• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multiple solutions and hysteresis in the flows driven by surface with antisymmetric velocity profile?

    2021-09-28 02:17:16XiaoFengShi石曉峰DongJunMa馬東軍ZongQiangMa馬宗強(qiáng)DeJunSun孫德軍andPeiWang王裴
    Chinese Physics B 2021年9期
    關(guān)鍵詞:馬東德軍

    Xiao-Feng Shi(石曉峰),Dong-Jun Ma(馬東軍),?,Zong-Qiang Ma(馬宗強(qiáng)),De-Jun Sun(孫德軍),and Pei Wang(王裴),2,?

    1Institute of Applied Physical and Computational Mathematics,Beijing 100094,China

    2Center for Applied Physics and Technology,Peking University,Beijing 100871,China

    3Department of Modern Mechanics,University of Science and Technology of China,Hefei 230027,China

    Keywords:bifurcation and continuation,symmetry-breaking,hysteresis,surface driven cavity flow

    1.Introduction

    The incompressible shear-driven flow inside a finite wallbounded cavity has been a typical hydrodynamic problem with rich nonlinear dynamics from stationary to time periodic and chaotic.[1–3]It has wide practical applications such as the built-in warehouse of fighter aircraft and the flow of lakes and oceans driven by wind.[4,5]Furthermore,it is a general benchmark example to verify the accuracy of numerical methods for the incompressible flow.[6]Although the geometry of the shear-driven cavity is simple,it contains complex nonlinear flow phenomena,and its flow stability and bifurcation behavior have been extensively studied.[1,2,7–10]

    The nonlinear dynamics and bifurcation of lid-driven cavity flows have been investigated with various numerical methods.[11]The simulations of full time-dependent Navier–Stokes equations can capture the stable bifurcation procedures from initial stationary state to time periodic oscillations and chaotic patterns.[12,13]The first two-dimensional instability of lid-driven square cavity flow is a supercritical Hopf bifurcation,and its exact occurrence in parameter space is extremely dependent on both resolution and the way by which the corner singularity is treated.When the Reynolds number exceeds about 7800,the steady flow field bifurcates to an oscillating periodic solution.When the Reynolds number exceeds 11000 or more,the chaotic state will appear.[7]

    The driving speed of the lid cover has important influences on the cavity flows and determines the nonlinear flow patterns.[2,4,5]In the flow of lakes and oceans driven by wind,the wind is usually non-uniform over the surface of lakes and oceans.Zeccheto and de Biasio indicted that the average wind changes direction approximately 180°along the basin in Alboran Sea.[14]To simulate such a driving condition,this paper focuses on the square cavity flow driven by a lid cover with antisymmetric sinusoidal velocity profile,which does not have the singularity of velocity boundary conditions near the corners,and is more suitable to be a general benchmark problem for computational fluid dynamics.Furthermore,the symmetric driven square cavity flow contains more nonlinear dynamic phenomena,such as symmetry breaking,coexistence of multiple steady solutions,hysteresis,and subcritical Hopf bifurcation.For such a complex flow problem,it is difficult to obtain the unstable steady solutions and quantitative bifurcation processes only by the direct numerical simulation.[15,16]

    The numerical modelling and analysis of bifurcation problems in fluid mechanics has been extensively discussed in literature,[15,17–20]where the numerical analysis of bifurcation problems in the incompressible fluid mechanics was discussed and the convergence theory for several important bifurcations was described for the projection-type,finite difference and mixed finite element methods.Generally,there are three sequential parts in the computational approach.[19]First a discrete representation of the model equations has to be obtained through some kind of discretization procedure.[17]The second part is to apply specific techniques of numerical bifurcation theory[15,18]to track the solution branches.The third part of the computational work is to access the linear stability of the solution state.Following this idea,Tuckerman et al.[15,20,21]have proposed a global instability analyzing methodology,by which an explicit-implicit time integration code could be easily transformed to carry out for steady-state solving,bifurcation points,continuation,linear stability analysis,and nonlinear transient growth analysis in fluid mechanics.Here,we use this methodology[16,22–26]of nonlinear global stability and bifurcation theory to solve the multiple solutions and hysteresis in the symmetric driven square cavity flow.

    Farias and McHugh used the lattice Boltzmann(LB)method to study the cavity flow with the same configuration and found two stable coexisting solutions.[4]Due to the limitation of research tools,they only gave qualitative intervals of the flow patterns and cannot capture the unstable solutions.Some important physical phenomena may be omitted.In this paper,the problem is studied from the view of nonlinear bifurcation,and the coexistence of multiple solutions is discussed for the Navier–Stokes equations at Re<2500.With a numerical continuation,all of the stable and unstable steady solutions are solved out,and the complete bifurcation curve with critical parameters for these flow patterns are presented.

