• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Phase transition-induced superstructures ofβ-Sn films with atomic-scale thickness?

    2021-09-28 02:18:20LeLei雷樂(lè)FeiyueCao曹飛躍ShuyaXing邢淑雅HaoyuDong董皓宇JianfengGuo郭劍鋒ShangzhiGu顧尚志YanyanGeng耿燕燕ShuoMi米爍HanxiangWu吳翰翔FeiPang龐斐RuiXu許瑞WeiJi季威andZhihaiCheng程志海
    Chinese Physics B 2021年9期
    關(guān)鍵詞:程志尚志

    Le Lei(雷樂(lè)),Feiyue Cao(曹飛躍),Shuya Xing(邢淑雅),Haoyu Dong(董皓宇),Jianfeng Guo(郭劍鋒),Shangzhi Gu(顧尚志),Yanyan Geng(耿燕燕),Shuo Mi(米爍),Hanxiang Wu(吳翰翔),Fei Pang(龐斐),Rui Xu(許瑞),Wei Ji(季威),and Zhihai Cheng(程志海)

    Beijing Key Laboratory of Optoelectronic Functional Materials&Micro-nano Devices,Department of Physics,Renmin University of China,Beijing 100872,China

    Keywords:epitaxial growth,β-Sn films,bilayer-by-bilayer,superstructures,structural transition,scanning tunneling microscopy,surface energy

    1.Introduction

    Since the discovery and characterization of graphene,[1,2]the novel two-dimensional(2D)materials,especially for monoelemental 2D materials,have been the subject of an increasing area of research due to their exotic non-trivial topological properties and potential applications.[3–10]In the periodic table,most of 2D monoelemental materials,consisting of the elements in the main group of IIIA,IVA,and VA,have been successfully prepared,such as borophene,[11–14]silicene,[15–17]antimonene,[18–21]bismuthine,[5,22,23]and so on.[24–26]Among them,the 2D materials consisted of heavy elements have been predicted as topological insulators with enhanced bulk gap and nontrivial edge state due to their strong spin–orbit coupling(SOC).[27–29]For instance,the bismuthine grown on SiC(0001)substrate shows a large gap of~0.8 eV and conductive edge states.[23]The ultraflat stanene on Cu(111)exhibits a topological bandgap(~0.3 eV)induced by SOC at theΓpoint.[30]The robust one-dimensional topological edge state of antimonene monolayer has been also observed experimentally.[31]

    It is well known that bulk Sn exhibits two kinds of phases.[32]The one is semiconductingα-Sn with diamond structure at low temperature,while the other one is metallic β-Sn at high temperature,which has a body-centered tetragonal(bct)structure.The bulk Sn undergoes a phase transition fromβ-Sn toα-Sn at 285 K upon cooling process.[33]The monolayerα-Sn(111)with honeycomb structure,known as stanene,has been theoretically predicted to be a topological insulator with nontrivial edge states.[28,34]The stanene has been further successfully prepared by molecular beam epitaxy(MBE).[30,35]In recent years,the search for Majorana bound states(MBSs)in condensed matter systems has attracted a great deal of interests for potential applications in topological quantum computing.[36–40]The bulkβ-Sn is a typical superconductor below 3.72 K.[41]The further theoretical exploration points out that the ultrathinβ-Sn(001)is an ideal platform for topological superconductor(TSC)with MBSs.[42]Recently,the strainedβ-Sn(001)thin films were obtained via phase transition engineering by leaving the fcc-Sn(111)at room temperature for some weeks.[43]Theα-Sn thin films can also transform into strainedβ-Sn films with the increase of thickness because of the large lattice mismatch and symmetry difference.[32,44]The one-step growth and the detailed structural characterization of ultrathinβ-Sn films are still lacking.

    2.Materials and methods

    The sample preparation and STM/AFM measurements are described below.Theβ-Sn thin film was grown on freshly cleaved highly oriented pyrolytic graphite(HOPG)substrates by standard MBE in ultra-high vacuum(UHV)chamber under a base pressure of 3.0×10?10Torr(1 Torr=1.33322×102Pa).The HOPG substrate was cleaved in air and immediately loaded into the MBE chamber,then annealed at 773 K overnight to remove contaminants.High purity Sn(99.999%)was evaporated from the Knudsen cell onto the HOPG kept at~500 K.After the growth experiment,the sample was first transferred to another UHV chamber with LTSTM(PanScan Freedom,RHK)for the following STM measurements.The low temperature STM measurements were performed at 9 K with chemical etched W tip calibrated on a clean Au(111)surface.All STM images were processed by Gwyddion and WSxM software.[45]The AFM measurements were performed on a commercial AFM system(MFP-3D Infinity,Asylum Research),in combination with a dynamic signal analyzer(HF2LI,Zurich Instruments)in the atmosphere circumstance.

