劉大林 張全
摘要:本文針對多屬性決策問題的VIKOR方法提出了改進(jìn)的方法,克服了不同決策者采用不同參數(shù)的弊端,提出統(tǒng)一參數(shù)的思想,使方案具有可比性,并通過離差最大化進(jìn)行建模,用具體的算例計算表明,改進(jìn)后的VIKOR方法更加合理化,更符合實際。
關(guān)鍵詞 :VIKOR;多屬性決策;離差最大化
中圖分類號:TP311? ? 文獻(xiàn)標(biāo)識碼:A
文章編號:1009-3044(2021)23-0132-02
1引言
多屬性決策問題是現(xiàn)代決策科學(xué)的一個重要組成部分,普遍存在于工程、經(jīng)濟(jì)、管理等領(lǐng)域,其實質(zhì)是通過一定方式集結(jié)決策信息并對方案進(jìn)行排序和擇優(yōu)[1]。在現(xiàn)實生活的實際決策問題當(dāng)中,不同的數(shù)據(jù)之間具有不可公度性和沖突問題,所以目前已經(jīng)有許多方法來解決這些問題。其中,VIKOR方法是在1998年時,由南斯拉夫的Opricovic[2]教授提出的一種基于理想點法對復(fù)雜系統(tǒng)進(jìn)行多屬性決策與評價的方法。但就目前已有的關(guān)于VIKOR方法的研究,不同專家在對不同方案進(jìn)行評價時選取的參數(shù)均不相同,具有一定的弊端。所以本文提出一種改進(jìn)后的VIKOR方法,令決策者對所有方案評價時均采取統(tǒng)一的參數(shù),使決策結(jié)果更具合理化和可信度。
2問題描述
2.1多屬性決策問題
在實際的評價決策中,決策者往往依據(jù)多個屬性特征對決策方案進(jìn)行評價和擇優(yōu)。多屬性決策問題可以描述為如下形式:有[m]個備選方案 [Sii=1,2,...,m],采用[n]個屬性[Cj(j=1,2,...,n)]來評價各方案。由決策者對各決策方案進(jìn)行客觀數(shù)據(jù)收集和主觀經(jīng)驗判斷,得到?jīng)Q策矩陣[A=[aij]m×n]矩陣。通常地,令屬性[Cj]的權(quán)重為[ωj(j=1,2,...,n)],滿足[ωj≥0]且[j=1nωj=1]。
2.2 多屬性決策問題的VIKOR方法
一般情況下,多屬性決策問題的VIKOR方法包含以下幾個步驟。
(1)規(guī)范化。為了消除量綱的影響,需要對數(shù)據(jù)進(jìn)行規(guī)范化處理,使規(guī)范化后的數(shù)據(jù)在[[0,1]]區(qū)間之內(nèi)。原始矩陣[A=[aij]m×n]經(jīng)規(guī)范化后記為[B=[bij]m×n]。
(2)計算各數(shù)據(jù)的群體效用值[Edi]、個體遺憾值[EHi]和VIKOR值[Qi]分別為
(3)方案排序。按照[Qi]的值從小到大排序,排在前面的方案較優(yōu),即[Qi]值越小方案越優(yōu),[Qi]值最小者為最優(yōu)方案。
2.3 當(dāng)前研究不足
當(dāng)前的VIKOR方法在計算各個決策方案的VIKOR值時都采用不同的參數(shù)值,這樣,各決策方案不具有可比性,缺乏合理性。我們認(rèn)為計算各個決策方案的VIKOR值時都應(yīng)該采用同一個參數(shù)值,這樣各個決策方案可比較優(yōu)劣,比較結(jié)果更加合理、可信。
3 提出的方法
本文提出的多屬性決策問題的VIKOR方法包含以下幾個步驟。
3.1 規(guī)范化矩陣
將原始矩陣[A=[aij]m×n]采用極差變化法進(jìn)行規(guī)范化[3]。
3.2 計算VIKOR值
所有的方案均采用相同的參數(shù)[(x1,x2)],并通過離差最大化的思想進(jìn)行建模,由此得到以下模型。
4 算例分析
下面以企業(yè)對供應(yīng)商的選擇問題為例來說明本文所給方法的可行性和有效性。某企業(yè)欲在市場中眾多具備供應(yīng)能力的供應(yīng)商中進(jìn)行選擇,經(jīng)過調(diào)研和預(yù)審等步驟后,確定了4個潛在的供應(yīng)商[(S1,S2,S3,S4)]。企業(yè)的決策者在對供應(yīng)商進(jìn)行選擇時考慮了6個屬性:①產(chǎn)品價格[C1]②質(zhì)量[C2]③送貨準(zhǔn)時率[C3]④采購成本[C4]⑤綜合能力[C5]⑥顧客投訴率[C6]。屬性的權(quán)重向量為[ω=(0.2,0.2,0.1,0.1,0.2,0.2)T]。假設(shè)將初始矩陣[A=[aij]m×n]依據(jù)式(4)和式(5)得到規(guī)范化后的矩陣[3]:
由[Q]值得到各個供應(yīng)商的優(yōu)先序為[S2>S4>S3>S1],其中[Q]值最小的供應(yīng)商為[S2],因此供應(yīng)商[S2]在決策過程中是最優(yōu)供應(yīng)商。
5 結(jié)論
本文提出了一種改進(jìn)的VIKOR的方法來解決多屬性決策問題,該方法首先利用離差最大化的思想進(jìn)行建模,求解出VIKOR的系數(shù)[x1]和[x2],然后規(guī)定決策者采用統(tǒng)一的參數(shù)進(jìn)行決策,進(jìn)而確定出最優(yōu)的方案。該方法有效地避免了不同專家采用不同的參數(shù)所帶來的弊端,使決策結(jié)果更具有可靠性及合理性。該方法也具有較好的應(yīng)用價值,為今后的多屬性決策問題的研究提供了一種新的思路。
參考文獻(xiàn):
[1] 彭勃,葉春明.基于不確定純語言混合調(diào)和平均算子的多屬性群決策方法[J].中國管理科學(xué),2015,23(2):131-138.
[2] Opricovic S.Multi Criteria Optimization of Civil Engineering Systems[D].Belgrade:Faculty of Civil Engineering,1998.
[3] 張全.復(fù)雜多屬性決策研究[M].沈陽:東北大學(xué)出版社,2008.
[4] 索瑋嵐,樊治平.混合型多屬性決策的E-VIKOR方法[J].系統(tǒng)工程,2010,28(4):79-83.
【通聯(lián)編輯:梁書】