    2.Numerical methods

    Considering the two-dimensional unsteady incompressible flow where both the density and viscosity of the fluid are constant,the governing equations are the Navier–Stokes equations

    A high-order spectral/hp element method[26,27]with a domain decomposition Stokes solver is utilized to solve the governing Eq.(1).The computation domain is decomposed into non-overlapping structured or unstructured spectral elements.Within each element Gauss–Lobatto–Jacobi and Gauss-Radau-Jacobi quadrature points are used in two directions respectively in order to guarantee the integration conditions.The second-order stiff stable scheme is adopted for the unsteady time integration.The linear terms are treated implicitly and the nonlinear terms explicitly.Then the discretized equations can be re-formed with an unsteady Stokes operator on the left-hand side and explicit forcing terms on the right-hand side.[15]With the domain decomposition approach,the interior and marginal degrees of freedom are decoupled and the incompressible divergence-free condition is satisfied strictly.The resulting small linear system in each element can be solved by direct method.

    The governing equations can be re-formed as

    where N and L represent the nonlinear and linear operators,respectively.For semi-implicit scheme we have

    The steady-state solution for the Navier–Stokes equations with variables(u,Re)reads

    Applying Newton’s method to Eq.(4),the linear equation for the correctionδu is(Nu+L)δu=?(N+L)u where Nuis the Jocabian matrix associated with the nonlinear term N evaluated at state u.Following Tuckerman’s idea,[15]a Jacobian-free Newton–Krylov method[22,26]is used to obtain stable or unstable steady solutions.Using the Stokes operator P=(I?ΔtL)?1Δt as a preconditioner,the linear system can be reformulated as

    Inexact Newton iteration is used for accelerating convergence,where the right-and left-hand sides of Eq.(5)are calculated by a time-stepping based on Eq.(3).

    In order to follow the bifurcation path of the dynamic system,a pseudo-arclength numerical continuation[17,19,28]is used to avoid the difficulty due to the turning point.The extended linear system based on the vector(u,Re)is

    where Duand DReare the linearized operators for variables u and Re,respectively.This system is solved by a Jacobian-free Newton–Krylov method with a Householder transformation.[29]

    An iterative Arnoldi method is utilized to calculate the leading eigenvalues and their corresponding eigenvectors for the system.The detailed implementation can refer to the published papers.[16,22–26]

    The laminar flow past a stationary cylinder between two parallel plates is analyzed to verify the accuracy of the proposed method.Similar to lid-driven cavity flow,this flow also contains the vortexes,symmetrical crushing and supercritical Hopf bifurcation.Cliffe et al.showed that the flow will lose stability to a periodic flow at a supercritical Hopf bifurcation point as the flow rate is increased,and there is another Hopf bifurcation to re-stabilize the flow above a critical Reynolds number.[30]Furthermore,steady asymmetric flows exist at the same blockage ratio B(the ratio of cylindrical diameter to plate width).We performed the bifurcation analysis at the special blockage ratio B=0.7,where steady symmetric solutions,steady asymmetric solutions and periodic solutions can be obtained,and the critical Reynolds and Strouhal numbers are given in Table 1.The computational region is divided into 130 iso-parametric quadrilateral elements,each of which has an interpolation order of p=11.Table 1 shows the comparisons between the results of the present high-order spectral element method and those of finite element method.[30]The critical parameters agree well with the first two Hopf bifurcations.This agreement verifies the ability of the present numerical method to describe the flow bifurcation.Figure 1 shows the streamlines of different symmetric and asymmetric steady solutions near the critical bifurcation points.

    Table 1.Critical Reynolds and Strouhal numbers for blocked cylinder flow(B=0.7).

    Fig.1.Streamline for blockage ration B=0.7:(a)Re=90,(b)Re=175,(c)Re=185.

    3.Results and discussion

    The computational zone is set as a unit square cavity[0,1]×[0,1],as shown in Fig.2.The lid cover has an antisymmetric sinusoidal velocity boundary condition u(x)=sin(2πx),and the other three sides are set as fixed wall.The whole system is symmetric about the vertical central line,and there exists a basic symmetric numerical solution.Because of the simplicity of geometry,a spectral element method with 60 discrete points in each direction is adopted.The symmetric streamlines at Re=100 are demonstrated in Fig.3.Driven by the antisymmetric sinusoidal velocity,two main vortices are formed in the square cavity,and there are two secondary vortices at the corners.When the Re number increases,the symmetric solution may convert to be unstable or asymmetric.In order to characterize the final state of flow field,a symmetry parameter(integral of the absolute value of horizontal velocity along the centerline)is considered,

    Fig.2.Schematic diagram of cavity flow driven by lid cover with sinusoidal velocity profile.

    Fig.3.Streamlines for symmetric flow at Re=100.