    3.Results and discussion

    Bulk Sn is allotropic with two stable phases of whiteβ-Sn and grayα-Sn,and undergoes the structural phase transition at 286 K.The bulkβ-Sn has a body-centered tetragonal(bct)structure(A5,space group I4/amd)with lattice constants of a=5.82?A and c=3.18?A,as shown in Fig.1(a).Figure 1(c)illustrates the diamond crystal structure of bulkα-Sn(a=6.49?A,space group Fd3m).Figure 1(b)shows the bilayer structural model ofβ-Sn with double unit cells.The number 8 of Sn atoms in a unit cell ofα-Sn is identical with that of double unit cells ofβ-Sn,which could play important roles in the structural phase transition ofα-βSn.In bulk Sn,this phase transition is well known as tin pest[46]due to the powdering ofα-Sn fromβ-Sn when cooling.The volume of α-Sn(273?A3/unit cell)is pronouncedly larger than that of β-Sn(216?A3/double unit cell),which results in a~26%volume increase of phase transition fromβ-Sn toα-Sn.The bulk Sn occurred during phase transition is so structurally weak that readily crumbles into powder due to huge internal compressive strain.While the structural phase transition behavior of Sn films with atomic-scale thickness is still not clear,which may play important roles in determining their morphology,structures and properties significantly.

    Fig.1.Atomic structural models and phase transition of Sn.(a)and(b)Atomic structural models of monolayer(a)and bilayer(b)β-Sn(bct structure,white tin),respectively.(c)Atomic structural models ofα-Sn(diamond structure,grey tin).(d)Top view of atomic structure ofβ-Sn(001)surface.(e)Top view of atomic structure ofα-Sn(001)surface.(f)Top view(upper)and side view(lower)of atomic structure ofα-Sn(111)surface.Bulk tin undergoes a structural phase transition ofα-Sn toβ-Sn at~286 K.

    As we know,the Sn belongs to the elements of group IVA in the periodic table.Among of the elements of group IVA,C,Si,and Ge exhibit strong semiconducting property due to they have a tendency to form covalent diamond structure by strong sp3hybridization at ambient conditions.[47]The sp3hybridization becomes weaker as the atomic number increases in the elements of group IVA.The heavy element Pb shows a metallic fcc structure due to the prohibition of formation of sp3bonds.The position of Sn in the elements of group IVA is the borderline between light elements(C,Si,and Ge)and heavy element(Pb).Therefore,the covalent diamond structure ofα-Sn is relatively weak at low temperature[48]with zero-gap semiconducting property.Theβ-Sn is stable and metallic at high temperature due to the metallic bonding nature in body-centered tetragonal crystal structure.

    For ultrathin Sn film,it is clear that the surface structure and stability of ultrathin Sn film will pronouncedly affect the structural phase transition behaviors.The(001)surfaces of β-Sn films andα-Sn films are relatively stable with similar fourfold symmetric structure,as shown in Figs.1(d)and 1(e).The surface atoms ofα-Sn(001)surface is flat and more closepacked than that ofβ-Sn films.Therefore,it can be speculated that theβ-Sn(001)surface has a tendency to transform intoα-Sn(001)surface by the upward moving of central pink Sn atom to reduce the surface corrugation and surface energy.Theβ-Sn(001)surface of Sn films still have a tendency to further transform into the most stable and close-packed(111)surface ofα-Sn films with threefold symmetric structure.It is clear that the above surface transformation will introduce significantly interval in-plane compressive strain within the ultra Sn films,which may affect their surface morphology and lattice structures.

    The high-qualityβ-Sn films were successfully synthesized on HOPG,and further characterized by AFM and STM.Figure 2(a)shows a large-scale AFM topography images of the as-prepared Sn films with lateral sizes of~600 nm–800 nm.It seems that the Sn nanofilms were made of many merged small islands and represent a multi-domain crystalized structure.Figure 2(b)shows the typical large-scale STM topographic image of Sn nanofilms,in which the merged small islands with uniform thickness are clearly resolved in the Frankvan der Verwe(layer-by-layer)growth mode.

    Figure 2(c)shows the high-resolution STM image of Sn films with many step edges.The surface of Sn films was smooth and flat,suggesting their high crystallinity.Unexpectedly,all the step heights of Sn films are~0.6 nm,as shown in Fig.2(d),which is consistent with the bilayer height ofβ-Sn films.More line profiles are supplied in Fig.S1 to indicate the exclusive step heights of bilayer.As shown in Figs.1(b)and 1(c),the bilayer-by-bilayer growth mode of Sn films at here should be related with the similarity of unit cell for theα-Sn monolayer andβ-Sn bilayer during the structural transition of β-Sn toα-Sn.

