• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Three-dimensional massive Kiselev AdS black hole and its thermodynamics

    2021-10-12 05:32:54YuanZhangCuiandWeiXu
    Communications in Theoretical Physics 2021年10期

    Yuan-Zhang Cui and Wei Xu

    School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China

    Abstract We present an exact three-dimensional massive Kiselev AdS black hole solution.This Kiselev black hole is neither perfectly fluid,nor is it the quintessential solution,but the BTZ black hole modified by the anisotropic matter.This black hole possesses an essential singularity at its radial origin and a single horizon whose radius will increase monotonically when the parameter of the anisotropic matter field ω decreases.We calculate all thermodynamic quantities and find that the first law of thermodynamics of this massive Kiselev AdS black hole can be protected,while the consistent Smarr formula is only held in the extended thermodynamic phase space.After examining the sign of free energy, we conclude that there is no Hawking-Page transition since the massive Kiselev AdS black hole phase is always thermodynamically favored.Moreover,we study the phase transition between the Kiselev AdS black hole and BTZ black hole by considering the matchings for their temperature.We find that the Kiselev AdS black hole is still a thermodynamically more preferred phase,because it always has a smaller amount of free energy than the BTZ black hole, which seems to indicate that the anisotropic matter field may emerge naturally in BTZ black hole spacetime under some thermal fluctuations.We also show a first order phase transition between the Kiselev AdS black hole phase with - 1 < ω< and the black hole phase with < ω<0.As the Kiselev AdS black hole has some notable features on the phase transition of black holes in three dimensions, it provides important clues to further investigate these both surprising and similar behaviors in four and higher dimensions.

    Keywords: Kiselev black hole, black hole thermodynamics, three dimensions

    1.Introduction

    In the present day, it is a well-established fact that black hole thermodynamics could connect gravity and quantum mechanics closely.This has been a fascinating area of theoretical investigation in recent decades, in order to explore more clues on quantum gravity and its property.In particular, black hole thermodynamics continues to be a focus area for researchers,inspired by the previous prominent discoveries, i.e.the Hawking-Page transition between thermal AdS vacuum and Schwarzschild AdS black hole in four-dimensional Einstein gravity [1].This famous phase transition is interpreted as the confinement/deconfinement phase transition in gauge theory[2] inspired by the AdS/CFT correspondence [3–5].The research of black hole thermodynamics has been greatly improved because of this pioneering work by Hawking-Page.

    This paper will focus on the Kiselev black hole solution and its thermodynamics.The Kiselev black hole is an extremely popular toy model[6],which has accumulated over 300 citations, with most of the citing articles being published.Originally, the Kiselev black hole solution was used to explain the spacetime surrounded by quintessence dark energy [7].The matter field of the Kiselev black hole has an equation of state=ωρ, wherethe average pressure, ρ is the energy density and ω is the state parameter, hence it seems that the Kiselev black hole reflects some features about the spacetime surrounded by quintessence dark energy, in a sense.Recently Matt Visser pointed out that, the Kiselev black hole is neither perfect fluid, nor is it quintessence [8],while it is actually a spacetime surrounded by anisotropic matter field.The anisotropy of the stress-energy supporting the Kiselev black hole is discussed in detail in [9].Despite this terminological issue, the Kiselev black hole does have some interesting physical and mathematical properties.Besides, the Kiselev black hole has a great generality, since the w = 0 limit of former corresponds to the Schwarzschild black hole,itsw=limit reduces to the Reissner-Nordstrom black hole, and its w = -1 limit corresponds to the Schwarzschild-(A)dS black hole.Therefore the Kiselev black hole could be used as a useful theoretical laboratory for studying black hole physics.Recently, it was found that, the anisotropic matter field in the Kiselev black hole spacetime changes no matter the spacetime structure of black hole [6,10–17], but also black hole thermodynamics [17–26], which has consequently attracted considerable interest [6, 10–29].

    The main purpose of this paper is generalizing the discussion to three dimensions,studying the Kiselev black hole solution and thermodynamics in(2 + 1)dimensions.It is often much easier to obtain black hole solutions and analyze their thermodynamics in three dimensions than in four and other dimensions.Initiated in the early 1980s, gravity in (2 + 1)-dimensional spacetime has been a stirring topics of gravitational physics.Especially the discovery of the Banados-Teitelboim-Zanelli (BTZ) black hole[30]led to an increased interest in three-dimensional gravity,not only because black hole solutions exist, but also because such theories are ideal theoretical laboratories for studying AdS/CFT[31–35].Besides, the study of the three-dimensional massive Kiselev AdS black hole solution and its thermodynamics,is also expected to shed some lights on the understanding of more realistic or complicated cases of four-dimensional gravities, and a further understanding of the relationship between anisotropic matter and black holes.Moreover, considering black hole thermodynamics and phase transitions of the BTZ black hole modified by anisotropic matter,could also improve the understanding of the quantum and holographic properties of gravity,and induce many applications about the mutual study on particle physics[31,32]and the condensed-matter theory[33–35]in the spirit of the AdS/CFT correspondence.