    Farias and McHugh gave one bifurcation curve of the flow,[4]indicated that there is a subcritical bifurcation with symmetry breaking.When the Re number is less than the critical Rec,only one stable symmetric solution with two principal vortices exists;when the Re number is larger than Rec,there will be multiple stable solutions,and only stable asymmetric solutions were shown in the paper of Farias and McHugh.

    3.1.Bifurcation of asymmetric solutions

    The bifurcation curve of asymmetric solutions calculated in this paper is given in Fig.4 when Re<2500.The symmetric solutions are stable in the range of Reynolds number,which are not given in the figure.Periodic oscillations occur when Re is around 2500,but only the cases of steady solutions are considered here.The pseudo-arclength numerical continuation technique is used to follow all the solution branches including bifurcation and turning points.At the beginning,the initial symmetric solution at Re=100 was obtained by time integration,and the symmetric solution at Re=500 was calculated by the Newton method.Then a small asymmetric perturbation was added to the symmetric Re=500 solution,and the asymmetric stable solution could be obtained by unsteady time integration method.Therefore,we made the switch from the symmetric branch to the asymmetric stable branch.All the steady solutions then could be followed by the continuation method through increasing or decreasing the Reynolds number.Three turning points on the asymmetric branch were captured by the pseudo-arclength technique.The stable or unstable properties of these branch states have to be determined by linear stability analysis or verified by unsteady time integration where the unstable solution would be divergence.

    Figure 4(a)shows all branches of the asymmetric solutions,and Fig.4(b)gives the enlarged display of the hysteresis curve in Fig.4(a).There are three turning points TP1(Re?320),TP2(Re?2208)and TP3(Re?2262).The bifurcation curve is divided into four branches by these three turning points:(1)left branch(TP1 to TP3,320≤Re≤2262);(2)right branch(TP2 to right end,Re≥2208);(3)down branch(below TP1,Re≥320);(4)hysteretic branch(TP3 to TP2,2208≤Re≤2262).

    Fig.4.Bifurcation curve for symmetric driven square cavity flow.The asymmetric solutions:(1)square:stable solutions,left branch;(2)circle:stable solutions,right branch;(3)cross:unstable solution,down branch;(4)triangle:unstable solution,hysteretic branch.

    In these four branches,the left and right branches are stable,which are represented by squares and circles in Fig.4,respectively,whereas the down and hysteretic branches are unstable,which are represented by cross and triangle symbols.In the Reynolds number range(320,2208)and(2262,2500),there are one stable and one unstable asymmetric flow patterns.In the Reynolds number range(2208,2262),the pair number of stable and unstable asymmetric solutions changes to be two simultaneously.

    3.2.Multiple solutions at the same Reynolds number

    Firstly,we discuss the cases of simple multiple solutions(Re in(320,2208)or(2262,2500)).Subcritical bifurcation with broken symmetry can easily lead to the coexistence of multiple solutions under the same Re number.According to the bifurcation theory of dynamical system,there must be at least one unstable steady solution between the stable symmetric and asymmetric flow patterns.In Refs.[4,5],it was difficult to obtain unstable steady solutions by the explicit time marching method,so that the corresponding flow patterns could not be obtained.Figure 5 shows the present results of streamlines at Re=330,1000,1500,including the stable symmetric and asymmetric solutions,and the corresponding unstable asymmetric solutions.The mirror images of the asymmetric solutions are omitted here.

    Near the turning point,such as Re=330,the asymmetric solutions have just appeared,and the stable and unstable asymmetric flow patterns are similar.They are the structures of one pair of primary vortices in the cavity center and the secondary vortices in the corners.When Re=1000,the cores of the main vortex in these three solutions move downward gradually.In the stable asymmetric pattern,the secondary vortices in the upper right corner become smaller due to the squeezing of the main vortices,while the secondary vortices in the lower left corner become stronger gradually.In the unstable asymmetric pattern,only the lower left secondary vortex has a slight enhancement.When Re=1500,there is no remarkable change of the main vortices in the three solutions,expect some flow separations and small vortices appear on the side walls in both the symmetric and unstable asymmetric solutions.These flow separations begin to appear on the side wall around Re=1090,which leads to the bifurcation of the flow topology.However,according to the bifurcation curve and stability analysis,there is no bifurcation of the solutions of Navier–Stokes equations.

    In order to verify the correctness of the results presented here,both the steady SIMPLE method and the stream function method[31]are used to simulate this problem.Because the SIMPLE method does not adopt Newton iteration,it is difficult to converge to the unstable asymmetric solution.However,the stream function method with inexact Newton algorithm can obtain the unstable solution,and the results are in good agreement with those obtained by the present spectral element method.In order to verify the stability of the flow states,unsteady computations are carried out for the evolution of each steady solution with small perturbations.The perturbations of the stable steady states will gradually decay and the states converge to the original solutions,whereas the perturbations of the unstable steady states will continue to increase and eventually the states converge to one of the stable branches,which is consistent with the linear stability analysis.