    The multi-domain structures of Sn nanofilms were further clearly resolved,as shown in the STM topography and corresponding current images of Figs.2(e)and 2(f).The various domains were only vaguely observed in the topographic images due to their very small apparent height difference,while can be clearly resolved in the current images via their different long-range ordered surface structures.The apparent height difference between the domains is far less than the thickness(~0.32 nm)of monolayerβ-Sn(001)monolayer,as shown in Figs.2(g)and 2(h).More STM images of Sn nanofilms with multi structural domains were supplied in Fig.S2.

    Fig.2.Epitaxially growth of theβ-Sn films on HOPG substrate.(a)AFM morphology image of Sn films.(b)Large-scale STM topographic image of Sn films.(c)High-resolution STM topographic image of the Sn films.(d)Line profile taken along the black line in panel(c).The bilayer-by-bilayer growth mode of Sn films is confirmed by the step heights of~0.6 nm.(e)and(f)STM topography(e)and corresponding current(f)images of Sn films.The various structural domains were clearly resolved within the Sn films and highlighted with the domain walls marked by blue dashed lines.(g)High-resolution STM image with domains.(h)Line profile taken along the black line in panel(g).The small topography difference is observed between different domains of Sn films.(b)V=1.6 V,I=200 pA;(c):V=?2.4 V,I=?300 pA;(e)–(f):V=1.8 V,I=100 pA;(g):V=?0.8 V,I=?200 pA.

    The high-symmetric superstructures of the domains within theβ-Sn films were first carefully investigated via the high-resolution STM images.Figure 3(a)shows the atomically resolved STM image of the domain with the flat surface atoms and smallest(1×1)square lattice.The corresponding unit cell(marked with red solid square)is measured to be 0.41 nm×0.41 nm,which is not consistent with the pristine surface structure ofβ-Sn(001)in Fig.1(d).If the central pink Sn atoms ofβ-Sn(001)move upward to form the flat and close-packed(001)surface to reduce the surface energy,the arrangement of surface Sn atoms in the surface will be almost identical with those in Fig.3(a),as shown by the schematic modes of Fig.3(i).Actually,this unique flat surface structure in Fig.3(a)is very similar to theα-Sn(001)surface in Fig.1(f),

    Fig.3.High-symmetric superstructures of the domains within theβ-Sn nanofilms on HOPG substrate.(a)–(d)Atomic-resolution STM images of theβ-Sn domains.The unit cells are marked with red and yellow solid squares.(e)–(h)The corresponding FFT images of panels(a)–(d),respectively.(i)Schematic models of the observed surface superstructures.The green spheres represent the surface Sn atoms,and the theoretical atomic structure ofβ-Sn(001)surface is shown at the top right corner.(a)V=1.7 V,I=200 pA;(b)V=0.6 V,I=200 pA;(c)V=2.7 V,I=50 pA;(d)V=2.5 V,I=100 pA.

    Finally,the bilayerbybilayer growth mode and various superstructures of the epitaxialβ-Sn films are phenomenally discussed based on the structural transition ofβ-Sn toα-Sn at the two-dimensional limit.Firstly,the tentative structural transitions ofβ-Sn toα-Sn films adopt the whole bilayer transform due to their identical number of Sn atoms,as shown in Figs.1(b)and 1(c).Secondly,the first step of structural transition is the surface transformation ofβ-Sn(001)toα-Sn(001)by moving the central Sn atom upward to get the flat surface and reduce surface energy.In this step,the(001)surface of theβ-Sn films provides the most convenient relaxation mechanism for the structural transition,while the fourfold symmetry and size of the surface unit cell are still preserved.Thirdly,the high-symmetric superstructures with large square unit cells were formed with large surface corrugations(as shown in Fig.S5)to release the significant internal compressive strain during the further structural transition.In this step,the fourfold symmetry of the Sn films is still preserved,while the translation symmetry is reduced with large supercells of similar size.Fourthly,the above fourfold-symmetric superstructures were further distorted to tentatively transform into the most stable and close-packedα-Sn(111)surface with threefold symmetry.In a word,the epitaxial growth of ultrathinβ-Sn films is realized on the inert HOPG substrate.The Sn films stay long enough at room temperature and low temperature.However,the complete transition fromβ-toα-Sn was not observed.Theβ-Sn films have a trend to transform intoα-Sn films at low temperature.The unique arrangement of surface Sn atoms in the surface and multiple superstructures observed in our experiments were introduced due to the structural phase transition trend fromβ-Sn toα-Sn films at low temperature at the two-dimensional limit.