    Actually, three-dimensional massive Kiselev AdS black hole solution is neither perfect fluid, nor is it quintessence,which is consistent with the case in four dimensions.It just corresponds to the BTZ black hole surrounded by an anisotropic matter field.On the other hand, it is shown that, the parameter ω of anisotropic matter field brings a notable effect on the spacetime structure and black hole thermodynamics in three dimensions,especially for the phase transitions.It is found that the spacetime of BTZ solution is greatly modified by anisotropic matter,where an essential singularity at r = 0 emerges and there is a single horizon with its radius increasing monotonically when ω decreases from 0 to-1.There is no Hawking-Page transition, since the free energy of BTZ black hole modified by anisotropic matter is negative, which indicates that the Kiselev black hole phase is always thermodynamically favored.Beside,a possible phase transition between the massive Kiselev AdS black hole and BTZ black hole could be arisen under some thermal fluctuations.After considering the matchings for black hole temperature,we show that the massive Kiselev AdS black hole is a thermodynamically more preferred phase, since it always has smaller free energy than the BTZ black hole.We also find an unexpected first order phase transition between the Kiselev AdS black hole phase with - 1 <ω<-and the Kiselev AdS black hole phase withOne can expect that a natural generalization for these phase transitions between the four-dimensional Kiselev AdS black hole and Schwarzschild AdS black hole may exist.

    The paper is organized as follows.In section 2, we will present the three-dimensional massive Kiselev AdS black hole solution.In section 3,we obtain thermodynamics of this black hole, including the thermodynamical quantities and laws.In section 4, we discuss the phase transitions between this three-dimensional Kiselev AdS black hole and BTZ black hole.Finally some concluding remarks are given in section 5.

    2.Three-dimensional massive Kiselev AdS black hole solution

    We begin with the metric ansatz for a black hole solution in three dimensions

    Einstein’s field equations in three-dimensional AdS spacetime with non-vanishing matter field should be

    where M is the black hole mass as calculated in next section.

    Then substituting the above equation into Einstein’s field equations, it is easy to derive

    For the average pressure, one can obtain=ωρ.However, such an average pressure can always be defined,other than refer in particular to the spacetime surrounded by quintessence.Indeed, for the pressure ratio and relative pressure anisotropy, we have The matter field is distinctly not isotropic whenω≠-11The case with ω = -1 is just the BTZ black hole with an un-renormalized cosmological constant., so it is not a perfect fluid.Therefore the three-dimensional massive Kiselev black hole does characterize the BTZ black hole surrounded by anisotropic matter.This is consistent with the case of the Kiselev black hole in four dimensions [8, 9].

    Since the energy density should be positive, it results in aω < 0.Without loss of generality, we choose a > 0.Then the parameter ω < 0 is needed.As shown later, the solution equations (1), (3) describes the three-dimensional massive Kiselev AdS black hole solution.In particular, this solution with a = 0 reduces to the well known BTZ black hole [30].For the parameter ω, since the asymptotic AdS solution requires thatshould be the leading term of f(r) at ther→+∞limit, there exists an additional constraint-2ω < 2,namely,-1 < ω < 0.Noting that the limit ω = 0 corresponds to the BTZ black hole with an un-renormalized black hole mass, and the limit ω = -1 corresponds to the BTZ black hole with an un-renormalized cosmological constant.This is consistent with the discussion about the energy conditions.One can get that

    For the case discussed in this paper, i.e.

    the null energy condition and the weak energy condition are both satisfied, while the strong energy condition leads to a stronger constraint<ω<0.

    Now we present the Ricci scalar as an example of the geometric quantities of this solution

    which shows that the solution under the condition equation (7) has an essential singularity at r = 0 whenevera≠0.As we are interested in black hole solutions, this solution needs to contain one event horizon to surround the singularity.We consider the metric function equation (3) to study the horizon structure.After a little calculation, one can find that there is a zero point for f′(r),which corresponds to a minimum of f(r).This indicates that f(r) will decrease from f(0) = -M to a minimum, and then increase tof(+∞) = +∞in the region r > 0, which replies that the curve for f(r) will cross the horizontal axes one time,corresponding to a single horizon, i.e.the event horizon r = r+.One can see figure 1 for a clear understanding about the horizon structure.From figure 1,one can also find that the radius of the event horizon r+will increase monotonically when ω decreases from 0 to -1.

    Figure 1.Horizon structure for the three-dimensional massive Kiselev AdS black holes with different ω.The solid curve denotes the BTZ black hole case with ω = 0.The values of ω for the curves decrease from left to right in the first quadrant.

    3.Thermodynamics of three-dimensional massive Kiselev AdS black hole

    For this Kiselev AdS black hole, the mass can be calculated by adopting the Brown-York method [36].One can find the quasilocal mass m(r) at r taking the form [36–38]whereis the quasilocal energy at r, andc orresponds to a background metric function(i.e.the massless BTZ spacetime)that determines the zero of the energy.As a result, one can take the following limit to obtain the black hole mass:limr→∞m(r) =M.Since f(r+) = 0, from equation (3) we can derive another form of the black hole mass, i.e.

    The black hole entropy follows the area law and should be

    where AHis the area of the event horizon.The temperature of this three-dimensional massive Kiselev AdS black hole can be derived as

    ForT≥ 0,we can obtain a lower bound for the radius of the Kiselev AdS black hole

    where rexdenotes the horizon of the extremal black hole.After combining these quantities, M, T, and S, we can verify that the first law of thermodynamics

    holds.For the Smarr formula, we give an additional discussion in the appendix since the main aim of this paper is the thermodynamics and phase transitions of the massive Kiselev AdS black hole in the non-extended thermodynamic phase space.

