PVY侵染本氏煙導(dǎo)致表達(dá)上調(diào),激活其從細(xì)胞膜轉(zhuǎn)移至細(xì)胞核,調(diào)控UPR相關(guān)基因表達(dá),維持細(xì)胞穩(wěn)態(tài)。本氏煙沉默導(dǎo)致PVY積累量上升;過表達(dá)則使PVY積累量下降,說明對PVY侵染有一定抑制作用,未來或可作為抗病毒藥劑開發(fā)的靶標(biāo)。
[1] HU X, KARASEV A V, BROWN C J, LORENZEN J H. Sequence characteristics of potato virus Y recombinants. Journal of General Virology, 2009, 90(12): 3033-3041.
[2] 朱賢朝, 王彥亭, 王智發(fā). 中國煙草病害. 北京: 中國農(nóng)業(yè)出版社, 2001: 210.
ZHU X C, WANG Y T, WANG Z F. Tobacco diseases of China. Beijing: China Agriculture Press, 2001: 210. (in Chinese)
[3] 王鳳龍, 周義和, 任廣偉. 中國煙草病害圖鑒. 北京: 中國農(nóng)業(yè)出版社, 2019: 6-7.
WANG F L, ZHOU Y H, REN G W. Illustrated book of tobacco diseases in China. Beijing: China Agriculture Press, 2019: 6-7. (in Chinese)
[4] CHEN S, LI F, LIU D, JIANG C, CUI L, SHEN L, LIU G, YANG A. Dynamic expression analysis of early response genes induced by potato virus Y in PVY-resistant. Plant Cell Reports, 2017, 36(2): 297-311.
[5] 姜瀚林, 田延平, 郭兆奎, 劉永中, 萬秀清, 劉文濤, 李現(xiàn)道, 李向東, 張永春, 孟凡武. 抗馬鈴薯Y病毒(PVY)和煙草花葉病毒(TMV)單聯(lián)弱毒疫苗的研制及防效測定. 中國煙草學(xué)報, 2020, 26(2): 65-70.
JIANG H L, TIAN Y P, GUO Z K, LIU Y Z, WAN X Q, LIU W T, LI X D, LI X D, ZHANG Y C, MENG F W. Preparation and control effect determination of mild vaccines against potato virus Y and tobacco mosaic virus. Acta Tabacaria Sinica, 2020, 26(2): 65-70. (in Chinese)
[6] 萬秀清, 喬嬋, 趙淑娟, 李若, 李麗杰, 郭振楠. 黑龍江煙區(qū)煙草馬鈴薯Y病毒株系的分子鑒定. 煙草科技, 2015, 48(10): 13-18, 25.
WAN X Q, QIAO C, ZHAO S J, LI R, LI L J, GUO Z N. Molecular identification of tobacco potato virus Y strains in heilongjiang tobacco planting areas. Tobacco Science and Technology, 2015, 48(10): 13-18, 25. (in Chinese)
[7] 陳德鑫, 王鳳龍, 李多川, 錢玉梅, 申莉莉. 山東煙草病毒病發(fā)生特點(diǎn)及防治對策. 中國煙草科學(xué), 2007, 28(1): 25-28.
CHEN D X, WANG F L, LI D C, QIAN Y M, SHEN L L. Epidemic characteristics of tobacco virus disease and control measures in shandong province. Chinese Tobacco Science, 2007, 28(1): 25-28. (in Chinese)
[8] 吉璐. 南荻抗逆相關(guān)NAC轉(zhuǎn)錄因子的克隆及功能鑒定[D]. 長沙: 湖南農(nóng)業(yè)大學(xué), 2013.
JI L. Cloning and function identification of stress resistance-related nac transcription factors from(Poaceae)[D]. Changsha: Hunan Agricultural University, 2013. (in Chinese)
[9] 付長春. NAC類轉(zhuǎn)錄因子參與調(diào)控番木瓜果實(shí)后熟過程中類胡蘿卜素代謝的機(jī)制研究[D]. 廣州: 華南農(nóng)業(yè)大學(xué), 2017.