    Fig.4.Distorted superstructures of the domains within theβ-Sn films on HOPG substrate.(a)and(b)High resolution STM topography images of two distorted superstructures with parallelograms superlattice.The super cells are marked with the yellow solid parallelograms.(c)High-resolution STM image of striped superstructure with rectangular superlattice marked by the yellow solid rectangle.(d)–(f)The corresponding FFT images of panels(a)–(c),respectively.(g)Schematic illustrations of distorted[(a)and(b)]and striped(c)superstructures.The red dashed parallelograms represent distorted superstructures from the superstructures with rectangular superlattice marked by the blue-dashed rectangles.(a)V=2.2 V,I=100 pA;(b)V=0.4 V,I=300 pA;(c)V=1.9 V,I=200 pA.

    The electronic properties of the Sn films were further investigated by the scanning tunneling spectroscopy(STS)measurement.The similar dI/dV spectra taken at various structural domains is shown in Fig.S4 with finite local density of states(LDOS)at the Fermi energy(EF),indicating the metallic property of the Sn films.This result is consistent with the band structure of theβ-Sn films calculated by density functional theory(DFT).[42]The ultrathin Sn films with various superstructures could exhibit interesting modified superconductive and topological properties,which will inspire more experimental and theoretical work on this idea platform for topological superconductivity.

    4.Conclusion

    In summary,we have successfully grown ultrathinβ-Sn(001)films on HOPG substrates and systematically explored various superstructures observed in ultrathinβ-Sn(001)films.We confirm thatβ-Sn(001)films growth with a bilayer-bybilayer growth mode.The further study found that there are various domains in theβ-Sn(001)films.The long-range ordered superstructures in different domains,including highsymmetric and distorted superstructures,were systematically characterized.We assume that these superstructures are induced via structural phase transition ofβ-toα-Sn at the twodimensional limit.Our study not only demonstrates the importance of the structural phase transition during the formation of superstructures ofβ-Sn,but also opens a door for studying topological properties ofβ-Sn thin films in the future.