    In the rest of this paper, in order to study the global thermodynamic stability and phase transitions of the threedimensional massive Kiselev AdS black hole, it is necessary to work with the free energy

    Then we focus on the existence of the Hawking-Page transition, which means that the case with a negative F should be regarded as the Kiselev AdS black hole solution being thermodynamically favored over the background spacetime; and the case with vanishing F just corresponds to the famous Hawking-Page transition point,which characterizes the phase transition between the Kiselev AdS black hole phase and the background spacetime phase.

    From equation (14), it is clear that for black holes withthe free energies are always negative;while the free energies have zero for black holes withThis seems to suggest the existence of the Hawking-Page transition of three-dimensional massive Kiselev AdS black hole.However, we depict the free energies for the Kiselev AdS black holes with different ω in figure 2, which always shows some negative free energies.In fact, this can be understood naturally as the zero free energy phase for black holes withcorresponds to a negative temperature which is unacceptable physically.Now we derive directly the sign of free energies for massive Kiselev AdS black holes with different ω ∈ (-1, 0).The free energy can be rewritten asFrom equation(12),we can obtain(2ω+ 1)a=a(ω+ 1) >0, hence F < 0 for Kiselev black holes with ω ∈ (-1,0).Finally,we can conclude that the free energy of three-dimensional massive Kiselev AdS black hole is always negative; this Kiselev AdS black hole is thermodynamically favored over the background spacetime and there is no Hawking-Page transition.

    Figure 2.Free energies for three-dimensional Kiselev AdS black holes with different ω.For the curves of free energy,the values of ω decrease from left to right.

    4.Phase transitions between three-dimensional Kiselev AdS black hole and BTZ black hole

    In this section, we compare the free energies for a threedimensional Kiselev AdS black hole and the BTZ black hole,in order to find the more stable one.In the vanishing-matter limit, i.e.a→0, the Einstein equations equation (2) admit the BTZ black hole [30]

    Then the thermodynamic quantities of the BTZ black hole are given by

    To compare the free energies of the BTZ black hole and the Kiselev black hole, we need to match the temperature=Tof these two black holes, i.e.

    In figure 3,we plot the free energies F of BTZ black hole and three-dimensional Kiselev AdS black holes with different values of ω.We find that the free energies F of the threedimensional Kiselev AdS black holes are always smaller than that of the BTZ black hole when T > 0.

    Then we derive the above result analytically and directly.It is easy to obtain the free energyof the BTZ black hole as a function of the temperaturei.e.

    where the temperature=Tof black holes are matched.After inserting equations(11),(14)and equation(17),we can compare the free energies of the BTZ black hole and Kiselev black hole

    Figure 3.F–T diagram for three-dimensional Kiselev AdS black holes with different ω.The values of ω for the curves decrease from left to right.The red solid curve corresponds to the BTZ case.

    To find the sign of△F, we introduce its derivative

    Hence the discussion is divided into two cases:

    Now we can conclude that>Ffor Kiselev AdS black holes with≤ω<0.

    · When - 1 <ω<we can find that △F′(r+)has a single zero point located at(2ωq+1)aω q?2, which corresponds to the minimum of△F; and when r+> r0, the value of△Falso increases monotonically.Since r+> rex> r0, one can find again that△F>△F∣r+=rex>0, and>Ffor Kiselev AdS black holes with.

    Now it is clear thatF?>Fwhen ω ∈ (-1,0),i.e.the free energies of the Kiselev AdS black holes are really always smaller than that of BTZ black hole.The relationship between the free energies of the BTZ black hole and the threedimensional Kiselev AdS black hole is not affected by the values of the parameter ω ∈ (-1,0)of the anisotropic matter.This means that the three-dimensional massive Kiselev AdS black hole is more thermodynamically preferred.A possible thermodynamical phase transition for the BTZ black hole becoming the Kiselev black hole exists, provided that there are some thermal fluctuations.This indicates that, in the thermodynamic frame, the anisotropic matter field seems to emerge naturally in the BTZ black hole spacetime under some thermal fluctuations.This is different from the cases in the BTZ black hole spacetime modified by other matter fields.For example, it is found that the BTZ black hole always has smaller free energy than the three-dimensional scalar black hole, indicating the BTZ black hole is a thermodynamically more preferred phase [39].

    Finally, for massive Kiselev AdS black holes with ω ∈ (-1, 0), it is also interesting to study: which black hole phase with ω is more thermodynamically preferred? We match the temperature of the Kiselev AdS black holes with different ω as well,and plot their F–T diagrams in figure 4.In this figure, ω of curves increase from up to down at low temperature; while ω of curves decrease from up to down at high temperature.One can find that the Kiselev AdS black hole phase withhas smaller free energy and is more thermodynamic stable globally when the temperature is low, while the Kiselev AdS black hole phase withhas smaller free energy and is more thermodynamic stable globally when the temperature is high.The Kiselev AdS black hole phase withω=always has bigger free energy and is not thermodynamic stable globally no matter whether the temperature is low or high.At the medium temperature, a possible phase transition between the Kiselev AdS black holes with different ω exists.It seems that when the temperature increases, the Kiselev AdS black hole phase with<ω<0changes into the Kiselev AdS black hole phase withunder a first order phase transition.However, it is difficult to discuss the phase diagram of this first order phase transition, since the function F(T) for Kiselev AdS black holes with different ω have very complicated forms.