    Fig.5.Streamlines for symmetric,asymmetric stable and asymmetric unstable solutions of cavity flow at Re=330,1000,1500.

    3.3.Hysteresis for asymmetric solutions

    In addition to the multiple coexisting solutions,there is a novel hysteresis phenomenon in the range of 2208

    The typical solutions in the hysteresis at Re=2230 are given in Fig.6.The flow patterns of these symmetric and asymmetric solutions are similar to those at Re=1500,except that the secondary vortices on the corner develop more completely.For the stable asymmetric solutions,a new flow separation appears in the left side wall and generates a new secondary vortex.The wall secondary vortex is separated with the corner secondary vortex by the main vortex in the asymmetric solution of left branch,while these two secondary vortexes contact with each other and are ready to merge in the corresponding right branch.The flow field of the unstable solution in the hysteresis is between these two stable asymmetric states,where the wall and corner secondary vortexes just come into contact with each other.The main difference between the solutions of the left and right branches is the relationship of secondary vortices near the wall and corner.The growth competition and merger of these two secondary vortices result in the hysteresis phenomenon.The down branch is always alone,so its solution has a remarkable difference with the other asymmetric solutions.

    Fig.6.Streamlines for multiple coexisting solutions of cavity flow at Re=2230 in the hysteresis.

    4.Conclusion

    In this paper,the steady flow in a square cavity driven by a lid cover with antisymmetric sinusoidal velocity profile is numerically studied.By the bifurcation analysis and numerical continuation,the coexistence of multiple solutions of the Navier–Stokes equations at Re<2500 is obtained.The new bifurcation curve of symmetric and asymmetric steady states are presented,and the corresponding flow patterns are discussed.The critical Re number of asymmetric solutions is found to be 320.The stable symmetric and asymmetric solutions are consistent with those in literature,and a new set of unstable asymmetric solutions are obtained.When Re<320,there is only one stable symmetric solution for the flow;when 320