    猜你喜歡
    程志尚志
    對(duì)一道高考?jí)狠S題的拓展與研究
    飄色,如詩(shī)如畫(huà)
    賡續(xù)紅色血脈 傳承紅色基因
    ——追憶夏尚志和中共大賚黨支部
    中醫(yī)情志關(guān)懷在婦產(chǎn)科護(hù)理中的應(yīng)用
    鄭尚志
    請(qǐng)你幫個(gè)忙
    故事林(2020年7期)2020-04-21 07:48:04
    快樂(lè)闖關(guān)
    程志宏印象
    尚志
    優(yōu)雅(2015年5期)2015-09-10 07:22:44
    小溪
    亚洲精品成人av观看孕妇| 日日啪夜夜爽| videossex国产| 亚洲av成人精品一二三区| 在线看a的网站| 热99久久久久精品小说推荐| 午夜精品国产一区二区电影| 中文字幕精品免费在线观看视频 | 蜜桃在线观看..| 国产精品蜜桃在线观看| 亚洲国产最新在线播放| 五月玫瑰六月丁香| 男的添女的下面高潮视频| 18+在线观看网站| 午夜激情av网站| 一区二区三区四区激情视频| 啦啦啦在线观看免费高清www| av播播在线观看一区| 波野结衣二区三区在线| 成年女人在线观看亚洲视频| 成人二区视频| 亚洲国产av影院在线观看| 人人妻人人爽人人添夜夜欢视频| 久久精品国产鲁丝片午夜精品| 亚洲欧美清纯卡通| 国产精品免费大片| 亚洲美女视频黄频| 美女大奶头黄色视频| 免费av不卡在线播放| 国产成人午夜福利电影在线观看| 国产精品久久久久久久久免| 亚洲高清免费不卡视频| 久久人人爽av亚洲精品天堂| 大片电影免费在线观看免费| 亚洲欧美成人综合另类久久久| 国产永久视频网站| 少妇高潮的动态图| 在线观看一区二区三区激情| 少妇人妻精品综合一区二区| 高清欧美精品videossex| 成人无遮挡网站| 久久国内精品自在自线图片| 日韩大片免费观看网站| 日韩av不卡免费在线播放| 久久精品人人爽人人爽视色| av网站免费在线观看视频| 亚洲国产精品一区二区三区在线| 秋霞伦理黄片| 麻豆乱淫一区二区| 亚洲婷婷狠狠爱综合网| 校园人妻丝袜中文字幕| 亚洲av电影在线观看一区二区三区| 我的女老师完整版在线观看| 亚洲激情五月婷婷啪啪| 国产在线免费精品| 亚洲国产成人一精品久久久| 久久97久久精品| 久久青草综合色| 黑人猛操日本美女一级片| 久久97久久精品| 超碰97精品在线观看| 久久精品国产亚洲网站| 精品国产国语对白av| 人人妻人人澡人人看| 国产精品99久久久久久久久| 亚洲人成网站在线播| 国产精品久久久久久久久免| 下体分泌物呈黄色| 国产精品久久久久成人av| 日韩av免费高清视频| 又粗又硬又长又爽又黄的视频| 午夜激情久久久久久久| 九九久久精品国产亚洲av麻豆| 国产极品粉嫩免费观看在线 | 久久午夜福利片| 人体艺术视频欧美日本| av.在线天堂| 国产成人精品无人区| 精品少妇黑人巨大在线播放| 亚洲人成网站在线播| 美女视频免费永久观看网站| 久久精品国产a三级三级三级| 内地一区二区视频在线| 极品少妇高潮喷水抽搐| 欧美日韩亚洲高清精品| 国产免费又黄又爽又色| h视频一区二区三区| 亚洲在久久综合| 一个人看视频在线观看www免费| 久久久久久久久久成人| 国产成人精品一,二区| 精品视频人人做人人爽| 夫妻性生交免费视频一级片| freevideosex欧美| 亚洲国产av新网站| 精品亚洲成a人片在线观看| 亚洲综合色网址| 亚洲精品亚洲一区二区| 免费人妻精品一区二区三区视频| 看非洲黑人一级黄片| 亚洲精品色激情综合| 精品久久久久久电影网| 一级a做视频免费观看| 各种免费的搞黄视频| a级毛片免费高清观看在线播放| 久久久久久久久大av| 一级二级三级毛片免费看| 午夜激情久久久久久久| 欧美国产精品一级二级三级| 男女边吃奶边做爰视频| 18禁在线无遮挡免费观看视频| 少妇的逼好多水| 日日撸夜夜添| 国产在线免费精品| 国产午夜精品一二区理论片| 少妇高潮的动态图| 伦理电影大哥的女人| 久久久久久久久久久久大奶| 成人毛片60女人毛片免费| 国产黄色免费在线视频| 国产熟女午夜一区二区三区 | 能在线免费看毛片的网站| 国产视频首页在线观看| 国产精品久久久久久av不卡| 熟女人妻精品中文字幕| 一级爰片在线观看| 成年人免费黄色播放视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 成人综合一区亚洲| 国产精品一区www在线观看| 97在线视频观看| 大片免费播放器 马上看| 亚洲欧美清纯卡通| 午夜91福利影院| 国产免费一区二区三区四区乱码| 国产极品天堂在线| 亚洲精华国产精华液的使用体验| 考比视频在线观看| 日日摸夜夜添夜夜添av毛片| 蜜桃在线观看..