    Figure 4.Phase transition between three-dimensional massive Kiselev AdS black holes with different ω.

    5.Conclusion

    In this paper, we present the three-dimensional massive Kiselev AdS black hole solution with the parameter ω ∈(-1,0).It is stated that this black hole is neither perfect fluid,nor is it quintessence, but just the BTZ solution modified by anisotropic matter.After examining the geometric quantities of this solution, it is found that an essential singularity at r = 0 exists.We also studied the horizon structure of the Kiselev solution, and found an event horizon whose radius will increase monotonically when ω decreases from 0 to -1.Then we studied the thermodynamics of the massive Kiselev AdS black hole in three dimensions,gave the thermodynamic quantities, including the black hole mass, entropy, temperature and others, and found that the first law of thermodynamics of this massive Kiselev AdS black hole can be protected, while the consistent Smarr formula is only held in the extended thermodynamic phase space.We also disclosed that there is no Hawking-Page transition between the massive Kiselev AdS black hole and the background spacetime.Since the free energy of three-dimensional Kiselev AdS black hole is negative,the black hole phase is always thermodynamically favored.

    On the other hand, we found that a possible phase transition between the massive Kiselev AdS black hole and BTZ black hole under some thermal fluctuations exists.Considering the matchings for the temperature, we find that the massive Kiselev AdS black hole is a thermodynamically more preferred phase, since it always has smaller free energy than the BTZ black hole.In this sense,we argued that,in the thermodynamic frame, the anisotropic matter seems to emerge naturally in the BTZ black hole spacetime under some thermal fluctuations.Moreover, we discussed which black hole phase with different ω is more thermodynamically preferred.After comparing their free energies in the F–T diagram, it shows that when the temperature increases, the Kiselev AdS black hole phase withchanges into the Kiselev AdS black hole phase withunder a first order phase transition.

    In conclusion, the Kiselev black hole contains some notable features on the black hole thermodynamics in three dimensions, especially for the phase transition.Hence it would be of great importance to investigate the theoretical properties and thermodynamics of the Kiselev black holes.Besides,since the properties of three-dimensional black holes are found always to be similar to those of four-dimensional solutions, it is a natural generalization to explore the phase transitions between the four-dimensional Kiselev AdS black hole and the Schwarzschild black hole.This is left to a future task.

    Acknowledgments

    Wei Xu was supported by the National Natural Science Foundation of China (NSFC) and the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan).

    Appendix.Thermodynamical quantities and the consistent Smarr formula in the extended thermodynamic phase space

    The Smarr formula, together with the first law of black hole thermodynamics,play an important role in black hole physics.We firstly consider the Smarr formula in the non-extended thermodynamic phase space by supposing M = xTS, which can be simplified asHowever, it is easy to see that the Smarr formulaTSonly holds for the cases with ω = -1 or a = 0, which are both BTZ black hole as shown in section 2.This indicates that it is impossible to maintain the first law and the Smarr formula for threedimensional Kiselev AdS black hole simultaneously in the non-extended thermodynamic phase space.This is consistent with all previous discussions for black holes in general dimensions.

    Actually, for black hole solutions with a non-vanishing cosmological constant, in order to maintain the scaling relation of the Smarr formula, the cosmological constant should be treated as thermodynamic pressure [40–45]

    Meanwhile the black hole mass,which is usually regarded as analogous thermal internal energy in black hole thermodynamics, should be interpreted as a gravitational analog of thermodynamic enthalpy [46], i.e.M ≡ H.These have been investigated for many different situations (see some recent reviews in [47, 48] and references therein), and then the consistent expressions for the Smarr formula and the first law could been constructed.

    In the extended thermodynamic phase space, thermodynamic quantities can be re-expressed as

    The consistent first law of thermodynamics could be generalized as

    where the conjugate thermodynamic variables can be obtain by

    In order to obtain the correct Smarr formula, we now make some scaling arguments (see, e.g.[43, 46]).Since the black hole enthalpy H is a homogeneous function of entropy S, thermodynamic pressures P and variable a, and that M scales as [length]0, S scales as [length]1, P scales as[length]-2, and a scales as [length]2ω, we find that the Smarr formula for the black hole under consideration reads

    which is easy to check that it is really correct.

    Finally, one should note that, in the extended thermodynamic phase space,people always work with the Gibbs free energy G = H - TS to study the global thermodynamic stability and phase transitions of black hole, which takes actually the same value with the free energy F = M - TS in the non-extended thermodynamic phase space since M ≡ H.This means that the existence of Hawking-Page transition and other phase transitions of AdS black holes will have the same behavior in these two frames.One can find some examples in[49–51].