FU C C. Mechanism analysis of NAC transcription factors in regulation of carotenoid biosynthesis during papaya fruit ripening[D]. Guangzhou: South China Agricultural University, 2017. (in Chinese)
[10] PENG H, CHENG H Y, CHEN C, YU X W, YANG J N, GAO W R, SHI Q H, ZHANG H, LI J G, MA H. A NAC transcription factor gene of chickpea (),, is involved in drought stress response and various developmental processes. Journal of Plant Physiology, 2009, 166(17): 1934-1945.
[11] ZHONG R, LEE C, YE Z H. Global analysis of direct targets of secondary wall NAC master switches in. Molecular Plant, 2010, 3(6): 1087-1103.
[12] ODA-YAMAMIZO C, MITSUDA N, SAKAMOTO S, OGAWA D, OHME-TAKAGI M, OHMIYA A. The NAC transcription factor ANAC046 is a positive regulator of chlorophyll degradation and senescence inleaves. Scientific Reports, 2016, 6: 23609.
[13] MENG C, YANG D Y, MA X C, ZHAO W Y, LIANG X Q, MA N N, MENG Q W. Suppression of tomato SlNAC1 transcription factor delays fruit ripening. Journal of Plant Physiology, 2016, 193: 88-96.
[14] DELESSERT C, KAZAN K, WILSON I W, VAN DER STRAETEN D, MANNERS J, DENNIS E S, DOLFERUS R. The transcription factor ATAF2 represses the expression of pathogenesis-related genes in. The Plant Journal, 2005, 43(5): 745-757.
[15] JENSEN M K, LINDEMOSE S, de MASI F, REIMER J J, NIELSEN M, PERERA V, WORKMAN C T, TURCK F, GRANT M R, MUNDY J, PETERSEN M, SKRIVER K. ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene. FEBS Open Bio, 2013, 3: 321-327.
[16] YOSHII M, YAMAZAKI M, RAKWAL R, KISHI-KABOSHI M, MIYAO A, HIROCHIKA H. The NAC transcription factor RIM1 of rice is a new regulator of jasmonate signaling. The Plant Journal, 2010, 61(5): 804-815.
[17] MARCINIAK S J, RON D. Endoplasmic reticulum stress signaling in disease. Physiological Reviews, 2006, 86(4): 1133-1149.
[18] 楊正婷, 劉建祥. 植物內(nèi)質(zhì)網(wǎng)脅迫應(yīng)答研究進(jìn)展. 生物技術(shù)通報, 2016, 32(10): 84-96.
YANG Z T, LIU J X. Endoplasmic reticulum stress response in plants. Biotechnology Bulletin, 2016, 32(10): 84-96. (in Chinese)
[19] KIM M J, PARK M J, SEO P J, SONG J S, KIM H J, PARK C M. Controlled nuclear import of the transcription factor NTL6 reveals a cytoplasmic role of SnRK2.8 in the drought-stress response. The Biochemical journal, 2012, 448(3): 353-363.
[20] SEO P J, KIM M J, SONG J S, KIM Y S, KIM H J, PARK C M. Proteolytic processing of anmembrane-bound NAC transcription factor is triggered by cold-induced changes in membrane fluidity. The Biochemical Journal, 2010, 427(3): 359-367.
[21] SEO P J, KIM M J, PARK J Y, KIM S Y, JEON J, LEE Y H, KIM J, PARK C M. Cold activation of a plasma membrane-tethered NAC transcription factor induces a pathogen resistance response in. The Plant Journal, 2010, 61(4): 661-671.
[22] BEAUCHEMIN C, BOUGIE V, LALIBERTé J F. Simultaneous production of two foreign proteins from a potyvirus-based vector. Virus Research, 2005, 112(1/2): 1-8.
[23] 龔明月, 段嘯天, 余婷婷, 王杰, 申莉莉, 李瑩, 劉明宏, 李永亮, 呂洪坤, 章松柏, 楊金廣. 煙草的克隆及對馬鈴薯Y病毒侵染煙草的促進(jìn)作用. 中國農(nóng)業(yè)科學(xué), 2020, 53(4): 771-781.