| 中文字幕久久专区| www.av在线官网国产| 99re6热这里在线精品视频| 亚洲久久久国产精品| 亚洲欧美一区二区三区黑人 | 少妇熟女欧美另类| 18禁动态无遮挡网站| 精品一品国产午夜福利视频| 99国产综合亚洲精品| 超色免费av| 久久久精品94久久精品| 午夜精品国产一区二区电影| 国产成人精品久久久久久| 欧美国产精品一级二级三级| 乱人伦中国视频| 久久99一区二区三区| 免费av中文字幕在线| 国产69精品久久久久777片| 免费看光身美女| 亚洲国产av影院在线观看| av不卡在线播放| 久久这里有精品视频免费| 免费人妻精品一区二区三区视频| 成人手机av| 欧美少妇被猛烈插入视频| 能在线免费看毛片的网站| 在线观看免费视频网站a站| 国产伦理片在线播放av一区| 一级,二级,三级黄色视频| 久久午夜综合久久蜜桃| 欧美成人午夜免费资源| 亚洲一区二区三区欧美精品| 久久午夜福利片| 日韩欧美一区视频在线观看| 亚洲怡红院男人天堂| 99久久精品国产国产毛片| 国产精品不卡视频一区二区| 成人国语在线视频| 晚上一个人看的免费电影| 制服丝袜香蕉在线| 亚洲精品乱久久久久久| 91精品国产九色| 99国产综合亚洲精品| 一级毛片电影观看| 精品人妻一区二区三区麻豆| av播播在线观看一区| 亚洲婷婷狠狠爱综合网| 欧美变态另类bdsm刘玥| 亚洲av.av天堂| 国产精品99久久99久久久不卡 | 黄色毛片三级朝国网站| 人妻 亚洲 视频| 国产极品粉嫩免费观看在线 | 大香蕉久久网| 亚洲国产av新网站| 一区二区三区四区激情视频| 午夜福利视频精品| 亚洲精品乱码久久久久久按摩| 国产极品粉嫩免费观看在线 | 亚洲怡红院男人天堂| 99九九线精品视频在线观看视频| 熟女人妻精品中文字幕| 日本黄色片子视频| 国产成人精品一,二区| 亚洲国产日韩一区二区| 欧美最新免费一区二区三区| 大话2 男鬼变身卡| 亚洲av中文av极速乱| 日产精品乱码卡一卡2卡三| 桃花免费在线播放| 国产亚洲最大av| 日韩欧美精品免费久久| 熟女人妻精品中文字幕| 久久精品国产亚洲av天美| 99久久精品一区二区三区| 午夜福利网站1000一区二区三区| 一级a做视频免费观看| 久久久久国产精品人妻一区二区| 亚洲丝袜综合中文字幕| 成人综合一区亚洲| 国产成人aa在线观看| 好男人视频免费观看在线| 高清毛片免费看| 精品人妻熟女毛片av久久网站| 日韩一本色道免费dvd| 亚洲精品色激情综合| 高清欧美精品videossex| 黄色欧美视频在线观看| 男人爽女人下面视频在线观看| 日本av免费视频播放| 亚洲国产欧美在线一区| 91精品伊人久久大香线蕉| 蜜桃久久精品国产亚洲av| 考比视频在线观看| 全区人妻精品视频| 69精品国产乱码久久久| 多毛熟女@视频| 亚洲国产色片| 老熟女久久久| 少妇高潮的动态图| 午夜av观看不卡| 久久99热这里只频精品6学生| 亚洲av免费高清在线观看| 日本91视频免费播放| 日本黄色日本黄色录像| 亚洲精品乱码久久久久久按摩| 91久久精品国产一区二区三区| 欧美xxxx性猛交bbbb| 日韩一区二区视频免费看| 两个人的视频大全免费| 亚洲国产最新在线播放| 黄色配什么色好看| 夫妻午夜视频| av黄色大香蕉| 久久久久精品久久久久真实原创| 亚洲欧美一区二区三区国产| 国产有黄有色有爽视频| 王馨瑶露胸无遮挡在线观看| 久久久欧美国产精品| 久久久久久久久大av| 国产精品久久久久久精品古装| 成人毛片a级毛片在线播放| 卡戴珊不雅视频在线播放| 国产精品人妻久久久久久| 97超视频在线观看视频| 嘟嘟电影网在线观看| 男女啪啪激烈高潮av片| 下体分泌物呈黄色| 满18在线观看网站| 亚洲高清免费不卡视频| 自线自在国产av| 性高湖久久久久久久久免费观看| 在线免费观看不下载黄p国产| 天堂8中文在线网| 欧美亚洲日本最大视频资源| 你懂的网址亚洲精品在线观看| 精品久久久久久久久av| 青春草国产在线视频| 久久av网站| av在线观看视频网站免费| 啦啦啦中文免费视频观看日本| 欧美3d第一页| av有码第一页| 国国产精品蜜臀av免费| 高清毛片免费看| 美女大奶头黄色视频| 亚洲色图综合在线观看| 狠狠精品人妻久久久久久综合| 免费av不卡在线播放| 一区二区三区精品91| 天美传媒精品一区二区| 中文字幕制服av| 人人妻人人澡人人爽人人夜夜| 最黄视频免费看| 久久韩国三级中文字幕| 18禁动态无遮挡网站| 