    一二三四在线观看免费中文在| 亚洲精品一区蜜桃| 一区在线观看完整版| 51午夜福利影视在线观看| 亚洲一码二码三码区别大吗| 亚洲一码二码三码区别大吗| 三级毛片av免费| 男女高潮啪啪啪动态图| av国产精品久久久久影院| 真人做人爱边吃奶动态| 免费在线观看视频国产中文字幕亚洲 | 一本大道久久a久久精品| 777久久人妻少妇嫩草av网站| 女人被躁到高潮嗷嗷叫费观| 两个人免费观看高清视频| 国产av精品麻豆| 国产成人影院久久av| 麻豆国产av国片精品| 大片电影免费在线观看免费| 国产日韩一区二区三区精品不卡| 热99国产精品久久久久久7| 纯流量卡能插随身wifi吗| 人妻 亚洲 视频| 日韩,欧美,国产一区二区三区| 亚洲男人天堂网一区| 91成年电影在线观看| 国产有黄有色有爽视频| 国产精品偷伦视频观看了| 中文精品一卡2卡3卡4更新| 黑人欧美特级aaaaaa片| 精品卡一卡二卡四卡免费| 欧美乱码精品一区二区三区| 男人爽女人下面视频在线观看| 九色亚洲精品在线播放| 好男人电影高清在线观看| 精品一品国产午夜福利视频| 欧美激情 高清一区二区三区| 亚洲av日韩精品久久久久久密| 欧美xxⅹ黑人| 国产成人精品无人区| 亚洲精品在线美女| 国产1区2区3区精品| 午夜日韩欧美国产| 中文字幕精品免费在线观看视频| 久久国产精品影院| 黄色 视频免费看| 18禁观看日本| 女人久久www免费人成看片| 欧美日韩视频精品一区| 国产成人a∨麻豆精品| 午夜精品国产一区二区电影| 亚洲国产日韩一区二区| 菩萨蛮人人尽说江南好唐韦庄| 午夜福利视频精品| 一个人免费看片子| cao死你这个sao货| 亚洲av电影在线观看一区二区三区| 亚洲精品一卡2卡三卡4卡5卡 | 成在线人永久免费视频| 可以免费在线观看a视频的电影网站| 91九色精品人成在线观看| 精品人妻一区二区三区麻豆| 黄色视频,在线免费观看| 老司机午夜十八禁免费视频| 黑人操中国人逼视频| 男人舔女人的私密视频| 午夜福利在线免费观看网站| 在线av久久热| 手机成人av网站| av欧美777| 精品福利永久在线观看| 中文字幕最新亚洲高清| 免费在线观看影片大全网站| 亚洲人成77777在线视频| 性少妇av在线| 国产精品熟女久久久久浪| 巨乳人妻的诱惑在线观看| 91av网站免费观看| 亚洲精品国产一区二区精华液| 欧美国产精品va在线观看不卡| 国产一区有黄有色的免费视频| 日韩欧美免费精品| 国产精品免费大片| 激情视频va一区二区三区| 人人妻人人爽人人添夜夜欢视频| 国产一区二区在线观看av| 欧美日韩国产mv在线观看视频| www.自偷自拍.com| 日韩视频一区二区在线观看| 十分钟在线观看高清视频www| 无限看片的www在线观看| 少妇精品久久久久久久| 高清黄色对白视频在线免费看| 自拍欧美九色日韩亚洲蝌蚪91| 五月天丁香电影| 精品国产一区二区三区四区第35| 91国产中文字幕| 日本av手机在线免费观看| 悠悠久久av| 女人久久www免费人成看片| 亚洲国产av影院在线观看| 亚洲成人手机| 青春草视频在线免费观看| 欧美精品一区二区大全| 中国国产av一级| 在线观看www视频免费| 日本黄色日本黄色录像| 午夜老司机福利片| 下体分泌物呈黄色| 亚洲久久久国产精品| 最黄视频免费看| 精品高清国产在线一区| 丝袜喷水一区| 又大又爽又粗| 亚洲国产欧美网| 国产亚洲av片在线观看秒播厂| 满18在线观看网站| 伦理电影免费视频| 久久久久久久国产电影| 亚洲欧美精品自产自拍| 亚洲av电影在线观看一区二区三区| 婷婷成人精品国产| 国产亚洲精品久久久久5区| 成人三级做爰电影| 999久久久精品免费观看国产| 亚洲中文av在线| 操美女的视频在线观看| 亚洲va日本ⅴa欧美va伊人久久 | 国产成人av教育| 一本综合久久免费| 18禁国产床啪视频网站| 中文字幕人妻熟女乱码| 五月天丁香电影| 热99久久久久精品小说推荐| 日本一区二区免费在线视频| 一本久久精品| 热99久久久久精品小说推荐| 亚洲熟女精品中文字幕| 高清欧美精品videossex| 在线观看免费视频网站a站| 黄片大片在线免费观看| 精品少妇内射三级| 国产精品国产av在线观看| 欧美成狂野欧美在线观看| 美女福利国产在线| 国产一区有黄有色的免费视频| 欧美精品一区二区大全| 亚洲国产欧美在线一区| 国产老妇伦熟女老妇高清| 涩涩av久久男人的天堂| 精品人妻熟女毛片av久久网站| 午夜老司机福利片| 亚洲精品第二区| 日本黄色日本黄色录像| 欧美日韩亚洲国产一区二区在线观看 | 国产精品成人在线| 午夜福利影视在线免费观看| 久久亚洲精品不卡| 热99re8久久精品国产| av不卡在线播放| 欧美变态另类bdsm刘玥| 亚洲国产av新网站| 日韩一区二区三区影片| 叶爱在线成人免费视频播放| 国产精品免费大片| av线在线观看网站| 视频在线观看一区二区三区| 丰满少妇做爰视频| 国产精品二区激情视频| 中文字幕色久视频| 免费在线观看影片大全网站| 国产亚洲精品久久久久5区| 正在播放国产对白刺激| 丁香六月天网| 欧美成狂野欧美在线观看| 亚洲专区字幕在线| 美女高潮喷水抽搐中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 手机成人av网站| 精品少妇黑人巨大在线播放| 日韩一卡2卡3卡4卡2021年| a级毛片黄视频| 亚洲男人天堂网一区| 免费不卡黄色视频| 国产视频一区二区在线看| 性高湖久久久久久久久免费观看| av又黄又爽大尺度在线免费看| 亚洲中文字幕日韩| 国产亚洲欧美在线一区二区| av网站在线播放免费| 国产无遮挡羞羞视频在线观看| 午夜福利在线免费观看网站| 欧美国产精品一级二级三级| 亚洲专区中文字幕在线| 中国美女看黄片| 免费一级毛片在线播放高清视频 | 免费观看av网站的网址| 亚洲 欧美一区二区三区| 一个人免费看片子| 国产极品粉嫩免费观看在线| a 毛片基地| 久久久久精品人妻al黑| 亚洲综合色网址| 超碰97精品在线观看| 少妇裸体淫交视频免费看高清 | 久久久国产欧美日韩av| 欧美成狂野欧美在线观看| 国产在视频线精品| 欧美日本中文国产一区发布| 欧美国产精品一级二级三级| 亚洲 国产 在线| 高清黄色对白视频在线免费看| 精品国产乱子伦一区二区三区 | 久久国产精品人妻蜜桃| 国产真人三级小视频在线观看| 成人黄色视频免费在线看| 精品国产国语对白av| 久久久欧美国产精品| 国产麻豆69| 久热爱精品视频在线9| 成人免费观看视频高清| 天堂8中文在线网| 免费黄频网站在线观看国产| 国产色视频综合| 亚洲精品国产av成人精品| 亚洲国产精品999| 夜夜夜夜夜久久久久| 国产亚洲一区二区精品| 纵有疾风起免费观看全集完整版| 精品卡一卡二卡四卡免费| 国产91精品成人一区二区三区 | 国产在视频线精品| 日本黄色日本黄色录像| 久久午夜综合久久蜜桃| 午夜免费观看性视频| 黄色片一级片一级黄色片| 亚洲欧美精品综合一区二区三区| 午夜福利免费观看在线| av一本久久久久| 激情视频va一区二区三区| 国产欧美亚洲国产| 久久久精品国产亚洲av高清涩受| 下体分泌物呈黄色| 99精品欧美一区二区三区四区| 亚洲一卡2卡3卡4卡5卡精品中文| 少妇猛男粗大的猛烈进出视频| 日本五十路高清| 黄频高清免费视频| 爱豆传媒免费全集在线观看| 欧美国产精品va在线观看不卡| 少妇精品久久久久久久| 叶爱在线成人免费视频播放| 成人三级做爰电影| 国产精品99久久99久久久不卡| 午夜影院在线不卡| 欧美在线一区亚洲| 国产男女内射视频| 欧美成人午夜精品| 欧美激情 高清一区二区三区| 亚洲美女黄色视频免费看| 久久影院123| 一本大道久久a久久精品| av视频免费观看在线观看| 久久久国产成人免费| 777久久人妻少妇嫩草av网站| 久久女婷五月综合色啪小说| 国产日韩一区二区三区精品不卡| 欧美97在线视频| 三级毛片av免费| 性色av一级| 色94色欧美一区二区| 国产熟女午夜一区二区三区| 一级毛片精品| 久久国产精品影院| 国产精品国产av在线观看| 国产精品一区二区在线观看99| 色婷婷av一区二区三区视频| 亚洲第一av免费看| 国产精品一二三区在线看| 国产真人三级小视频在线观看| 男女免费视频国产| 亚洲精品久久午夜乱码| 国产一区有黄有色的免费视频| 超色免费av| 天天躁日日躁夜夜躁夜夜| 亚洲国产看品久久| 亚洲av国产av综合av卡| 国产成人精品久久二区二区免费| 在线观看人妻少妇| 国产成人影院久久av| 在线观看舔阴道视频| 欧美精品高潮呻吟av久久| 久久久久久久久久久久大奶| 一级毛片女人18水好多| 精品人妻1区二区| 丝袜美腿诱惑在线| av一本久久久久| 国产日韩欧美亚洲二区| 免费看十八禁软件| 青青草视频在线视频观看| 欧美 日韩 精品 国产| 国产欧美亚洲国产| 亚洲欧美成人综合另类久久久| 国产成人精品久久二区二区免费| av在线app专区| 国产成人精品无人区| 青青草视频在线视频观看| 每晚都被弄得嗷嗷叫到高潮| 国产亚洲欧美在线一区二区| 十分钟在线观看高清视频www| 男人爽女人下面视频在线观看| 国产一卡二卡三卡精品| 亚洲精品久久久久久婷婷小说| 丁香六月欧美| 精品亚洲成a人片在线观看| 欧美日韩福利视频一区二区| 黄色 视频免费看| 嫁个100分男人电影在线观看| 老熟妇乱子伦视频在线观看 | 一进一出抽搐动态| 亚洲精品在线美女| tocl精华| 黄色 视频免费看| 国产精品偷伦视频观看了| 国产精品99久久99久久久不卡| 男女免费视频国产| 无限看片的www在线观看| 精品久久久久久久毛片微露脸 | 蜜桃在线观看..