GONG M Y, DUAN X T, YU T T, WANG J, SHEN L L, LI Y, LIU M H, LI Y L, Lü H K, ZHANG S B, YANG J G. Cloning ofand its promoting effect on potato virus Y infection in. Scientia Agricultura Sinica, 2020, 53(4): 771-781. (in Chinese)
[24] SUN H J, SHEN L L, QIN Y X, LIU X W, HAO K Q, LI Y, WANG J, YANG J G , WANG F L.affects potato virus Y infection via regulation of endoplasmic reticulum luminal Ph. New Phytologist, 2018, 220(2): 539-552.
[25] KUMAR S, STECHER G, TAMURA K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016, 33(7): 1870-1874.
[26] 羅靜初. UniProt蛋白質(zhì)數(shù)據(jù)庫簡介. 生物信息學(xué), 2019, 17(3): 131-144.
LUO J C. A brief introduction to UniProt. Chinese Journal of Bioinformatics, 2019, 17(3): 131-144. (in Chinese)
[27] LETUNIC I, KHEDKAR S, BORK P. SMART: recent updates, new developments and status in 2020. Nucleic Acids Research, 2020, 49(D1): D458-D460.
[28] LETUNIC I, BORK P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Research, 2018, 46(D1): D493-D496.
[29] SCHULTZ J, MILPETZ F, BORK P, PONTING C P. SMART, a simple modular architecture research tool: identification of signaling domains. Proceedings of the National Academy of Sciences ofthe United States of America, 1998, 95(11): 5857-5864.
[30] EL-RAMI F E, SIKORA A E. Bioinformatics workflow for gonococcal proteomics//Methods in molecular biology.Springer Science+Business Media, 2019, 1997: 185-205.
[31] 陳倩, 謝旗. 內(nèi)質(zhì)網(wǎng)脅迫在植物中的研究進(jìn)展. 生物技術(shù)通報, 2018, 34(1): 15-25.
CHEN Q, XIE Q. The research progress of the endoplasmic reticulum (ER) stress response in plant. Biotechnology Bulletin, 2018, 34(1): 15-25. (in Chinese)
[32] VERCHOT J. Wrapping membranes around plant virus infection. Current Opinion in Virology, 2011, 1(5): 388-395.
[33] LALIBERTé J F, SANFA?ON H. Cellular remodeling during plant virus infection. Annual Review of Phytopathology, 2010, 48: 69-91.
[34] SUN Z T, YANG D, XIE L, SUN L Y, ZHANG S L, ZHU Q S, LI J M, WANG X, CHEN J. Rice black-streaked dwarf virus P10 induces membranous structures at the ER and elicits the unfolded protein response in. Virology, 2013, 447(1/2): 131-139.
[35] WEI T, HUANG T S, MCNEIL J, LALIBERTE J F, HONG J, NELSON R S, WANG A. Sequential recruitment of the endoplasmic reticulum and chloroplasts for plant potyvirus replication. Journal of Virology, 2010, 84(2): 799-809.
[36] 李方方. TMV、CMV誘導(dǎo)煙草內(nèi)質(zhì)網(wǎng)應(yīng)激及調(diào)控因子NbNAC089的功能分析[D]. 北京: 中國農(nóng)業(yè)科學(xué)院, 2017.
LI F F. TMV/CMV induces tobacco endoplasmic reticulum stress and functional characterization of regulator NbNAC089[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese)
[37] YANG Z T, LU S J, WANG M J, BID L, SUN L, ZHOU S F, SONG Z T, LIU J X. A plasma membrane-tethered transcription factor, NAC062/ANAC062/NTL6, mediates the unfolded protein response in. The Plant Journal, 2014, 79(6): 1033-1043.
[38] 彭曙光. 我國煙草病毒病的發(fā)生及綜合防治研究進(jìn)展. 江西農(nóng)業(yè)學(xué)報, 2011, 23(1): 115-117.