    猜你喜歡
    馬東德軍
    捐 款
    躬耕(2023年1期)2023-03-07 01:03:25
    汽車發(fā)動機(jī)常見故障維修與保養(yǎng)技術(shù)
    城市道路規(guī)劃設(shè)計發(fā)展趨勢探討
    馬東生 作品
    二戰(zhàn)德軍變身解放者?
    百家講壇(2017年16期)2017-11-07 10:06:41
    馬東的世界
    作品(2014年11期)2014-11-15 01:30:04
    用足數(shù)年功 佳景一朝成
    正在到來的雪
    不走運(yùn)的“水下幽靈”——德軍潛艇
    軍事歷史(1997年2期)1997-08-21 02:28:58
    第二次世界大戰(zhàn)剪影——德軍入侵波蘭
    軍事歷史(1993年2期)1993-08-21 06:13:20
    夫妻午夜视频| 大片免费播放器 马上看| 视频区图区小说| 男女之事视频高清在线观看| 少妇被粗大的猛进出69影院| 女人被躁到高潮嗷嗷叫费观| 色视频在线一区二区三区| 久久九九热精品免费| 91成年电影在线观看| 啦啦啦免费观看视频1| 国产日韩欧美在线精品| 超碰成人久久| 国产高清videossex| 欧美日韩国产mv在线观看视频| 天堂8中文在线网| 亚洲精品国产色婷婷电影| 亚洲国产精品一区三区| 精品少妇内射三级| 午夜成年电影在线免费观看| 中文字幕另类日韩欧美亚洲嫩草| 精品国产一区二区三区四区第35| 男女高潮啪啪啪动态图| 亚洲视频免费观看视频| 午夜日韩欧美国产| 免费高清在线观看视频在线观看| av天堂在线播放| 色综合欧美亚洲国产小说| 岛国毛片在线播放| 亚洲熟女毛片儿| 精品福利观看| 日韩免费高清中文字幕av| 大片电影免费在线观看免费| 国产精品成人在线| 在线看a的网站| av有码第一页| 考比视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 一区二区三区乱码不卡18| 久久国产精品人妻蜜桃| 一本色道久久久久久精品综合| 1024视频免费在线观看| 亚洲人成77777在线视频| 亚洲av美国av| 十八禁高潮呻吟视频| 亚洲精品第二区| 午夜福利影视在线免费观看| 久久热在线av| 久久精品久久久久久噜噜老黄| 欧美精品人与动牲交sv欧美| 精品少妇黑人巨大在线播放| 成年动漫av网址| 久久人人97超碰香蕉20202| 秋霞在线观看毛片| 亚洲va日本ⅴa欧美va伊人久久 | 国产精品一区二区免费欧美 | 另类精品久久| 亚洲欧美一区二区三区久久| 久久影院123| 日本wwww免费看| 久久久久国内视频| 国产有黄有色有爽视频| 人妻 亚洲 视频| 三上悠亚av全集在线观看| 老司机在亚洲福利影院| 国产av国产精品国产| 国产精品欧美亚洲77777| 亚洲国产av新网站| 国产av又大| 69av精品久久久久久 | 亚洲国产成人一精品久久久| 国产精品熟女久久久久浪| 久久国产亚洲av麻豆专区| 免费av中文字幕在线| 菩萨蛮人人尽说江南好唐韦庄| 免费看十八禁软件| 高清黄色对白视频在线免费看| 男女床上黄色一级片免费看| 久久狼人影院| 午夜精品国产一区二区电影| 国产精品久久久久成人av| 人人妻人人添人人爽欧美一区卜| 首页视频小说图片口味搜索| 欧美日韩一级在线毛片| 51午夜福利影视在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 成人av一区二区三区在线看 | 91成人精品电影| 秋霞在线观看毛片| 男男h啪啪无遮挡| 久久久久精品国产欧美久久久 | av又黄又爽大尺度在线免费看| 18在线观看网站| 亚洲国产成人一精品久久久| 国产精品免费大片| av超薄肉色丝袜交足视频| 欧美午夜高清在线| 国产精品一区二区精品视频观看| 免费在线观看日本一区| 欧美黄色淫秽网站| 亚洲国产欧美一区二区综合| 国产又色又爽无遮挡免| 亚洲三区欧美一区| 人人澡人人妻人| 国产一区二区三区av在线| 久久久水蜜桃国产精品网| av在线老鸭窝| 精品国产超薄肉色丝袜足j| 精品国产乱子伦一区二区三区 | 国产成人av激情在线播放| 欧美人与性动交α欧美精品济南到| 午夜福利免费观看在线| 另类亚洲欧美激情| 搡老岳熟女国产| 国产欧美日韩一区二区三区在线| 女性被躁到高潮视频| 国产99久久九九免费精品| 免费不卡黄色视频| 国产av又大| 久久人妻福利社区极品人妻图片| 精品人妻熟女毛片av久久网站| 欧美日韩黄片免| 国产精品久久久久久精品电影小说| 亚洲欧洲日产国产| 在线av久久热| 两性夫妻黄色片| 香蕉丝袜av| 日本黄色日本黄色录像| 