| 可以免费在线观看a视频的电影网站| av天堂在线播放| 人人妻人人澡人人看| 亚洲国产欧美日韩在线播放| 69精品国产乱码久久久| 12—13女人毛片做爰片一| 久久精品亚洲av国产电影网| 亚洲中文字幕日韩| 成人手机av| 国产视频一区二区在线看| 中亚洲国语对白在线视频| 色婷婷久久久亚洲欧美| 精品福利永久在线观看| av免费在线观看网站| 大型av网站在线播放| 国产精品久久久久成人av| 免费高清在线观看日韩| 午夜福利影视在线免费观看| 天堂中文最新版在线下载| 日韩免费高清中文字幕av| 午夜福利在线免费观看网站| 女人爽到高潮嗷嗷叫在线视频| 91成年电影在线观看| 美女福利国产在线| 成在线人永久免费视频| 亚洲专区字幕在线| 久久精品国产亚洲av高清一级| 日韩免费高清中文字幕av| 黄色视频,在线免费观看| 亚洲av成人一区二区三| 国产有黄有色有爽视频| 亚洲va日本ⅴa欧美va伊人久久 | 18禁黄网站禁片午夜丰满| 少妇人妻久久综合中文| 日本一区二区免费在线视频| 手机成人av网站| 视频区欧美日本亚洲| 久久久精品94久久精品| 亚洲 国产 在线| 一级,二级,三级黄色视频| 精品少妇内射三级| 国产一卡二卡三卡精品| 国产男人的电影天堂91| 久久久久久免费高清国产稀缺| 精品免费久久久久久久清纯 | 久久精品国产亚洲av香蕉五月 | av在线app专区| 亚洲欧美精品自产自拍| 免费在线观看日本一区| 亚洲 国产 在线| 中亚洲国语对白在线视频| 国产1区2区3区精品| 日韩视频在线欧美| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲中文日韩欧美视频| 日韩视频在线欧美| 精品国产一区二区久久| 两性午夜刺激爽爽歪歪视频在线观看 | 久久国产精品影院| 亚洲av国产av综合av卡| 国产无遮挡羞羞视频在线观看| 亚洲色图 男人天堂 中文字幕| 超碰97精品在线观看| 久9热在线精品视频| 欧美亚洲日本最大视频资源| 国产精品成人在线| 18禁观看日本| 一本—道久久a久久精品蜜桃钙片| 丁香六月天网| 国产极品粉嫩免费观看在线| 99热全是精品| 欧美日韩视频精品一区| 婷婷成人精品国产| 久久久久国内视频| 一边摸一边抽搐一进一出视频| a级毛片在线看网站| 亚洲精品成人av观看孕妇| 久久精品亚洲av国产电影网| 少妇粗大呻吟视频| 精品一区二区三区四区五区乱码| 欧美av亚洲av综合av国产av| 欧美另类一区| 亚洲精品美女久久久久99蜜臀| 久久久久久久精品精品| 老司机影院毛片| 国产成+人综合+亚洲专区| 男女免费视频国产| 一边摸一边做爽爽视频免费| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品影院久久| 欧美一级毛片孕妇| 久久毛片免费看一区二区三区| 两个人看的免费小视频| 欧美激情极品国产一区二区三区| 一区二区三区激情视频| 欧美成狂野欧美在线观看| 欧美日韩亚洲高清精品| 国产一区二区在线观看av| 精品少妇一区二区三区视频日本电影| 嫁个100分男人电影在线观看| 亚洲精品国产区一区二| 人人妻人人澡人人看| videos熟女内射| 成人三级做爰电影| 免费在线观看完整版高清| 亚洲色图综合在线观看| 国产有黄有色有爽视频| 国产精品1区2区在线观看. | 欧美老熟妇乱子伦牲交| 国产成人免费无遮挡视频| 国产精品av久久久久免费| 在线十欧美十亚洲十日本专区| av超薄肉色丝袜交足视频| 一区二区三区激情视频| 亚洲欧美成人综合另类久久久| 午夜福利视频在线观看免费| 国产男女内射视频| 日本精品一区二区三区蜜桃| 精品国产国语对白av| 亚洲欧美一区二区三区黑人| 日韩一区二区三区影片| 亚洲欧美成人综合另类久久久| av在线老鸭窝| 男女高潮啪啪啪动态图| 19禁男女啪啪无遮挡网站| 亚洲国产欧美网| 亚洲欧美一区二区三区黑人| 国产精品国产三级国产专区5o| 亚洲一卡2卡3卡4卡5卡精品中文| 在线观看人妻少妇| 国产高清videossex| 