欧美最新免费一区二区三区| 少妇人妻久久综合中文| 人人澡人人妻人| 午夜激情福利司机影院| 欧美激情 高清一区二区三区| 在线观看免费日韩欧美大片 | 如何舔出高潮| 人妻一区二区av| 2022亚洲国产成人精品| 国产高清国产精品国产三级| 在线观看www视频免费| 另类亚洲欧美激情| 国产精品一国产av| 亚洲成人手机| 国产亚洲精品第一综合不卡 | av免费观看日本| 亚洲人与动物交配视频| 男的添女的下面高潮视频| 国产亚洲精品久久久com| 性高湖久久久久久久久免费观看| 91精品国产国语对白视频| 国产精品99久久久久久久久| 黄色怎么调成土黄色| 久久毛片免费看一区二区三区| 精品久久蜜臀av无| 丝袜喷水一区| 日韩制服骚丝袜av| 国产亚洲精品久久久com| 精品亚洲乱码少妇综合久久| 日韩免费高清中文字幕av| 久久狼人影院| 母亲3免费完整高清在线观看 | 日本黄色片子视频| 全区人妻精品视频| 综合色丁香网| 亚洲国产毛片av蜜桃av| 如日韩欧美国产精品一区二区三区 | 欧美+日韩+精品| 色婷婷av一区二区三区视频| 亚洲成人手机| av黄色大香蕉| 成人毛片a级毛片在线播放| 久久人人爽人人爽人人片va| 能在线免费看毛片的网站| 久久狼人影院| 一级,二级,三级黄色视频| 欧美另类一区| 我要看黄色一级片免费的| 国产高清三级在线| 97超碰精品成人国产| 午夜日本视频在线| 777米奇影视久久| 春色校园在线视频观看| 免费少妇av软件| av网站免费在线观看视频| 18禁在线播放成人免费| 欧美xxxx性猛交bbbb| 欧美丝袜亚洲另类| 丰满少妇做爰视频| av在线app专区| 99视频精品全部免费 在线| 草草在线视频免费看| 91在线精品国自产拍蜜月| 国产老妇伦熟女老妇高清| 亚洲在久久综合| 中国三级夫妇交换| 亚洲人与动物交配视频| 99热全是精品| 国产深夜福利视频在线观看| 欧美激情国产日韩精品一区| 观看av在线不卡| 黄色怎么调成土黄色| 久久久久久久国产电影| 免费av不卡在线播放| 久久久久久久久大av| 2021少妇久久久久久久久久久| 亚洲丝袜综合中文字幕| 狠狠婷婷综合久久久久久88av| 少妇人妻久久综合中文| 性色avwww在线观看| 中文字幕人妻熟人妻熟丝袜美| 最近中文字幕2019免费版| 亚洲av成人精品一二三区| 成人无遮挡网站| 成人综合一区亚洲| 一级,二级,三级黄色视频| 欧美日韩视频高清一区二区三区二| 亚洲精品中文字幕在线视频| 一级毛片黄色毛片免费观看视频| 9色porny在线观看| 国产乱人偷精品视频| 99精国产麻豆久久婷婷| 日本-黄色视频高清免费观看| 国产精品免费大片| 成年av动漫网址| 纵有疾风起免费观看全集完整版| 久久久久视频综合| 人妻少妇偷人精品九色| 免费看不卡的av| 高清黄色对白视频在线免费看| 黄色怎么调成土黄色| 精品亚洲成a人片在线观看| 成人毛片a级毛片在线播放| 精品少妇久久久久久888优播| 老熟女久久久| 如日韩欧美国产精品一区二区三区 | 亚洲欧洲精品一区二区精品久久久 | 亚洲精品国产av成人精品| 亚洲国产日韩一区二区| 中文字幕最新亚洲高清| 欧美97在线视频| 18禁裸乳无遮挡动漫免费视频| 亚洲人成网站在线播| 亚洲精品久久久久久婷婷小说| 国产亚洲最大av| 五月玫瑰六月丁香| 建设人人有责人人尽责人人享有的| 最近中文字幕2019免费版| 成人影院久久| 一个人免费看片子| 一区在线观看完整版| 一本久久精品| 亚洲人成网站在线观看播放| 亚洲综合色网址| 三上悠亚av全集在线观看| 久久精品国产亚洲av涩爱| 欧美人与性动交α欧美精品济南到 | 在线观看免费日韩欧美大片 | 天天躁夜夜躁狠狠久久av| 日日爽夜夜爽网站| 一级毛片aaaaaa免费看小| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲色图 男人天堂 中文字幕 | 国产片特级美女逼逼视频| 国产在线视频一区二区| 色哟哟·www| 精品亚洲成a人片在线观看| 26uuu在线亚洲综合色| 三级国产精品片| av.