精品一区二区三卡| 国产一区有黄有色的免费视频| 韩国精品一区二区三区| 午夜影院在线不卡| 国产成人欧美| 男人爽女人下面视频在线观看| 精品国产国语对白av| 窝窝影院91人妻| 多毛熟女@视频| √禁漫天堂资源中文www| 一区二区av电影网| 电影成人av| 黄色视频,在线免费观看| 久久久水蜜桃国产精品网| 黄色视频不卡| 免费在线观看完整版高清| 两个人免费观看高清视频| 少妇精品久久久久久久| 黑人巨大精品欧美一区二区蜜桃| 男人舔女人的私密视频| 亚洲久久久国产精品| tube8黄色片| 天天躁狠狠躁夜夜躁狠狠躁| 日本五十路高清| 女人被躁到高潮嗷嗷叫费观| 亚洲精品国产区一区二| 动漫黄色视频在线观看| 一二三四在线观看免费中文在| 国产精品一区二区精品视频观看| 一边摸一边抽搐一进一出视频| 国产精品久久久久成人av| 99久久99久久久精品蜜桃| 国产av国产精品国产| 免费在线观看日本一区| 日本av手机在线免费观看| 亚洲欧美日韩高清在线视频 | 男人操女人黄网站| 国产精品 国内视频| 满18在线观看网站| 亚洲av日韩在线播放| av超薄肉色丝袜交足视频| 中亚洲国语对白在线视频| 亚洲黑人精品在线| 一区二区三区精品91| 亚洲欧美成人综合另类久久久| 精品国产一区二区久久| 久久久精品国产亚洲av高清涩受| 亚洲伊人久久精品综合| 国产97色在线日韩免费| 国产区一区二久久| 日本wwww免费看| 成人三级做爰电影| 国产日韩一区二区三区精品不卡| 黄色怎么调成土黄色| 精品卡一卡二卡四卡免费| 亚洲五月色婷婷综合| 午夜久久久在线观看| 欧美久久黑人一区二区| 淫妇啪啪啪对白视频 | 日韩 亚洲 欧美在线| 热re99久久精品国产66热6| 三上悠亚av全集在线观看| 精品亚洲成a人片在线观看| 精品国产一区二区三区四区第35| 日韩欧美一区二区三区在线观看 | 久久女婷五月综合色啪小说| 亚洲国产精品一区二区三区在线| a在线观看视频网站| 最黄视频免费看| 日韩一卡2卡3卡4卡2021年| 亚洲国产欧美在线一区| www.熟女人妻精品国产| 淫妇啪啪啪对白视频 | 色婷婷久久久亚洲欧美| 岛国在线观看网站| 丰满饥渴人妻一区二区三| 丝袜在线中文字幕| 久久久久久久大尺度免费视频| 精品亚洲乱码少妇综合久久| 国产日韩欧美在线精品| 午夜福利一区二区在线看| 亚洲精品美女久久av网站| 国产精品一区二区在线观看99| 久久女婷五月综合色啪小说| 国产精品自产拍在线观看55亚洲 | 91麻豆av在线| 国产成人免费观看mmmm| 欧美国产精品一级二级三级| 国产成人av激情在线播放| 亚洲av片天天在线观看| 人妻人人澡人人爽人人| 午夜激情av网站| 亚洲精品国产av蜜桃| 精品国产一区二区三区四区第35| a级片在线免费高清观看视频| 热99久久久久精品小说推荐| 美女高潮喷水抽搐中文字幕| 中文字幕人妻丝袜制服| 超色免费av| 国产av又大| 亚洲伊人久久精品综合| 中文字幕另类日韩欧美亚洲嫩草| 久久综合国产亚洲精品| 水蜜桃什么品种好| 国产精品国产av在线观看| 多毛熟女@视频| 色婷婷av一区二区三区视频| 亚洲国产中文字幕在线视频| 亚洲精品久久午夜乱码| 夜夜骑夜夜射夜夜干| 99热全是精品| 乱人伦中国视频| 欧美午夜高清在线| 视频区欧美日本亚洲| 久久99一区二区三区| 亚洲精品日韩在线中文字幕| 99热国产这里只有精品6| 两人在一起打扑克的视频| 国产精品 欧美亚洲| 亚洲色图综合在线观看| 午夜日韩欧美国产| 水蜜桃什么品种好| 天天躁夜夜躁狠狠躁躁| 国产在线观看jvid| 99国产精品免费福利视频| 久久国产精品大桥未久av| 啪啪无遮挡十八禁网站| 超色免费av| av片东京热男人的天堂| 亚洲综合色网址| 中文字幕av电影在线播放| 国产精品熟女久久久久浪| 老司机靠b影院| 久久国产精品男人的天堂亚洲| 人妻一区二区av| 欧美日韩亚洲综合一区二区三区_| 欧美日韩一级在线毛片| 国产亚洲欧美精品永久| 搡老乐熟女国产| 亚洲专区字幕在线| 欧美日韩亚洲高清精品| 欧美在线黄色| 91成年电影在线观看| 超色免费av| 午夜激情久久久久久久| 午夜日韩欧美国产| 激情视频va一区二区三区| 波多野结衣av一区二区av| www.av在线官网国产| 在线观看免费日韩欧美大片| 大片电影免费在线观看免费| 久久 成人 亚洲| a级毛片黄视频| 丝瓜视频免费看黄片| 欧美成人午夜精品| 国产野战对白在线观看| 他把我摸到了高潮在线观看 | 久久天堂一区二区三区四区| 亚洲精品国产精品久久久不卡| 永久免费av网站大全| 99热国产这里只有精品6| 久久午夜综合久久蜜桃| 色婷婷久久久亚洲欧美| 久久久久久久大尺度免费视频| 