亚洲精品美女久久av网站| 欧美日韩国产mv在线观看视频| 亚洲一码二码三码区别大吗| 精品国产超薄肉色丝袜足j| 三级毛片av免费| 日本欧美视频一区| 久久久久久久久免费视频了| 久久精品人人爽人人爽视色| 老司机影院成人| 亚洲精品自拍成人| 欧美 日韩 精品 国产| 国产成人免费观看mmmm| 日韩欧美一区视频在线观看| 久久久久久久精品精品| 肉色欧美久久久久久久蜜桃| 日韩一区二区三区影片| 亚洲国产av新网站| 午夜免费观看性视频| 亚洲精品久久午夜乱码| 免费观看人在逋| 国产精品一区二区精品视频观看| 午夜精品久久久久久毛片777| 精品亚洲成国产av| 欧美另类一区| 五月开心婷婷网| 欧美 亚洲 国产 日韩一| 丝袜人妻中文字幕| 国产在线一区二区三区精| 熟女少妇亚洲综合色aaa.| 黄片小视频在线播放| 午夜日韩欧美国产| a级毛片在线看网站| 女人被躁到高潮嗷嗷叫费观| 亚洲国产欧美在线一区| 在线精品无人区一区二区三| 亚洲专区字幕在线| 在线观看免费日韩欧美大片| 精品人妻1区二区| 欧美国产精品一级二级三级| 岛国毛片在线播放| 欧美国产精品va在线观看不卡| 一区二区三区精品91| 黑人巨大精品欧美一区二区蜜桃| 亚洲欧洲日产国产| 国产亚洲欧美在线一区二区| 老熟妇乱子伦视频在线观看 | 一级黄色大片毛片| 女警被强在线播放| avwww免费| 亚洲精品久久午夜乱码| 亚洲精品中文字幕一二三四区 | 日本精品一区二区三区蜜桃| 国产在视频线精品| 在线观看免费日韩欧美大片| 亚洲成人免费av在线播放| 多毛熟女@视频| 欧美激情极品国产一区二区三区| 男人爽女人下面视频在线观看| 国产av又大| 亚洲少妇的诱惑av| 欧美大码av| 免费高清在线观看日韩| 精品少妇一区二区三区视频日本电影| 日韩制服骚丝袜av| 国产精品国产av在线观看| 免费一级毛片在线播放高清视频 | 国产男女内射视频| 国产一区二区激情短视频 | 成年人黄色毛片网站| 国产亚洲精品第一综合不卡| 久久国产精品人妻蜜桃| 99国产综合亚洲精品| 精品少妇一区二区三区视频日本电影| 亚洲伊人久久精品综合| 80岁老熟妇乱子伦牲交| 亚洲av片天天在线观看| 男女边摸边吃奶| 亚洲 国产 在线| 国产精品 欧美亚洲| 亚洲中文av在线| 欧美精品亚洲一区二区| 日本wwww免费看| 久热这里只有精品99| 国产成人a∨麻豆精品| 中亚洲国语对白在线视频| 黑人巨大精品欧美一区二区蜜桃| 精品一区在线观看国产| 精品国产一区二区三区久久久樱花| 亚洲精品第二区| 99久久精品国产亚洲精品| a级片在线免费高清观看视频| 99九九在线精品视频| 欧美亚洲 丝袜 人妻 在线| 国产日韩欧美亚洲二区| 青青草视频在线视频观看| 亚洲欧美精品自产自拍| 每晚都被弄得嗷嗷叫到高潮| 国产激情久久老熟女| 国产在线免费精品| 丝袜脚勾引网站| 免费在线观看黄色视频的| 久久久精品免费免费高清| 精品卡一卡二卡四卡免费| 国产成人影院久久av| 免费黄频网站在线观看国产| 亚洲欧美日韩高清在线视频 | 亚洲欧洲日产国产| 亚洲人成77777在线视频| 午夜两性在线视频| 成人国语在线视频| 亚洲精品美女久久av网站| a 毛片基地| 日本wwww免费看| a级片在线免费高清观看视频| 欧美人与性动交α欧美软件| 欧美人与性动交α欧美精品济南到| 一区福利在线观看| 大片免费播放器 马上看| 亚洲一区二区三区欧美精品| 国产亚洲av片在线观看秒播厂| 高潮久久久久久久久久久不卡| 满18在线观看网站| 嫩草影视91久久| 成人18禁高潮啪啪吃奶动态图| 久久人妻福利社区极品人妻图片| 老司机靠b影院| 国产精品欧美亚洲77777| 大陆偷拍与自拍| 999精品在线视频| 午夜成年电影在线免费观看| 国产精品自产拍在线观看55亚洲 | 一二三四在线观看免费中文在| e午夜精品久久久久久久| www.999成人在线观看| 9热在线视频观看99| 日本vs欧美在线观看视频| 99re6热这里在线精品视频| 亚洲国产精品成人久久小说| 日韩一卡2卡3卡4卡2021年| 亚洲成av片中文字幕在线观看| 9热在线视频观看99| 99久久精品国产亚洲精品| 亚洲成av片中文字幕在线观看| 老熟妇乱子伦视频在线观看 | 欧美日韩亚洲高清精品| 一级毛片电影观看| 狠狠婷婷综合久久久久久88av| 黄色 视频免费看| 丰满人妻熟妇乱又伦精品不卡| 肉色欧美久久久久久久蜜桃| 久久久久久久国产电影| 中国国产av一级| 纵有疾风起免费观看全集完整版| av天堂在线播放| 精品国内亚洲2022精品成人 |