在线天堂| 毛片一级片免费看久久久久| 日韩成人伦理影院| 日韩三级伦理在线观看| 中文字幕亚洲精品专区| 亚洲精品,欧美精品| 国产黄色视频一区二区在线观看| 国产av码专区亚洲av| 91精品国产国语对白视频| 亚洲精品美女久久av网站| 观看美女的网站| 亚洲国产精品999| 国产亚洲午夜精品一区二区久久| 欧美成人精品欧美一级黄| 最近的中文字幕免费完整| 女人久久www免费人成看片| 久久青草综合色| 午夜精品国产一区二区电影| 人人妻人人爽人人添夜夜欢视频| 久久99一区二区三区| 丰满少妇做爰视频| 大香蕉久久网| 校园人妻丝袜中文字幕| 国产av一区二区精品久久| 一区二区av电影网| 妹子高潮喷水视频| 这个男人来自地球电影免费观看 | 丰满饥渴人妻一区二区三| 国产免费福利视频在线观看| 韩国av在线不卡| 国产午夜精品久久久久久一区二区三区| 免费黄网站久久成人精品| 精品久久蜜臀av无| 久久av网站| 亚洲高清免费不卡视频| 亚洲av欧美aⅴ国产| 婷婷色av中文字幕| 极品人妻少妇av视频| 一个人免费看片子| 久久影院123| 久久精品人人爽人人爽视色| 99久久精品国产国产毛片| 亚洲精品日韩在线中文字幕| 欧美成人午夜免费资源| 国产精品三级大全| 国产探花极品一区二区| 欧美 亚洲 国产 日韩一| 亚洲精品久久久久久婷婷小说| 18禁观看日本| 少妇的逼好多水| 91精品三级在线观看| 男男h啪啪无遮挡| 精品熟女少妇av免费看| 久久久精品区二区三区| 国产成人免费观看mmmm| 成人午夜精彩视频在线观看| 久久97久久精品| 国产成人精品久久久久久| 国产亚洲一区二区精品| 九九久久精品国产亚洲av麻豆| 久久婷婷青草| 精品少妇久久久久久888优播| 在线天堂最新版资源| 最近2019中文字幕mv第一页| 日本色播在线视频| 精品久久久噜噜| 视频中文字幕在线观看| 精品国产露脸久久av麻豆| 免费黄色在线免费观看| 精品久久久久久电影网| 国产又色又爽无遮挡免| 18禁在线无遮挡免费观看视频| 男的添女的下面高潮视频| 女的被弄到高潮叫床怎么办| 一本—道久久a久久精品蜜桃钙片| 久久狼人影院| 日日摸夜夜添夜夜爱| 狠狠婷婷综合久久久久久88av| 人妻系列 视频| 3wmmmm亚洲av在线观看| 免费人成在线观看视频色| 国产成人av激情在线播放 | 日韩成人av中文字幕在线观看| 看十八女毛片水多多多| 欧美xxxx性猛交bbbb| 成人国产麻豆网| 99久久精品一区二区三区| 免费观看无遮挡的男女| 精品人妻偷拍中文字幕| 国产欧美日韩一区二区三区在线 | 精品人妻熟女毛片av久久网站| 免费观看的影片在线观看| 街头女战士在线观看网站| 久久久a久久爽久久v久久| 18禁在线播放成人免费| 免费观看在线日韩| 韩国高清视频一区二区三区| 各种免费的搞黄视频| 欧美人与善性xxx| av不卡在线播放| 成人黄色视频免费在线看| 乱人伦中国视频| 国产亚洲最大av| 色网站视频免费| 最近的中文字幕免费完整| 日韩制服骚丝袜av| 日韩成人伦理影院| 国产精品久久久久成人av| 国产精品一国产av| 亚洲三级黄色毛片| 久久韩国三级中文字幕| 视频在线观看一区二区三区| 国产欧美日韩一区二区三区在线 | 国产在线免费精品| 免费日韩欧美在线观看| 一区二区三区精品91| 少妇精品久久久久久久| 精品少妇久久久久久888优播| 高清黄色对白视频在线免费看| 亚洲av不卡在线观看| 男女边吃奶边做爰视频| 国产男女超爽视频在线观看| 99热这里只有是精品在线观看| 97超视频在线观看视频| 亚洲精品美女久久av网站| 亚洲国产精品成人久久小说| 精品国产一区二区久久| 两个人免费观看高清视频| 一区二区三区免费毛片| 国产极品天堂在线| 亚洲欧美色中文字幕在线| 最近中文字幕高清免费大全6| 人成视频在线观看免费观看| 三上悠亚av全集在线观看| 一级毛片电影观看| 99视频精品全部免费 在线| 免费看av在线观看网站| 一边亲一边摸免费视频| 免费av不卡在线播放| 日本黄色片子视频| 久久久国产一区二区| 人人妻人人澡人人爽人人夜夜| a级毛色黄片| 在线观看三级黄色| 国产白丝娇喘喷水9色精品| 麻豆乱淫一区二区| 国产精品人妻久久久影院| 国产精品一区二区三区四区免费观看| 97精品久久久久久久久久精品| 99久久中文字幕三级久久日本| 免费看光身美女| 51国产日韩欧美| 亚洲综合色惰| 精品少妇黑人巨大在线播放| 国产 精品1| 国产成人免费观看mmmm| 国产在线视频一区二区| 欧美xxxx性猛交bbbb| 18禁裸乳无遮挡动漫免费视频| 看免费成人av毛片| 秋霞在线观看毛片| 国产一区亚洲一区在线观看| 免费人妻精品一区二区三区视频| 久久国产精品男人的天堂亚洲 | 自线自在国产av| 欧美性感艳星| 亚洲欧美精品自产自拍| 自线自在国产av| 黑人欧美特级aaaaaa片| 男女免费视频国产| 老熟女久久久| 日韩成人av中文字幕在线观看| 国产精品 国内视频| 国产色爽女视频免费观看| 啦啦啦视频在线资源免费观看| 国产精品国产三级专区第一集| 国产高清三级在线| 91精品伊人久久大香线蕉| 黄片无遮挡物在线观看| 男人添女人高潮全过程视频|