久久亚洲国产成人精品v| 国产成人精品久久二区二区91| bbb黄色大片| 窝窝影院91人妻| 一级黄色大片毛片| 欧美在线黄色| videosex国产| 久久九九热精品免费| 亚洲综合色网址| 咕卡用的链子| 亚洲全国av大片| 国产伦理片在线播放av一区| 国产精品久久久久久人妻精品电影 | 精品少妇内射三级| 狂野欧美激情性bbbbbb| 国产精品影院久久| 捣出白浆h1v1| 黄片大片在线免费观看| 日韩制服骚丝袜av| 大码成人一级视频| 在线观看免费高清a一片| 婷婷色av中文字幕| 精品视频人人做人人爽| 国产精品自产拍在线观看55亚洲 | 亚洲精品成人av观看孕妇| 精品视频人人做人人爽| 99国产精品一区二区蜜桃av | 久久精品国产a三级三级三级| 日韩三级视频一区二区三区| 嫁个100分男人电影在线观看| 男女国产视频网站| 国产精品99久久99久久久不卡| 一区福利在线观看| 久久99一区二区三区| 一本—道久久a久久精品蜜桃钙片| 精品国产国语对白av| www.自偷自拍.com| 亚洲av日韩精品久久久久久密| 亚洲色图 男人天堂 中文字幕| 人人妻人人添人人爽欧美一区卜| 日韩中文字幕欧美一区二区| 18禁国产床啪视频网站| 这个男人来自地球电影免费观看| 男女国产视频网站| 99热全是精品| 18禁国产床啪视频网站| 欧美亚洲 丝袜 人妻 在线| 91大片在线观看| 黄网站色视频无遮挡免费观看| 国产一卡二卡三卡精品| 在线观看免费日韩欧美大片| 久久综合国产亚洲精品| 精品国产超薄肉色丝袜足j| 欧美黄色片欧美黄色片| 超色免费av| 黄色a级毛片大全视频| 婷婷成人精品国产| 老汉色av国产亚洲站长工具| 亚洲一卡2卡3卡4卡5卡精品中文| 看免费av毛片| 另类精品久久| 十八禁网站网址无遮挡| 中文字幕人妻熟女乱码| 窝窝影院91人妻| 精品人妻1区二区| 老汉色av国产亚洲站长工具| 91国产中文字幕| 久久国产精品人妻蜜桃| 99热全是精品| 美女高潮喷水抽搐中文字幕| 十八禁人妻一区二区| 久久国产精品人妻蜜桃| 日韩中文字幕欧美一区二区| 久久毛片免费看一区二区三区| 老鸭窝网址在线观看| www.熟女人妻精品国产| 亚洲欧美激情在线| 欧美黄色片欧美黄色片| 国产黄频视频在线观看| 久久国产精品人妻蜜桃| 一区二区三区激情视频| www.999成人在线观看| 免费高清在线观看视频在线观看| 久久久久精品国产欧美久久久 | www.自偷自拍.com| 国产免费现黄频在线看| 免费不卡黄色视频| 中文字幕精品免费在线观看视频| 国产野战对白在线观看| 国产免费福利视频在线观看| 国产亚洲午夜精品一区二区久久| 亚洲熟女毛片儿| 99精品欧美一区二区三区四区| 别揉我奶头~嗯~啊~动态视频 | 宅男免费午夜| 超色免费av| 久久99热这里只频精品6学生| 十八禁高潮呻吟视频| 91av网站免费观看| 久久久国产一区二区| 岛国在线观看网站| 日韩欧美一区二区三区在线观看 | 老熟妇乱子伦视频在线观看 | 亚洲国产精品一区二区三区在线| 欧美中文综合在线视频| 一级a爱视频在线免费观看| 美女高潮喷水抽搐中文字幕| 日韩有码中文字幕| 亚洲专区字幕在线| 欧美黑人精品巨大| 如日韩欧美国产精品一区二区三区| 亚洲av成人一区二区三| 男人添女人高潮全过程视频| 亚洲人成电影观看| 真人做人爱边吃奶动态| 日本欧美视频一区| 免费看十八禁软件| 啦啦啦中文免费视频观看日本| 亚洲精品一区蜜桃| 国产精品久久久久久人妻精品电影 | 欧美老熟妇乱子伦牲交| 美女主播在线视频| 热re99久久国产66热| 巨乳人妻的诱惑在线观看| 亚洲精品久久久久久婷婷小说| av国产精品久久久久影院| 国产一区有黄有色的免费视频| 久久免费观看电影| av在线播放精品| 无遮挡黄片免费观看| 老鸭窝网址在线观看| 久久99热这里只频精品6学生| 涩涩av久久男人的天堂| 中国美女看黄片| 国产1区2区3区精品| 国产在线观看jvid| 又大又爽又粗| 精品卡一卡二卡四卡免费| kizo精华| 日韩一卡2卡3卡4卡2021年| 国产精品久久久久久精品电影小说| 久热这里只有精品99| 精品熟女少妇八av免费久了| 99国产精品一区二区三区| 18禁国产床啪视频网站| 老司机午夜十八禁免费视频| 侵犯人妻中文字幕一二三四区| 成年人免费黄色播放视频| 成年女人毛片免费观看观看9 | 欧美激情 高清一区二区三区| 国产成人一区二区三区免费视频网站| 一本大道久久a久久精品| a级片在线免费高清观看视频| 极品人妻少妇av视频| 亚洲欧美精品综合一区二区三区| 在线观看免费午夜福利视频| 一级片'在线观看视频| 欧美日韩黄片免| 日本a在线网址| 精品少妇久久久久久888优播| 天天影视国产精品| 