PENG S G. Research advance in occurrence and integrated control of tobacco virus diseases in China. Acta Agriculturae Jiangxi, 2011, 23(1): 115-117. (in Chinese)
Cloning ofand Its Inhibitory Effect on Potato Virus Y Infection
Qu XiaoLing, Jiao YuBing, Luo JianDa, SONG LiYun, LI Ying, Shen LilLi, Yang JinGuang, WANG FengLong
Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, Shandong
【】Potato Y virus (PVY) is one of the most important viruses that endanger the tobacco production in China. NAC transcription factors are closely related to plant disease resistance and stress resistance. The objective of this study is to clone, analyze its bioinformatics and research its role in the process of PVY infection, and to provide a target for the development of tobacco antiviral agents. 【】was used as the material to clone, and MEGA, UniProt, SMART, TMHMM Server 2.0, Sol Genomics Network, PlantCARE and other technologies were used for bioinformatics analysis. Laser confocal microscope and quantitative real-time PCR (qRT-PCR) were used to clarify the localization of NbNAC062 protein and the change ofmRNA expression before and after PVY infection. Based on virus-induced gene silencing (VIGS) technology and over-expression technology, the pTRV::NbNAC062 silencing vector and the pEarleyGate100::RFP::NbNAC062 over-expression vector were constructed. qRT-PCR and Western blot were used to detect the changes of PVY accumulation and the expression of unfolded protein response (UPR) related geneafter silencing and over-expression in.【】encodes 646 amino acids, the N-terminal 28-179 aa is the NAC domain, 129-185 aa is the DNA binding region, and the C-terminal 621-643 aa is a hydrophobic transmembrane structure. Phylogenetic tree and protein sequence analysis show thatis closely related to. Thepromoter contains a variety of cis-acting elements related to abscisic acid, methyl jasmonate, salicylic acid and stress response. PVY infection activates NbNAC062 to transfer from cell membrane to nucleus and inducesup-regulation of expression. For 5 and 7 days after PVY infection, themRNA level in the treatment group was 2.52 and 1.95 times of that of the control group, respectively. For 3 days after PVY infection, themRNA expression was 2.39 times of that of the control group, and for 7 days after PVY infection, the expression ofwas significantly lower than that of the control group, which was down-regulated by 56.77%.was silenced and PVY was inoculated, compared with the control group, the expression of PVYmRNA was up-regulated in the silence group at 3, 5, and 7 days after inoculation, which was 2.12, 2.41, and 1.38 times of that of the control group, respectively. However, the expression ofmRNA was down-regulated by 28.19%, 58.11%, and 10.77%, respectively. The PVY CP protein content of the silence group was also significantly higher than that of the control group at 5 and 7 days after vaccination.was over-expressed and PVY was inoculated, compared with the control group, the expression of PVYmRNA in the over-expression group at 24, 48, 72 hours after inoculation was down-regulated by 22.60%, 34.51%, and 36.21%, respectively, andmRNA was up-regulated at 48 and 72 hours after inoculation, which was 1.56 and 1.35 times of that of the control group, respectively. The content of PVY CP in the over-expression group was also lower than that of the control group.【】NbNAC062 belongs to the NAC class of membrane-bound transcription factors, which can be activated by PVY infection and transferred to the nucleus. It may regulate the expression of the UPR-related geneto promote cell survival and inhibit early PVY infection.
; potato virus Y (PVY); gene silencing; transient over-expression
10.3864/j.issn.0578-1752.2021.19.007
2021-02-22;
2021-04-14
中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)科技創(chuàng)新工程(ASTIP-TRIC04)、煙草綠色防控重大專項(xiàng)(110202001033(LS-02))、中國煙草總公司四川省公司科技項(xiàng)目(SCYC202008)、中國煙草總公司貴州省公司科技項(xiàng)目(201921)
曲瀟玲,E-mail:812718023@qq.com。通信作者申莉莉,E-mail:shenlili@caas.cn。通信作者楊金廣,E-mail:yangjinguang@caas.cn
(責(zé)任編輯 岳梅)