国产欧美日韩一区二区精品| www日本在线高清视频| 成年人免费黄色播放视频| 欧美一级毛片孕妇| 欧美日韩亚洲高清精品| 交换朋友夫妻互换小说| 日日爽夜夜爽网站| 国产精品香港三级国产av潘金莲| 免费观看a级毛片全部| 手机成人av网站| 五月开心婷婷网| 亚洲精品国产一区二区精华液| 久久久久久人人人人人| 男女下面插进去视频免费观看| 久久久久久久精品精品| 亚洲第一av免费看| 亚洲美女黄色视频免费看| 免费在线观看视频国产中文字幕亚洲 | 亚洲成人免费av在线播放| 黄片大片在线免费观看| 亚洲av成人一区二区三| 少妇被粗大的猛进出69影院| 黄色片一级片一级黄色片| 9热在线视频观看99| 亚洲精品美女久久av网站| 久久久国产一区二区| 久久久久久久大尺度免费视频| 国产福利在线免费观看视频| 国产av国产精品国产| 精品一品国产午夜福利视频| 国产极品粉嫩免费观看在线| 国产精品免费视频内射| 成人免费观看视频高清| 欧美中文综合在线视频| 国产在线一区二区三区精| 男女边摸边吃奶| 99久久综合免费| 国产精品国产av在线观看| 精品一区二区三区四区五区乱码| 秋霞在线观看毛片| 最近中文字幕2019免费版| 我的亚洲天堂| 国产xxxxx性猛交| 日本一区二区免费在线视频| 国产精品1区2区在线观看. | 亚洲美女黄色视频免费看| 大片免费播放器 马上看| 新久久久久国产一级毛片| 视频区欧美日本亚洲| 后天国语完整版免费观看| 国产免费视频播放在线视频| 久久人人97超碰香蕉20202| 十八禁网站免费在线| 麻豆国产av国片精品| xxxhd国产人妻xxx| 国产亚洲av片在线观看秒播厂| 亚洲美女黄色视频免费看| 水蜜桃什么品种好| 国产精品av久久久久免费| 我的亚洲天堂| 午夜福利乱码中文字幕| 亚洲精品乱久久久久久| 国产深夜福利视频在线观看| 电影成人av| 久久精品亚洲熟妇少妇任你| 久久精品人人爽人人爽视色| 午夜免费鲁丝| 蜜桃在线观看..| 国产亚洲欧美精品永久| 精品亚洲成国产av| 日韩有码中文字幕| 亚洲精品国产区一区二| 亚洲精品自拍成人| 女性被躁到高潮视频| 亚洲精品乱久久久久久| 亚洲中文字幕日韩| 高清黄色对白视频在线免费看| 亚洲国产欧美网| www.av在线官网国产| 精品一区二区三区av网在线观看 | 亚洲va日本ⅴa欧美va伊人久久 | 欧美精品一区二区免费开放| 久久久久国产精品人妻一区二区| 国产福利在线免费观看视频| 午夜福利影视在线免费观看| 美女高潮到喷水免费观看| 青青草视频在线视频观看| 久久毛片免费看一区二区三区| 国产成人啪精品午夜网站| 免费少妇av软件| 少妇的丰满在线观看| 精品人妻一区二区三区麻豆| 午夜老司机福利片| 成年av动漫网址| 午夜精品久久久久久毛片777| 丰满饥渴人妻一区二区三| 国产黄色免费在线视频| 一二三四在线观看免费中文在| 亚洲国产精品一区二区三区在线| 咕卡用的链子| 国产成人精品在线电影| 国产成人a∨麻豆精品| 日韩三级视频一区二区三区| 丰满迷人的少妇在线观看| 蜜桃在线观看..| svipshipincom国产片| h视频一区二区三区| 一级毛片电影观看| 80岁老熟妇乱子伦牲交| 午夜成年电影在线免费观看| 亚洲精品久久成人aⅴ小说| 亚洲精品国产一区二区精华液| 国产精品香港三级国产av潘金莲| 久久久国产一区二区| 青春草视频在线免费观看| 老司机福利观看| 精品视频人人做人人爽| 国产精品免费大片| 午夜免费观看性视频| 午夜久久久在线观看| 午夜免费观看性视频| 午夜成年电影在线免费观看| 久久久精品免费免费高清| 日本猛色少妇xxxxx猛交久久| 久久亚洲精品不卡| av一本久久久久| 久久中文看片网| 亚洲情色 制服丝袜| 精品少妇黑人巨大在线播放| 久久青草综合色| 成人免费观看视频高清| 亚洲国产欧美网| 亚洲九九香蕉| 99国产精品一区二区三区| 国产成人精品无人区| 欧美精品亚洲一区二区| 欧美精品一区二区大全| 一级黄色大片毛片| 亚洲精品久久久久久婷婷小说| 建设人人有责人人尽责人人享有的| 国产精品偷伦视频观看了| 婷婷成人精品国产| 免费在线观看黄色视频的| 99国产极品粉嫩在线观看| 亚洲国产av影院在线观看| 丁香六月天网| 一级片'在线观看视频| 久久久精品免费免费高清| 国产高清国产精品国产三级| 高清视频免费观看一区二区| 国产99久久九九免费精品| 成人免费观看视频高清| 国产成人一区二区三区免费视频网站| 国产无遮挡羞羞视频在线观看| 久9热在线精品视频| 韩国精品一区二区三区| 欧美黄色淫秽网站| 国产真人三级小视频在线观看| www.精华液| 亚洲视频免费观看视频| 人人妻人人添人人爽欧美一区卜| 啦啦啦 在线观看视频| 国产成人精品久久二区二区免费|