• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Zn on Photocatalytic Activity of Block?Shaped Monoclinic WO3

    2021-09-22 02:13:36XIAOZhongLianWUXuanYiTANHeYunPaoloApreaHAOShiYou
    無機化學學報 2021年9期

    XIAO Zhong?LianWU Xuan?Yi TAN He?YunPaolo Aprea HAO Shi?You*,

    (1Xingzhi College,College of Chemistry and Life Sciences,Zhejiang Normal University,Jinhua,Zhejiang 321004,China)

    (2Department of Chemical,Materials and Production Engineering,University FedericoⅡ,Naples 802125,Italy)

    Abstract:Zn?doped block?shaped monoclinic WO3composite(Zn?doped WO3)was synthesized via a facile method and the photocatalytic activity of rhodamine B(RhB)over Zn?doped WO3was evaluated.The prepared samples were characterized by X?ray diffraction,Raman spectrum,scanning electron micrograph,UV?Vis diffuse reflection spec?trum,Fourier transform infrared spectrum,and X?ray photoelectron spectrum and other techniques,and the results showed that the block?shaped monoclinic WO3did not be changed by appropriate amount of Zn doping.The photo?catalytic results illustrated that mass ratio of 5% Zn doped WO3performed the best photocatalytic efficiency due to the formation of more oxygen vacancy and the increase of hydroxyl groups number.

    Keywords:Zn;WO3;synthesis;photocatalysis;oxygen vacancy

    It is well known that the pollution resulting from dye wastewater has become one of the most serious environmental problems due to the wide usage of dyes in textiles,leather,papermaking,food additives,cos?metics,etc[1].These dye wastewater may cause direct se?vere damage to the liver system,digestive system,and human beings because toxic by?products can be pro?duced from the discharged dyes via oxidation,hydroly?sis,and other chemical reactions[2?3].Therefore,the wastewater containing dyes must be eliminated before being discharged into the environment.At present,many methods such as physical adsorption[4],chemical precipitation[5],and photocatalytic degradation[6],have been used to remove dyes from wastewater.Amongthese approaches,semiconductor?based photocatalysis is considered as a highly effective technology for the removal of organic dyes because organic pollutants can be degraded into H2O and CO2over the semiconductor photocatalyst.As is reported that WO3play an impor?tant role in the field of photocatalysis due to its narrow band gap of about 2.8 eV[7]and hence potentially effi?cient visible light absorbance.Generally,WO3possess?es monoclinic,triclinic,orthogonal or hexagonal crystal structure at different temperatures[8].It can be conclud?ed that monoclinic WO3has efficiently phothocatalytic performance because of its lowest band gap(about 2.65 eV at room temperature[9]).Recently,we found that the photocatalytic efficiency of monoclinic WO3was great?ly affected by its morphology,and a block?shaped mor?phology was beneficial for the improvement of its photo?catalysis[10].However,the photocatalytic activity of pure WO3is not satisfactory because of its inherent defects such as relatively low conduction?band level[11].In order to improve the photocatalytic efficiency of WO3,doping with metal and nonmetal elements is often used to form WO3based composite structure such as WO3/TiO2[12],WO3/CuO[13],and WO3/C3N4[14].As a promising alternative semiconductor,ZnO has attracted wide attention in the field of photocatalysis[15?17]because of potentially photocatalytic activity,low ?cost and envi?ronmentally friendly feature.Because of the similar ion?ic radius of Zn2+to that of W6+,it can be concluded that Zn2+may penetrate into the WO3crystal lattice or sub?stitute the W6+position in the crystal,resulting in easy generation of lattice defects and hence improvement of WO3photocatalysis.Recently,Zn doped WO3with dif?ferent morphologys such as spherical,rod shaped or nanoporous morphology were synthesized and the pho?tocatalytic activity of the resulted samples was also investigated[18?19].However,to the best of our knowl?edge,there have no study investigating the photocata?lytic property of Zn doped monoclinic WO3with a block?shaped morphology.

    Herein,Zn doped block?shaped monoclinic WO3was prepared via a facile method and the photocatalyt?ic degradation of rhodamine(RhB)was carried out.The photocatalytic results show that appropriate amount of Zn doping can improve the photocatalytic activity of block?shaped monoclinic WO3due to the formation of oxygen vacancy and the increase of hydroxyl groups number.

    1 Experimental

    1.1 Materials synthesis

    Na2WO4·2H2O,Zn(NO3)2·6H2O,polyvinylpyrrol?idone (PVP),absolute ethanol,sodium hydroxide(NaOH),37% fuming hydrochloric acid(concentrated HCl),RhB,terephthalic acid(TPA),1,4?benzoquinone(BQ)and KI were purchased from Sinopharm Chemical Reagent Co.All the chemical reagents were used with?out further purification.Deionized water,with a resis?tivity larger than 18.2 MΩ,was obtained from Milli?pore Milli?Q?ultrapure water purification systems and used to prepare 0.1 mol·L-1HCl and 0.1 mol·L-1NaOH solutions(diluting the fuming hydrochloric acid and dissolving solid NaOH,respectively).

    Typically,solution A was prepared by dissolving 4 g of PVP in 10 mL H2O at room temperature under stirring for 10 min,by adding 10 mL of concentrated HCl,and then by aging the solution for 60 min.Similar?ly,solution B was prepared by dissolving 3.3 g of Na2WO4·2H2O in 10 mL H2O at room temperature.Afterwards,solution B was slowly added to solution A under stirring for 30 min to form a yellow precipitate(H2WO4).The mixed solution was stirred for another 30 min,transferred into a Teflon autoclave,and the syn?thesis was carried out without agitation in oven at 180℃for 12 h.The product was filtered and the solid was washed three times with deionized water,followed by washing for another three times with absolute etha?nol.The washed solid was then dried at 60℃overnight and a pale?yellow pre?product(a mixture of H2WO4and WO3)was obtained.

    A typical synthesis of Zn(OH)2was performed as follows:at room temperature,1 g of Zn(NO3)2·6H2O was added to 60 mL H2O under stirring for 30 min,and then 2 mol·L-1NaOH was added dropwise until no for?mation of white precipitant.Afterwards,Zn(OH)2was obtained by filtration,washed for 3 times with water and ethanol,respectively,and then dried at 60℃.

    Zn?doped WO3was synthesized by the following procedure.0.5 g of the resulted mixture of H2WO4and WO3and x g(x=0.015,0.025,0.035)of Zn(OH)2placed in the agate mortar were grinded for 30 min,and then calcined at 550℃for 2 h.Finally,different amounts of Zn doped WO3samples were obtained,and the samples were denoted as 3% Zn?WO3,5% Zn?WO3,and 7% Zn?WO3,respectively.For comparison purpos?es,WO3was synthesized under the same experimental conditions,except that no Zn(OH)2was added.

    1.2 Characterization

    The X?ray diffraction(XRD)patterns were collect?ed on a Philips PW3040/60 powder diffractometer using Cu Kα radiation(λ=0.154 nm).The X?ray tube was operated at 40 kV and 40 mA,and scanning inter?val ranged from 10°to 80°.Raman scattering analysis was performed on a Renishaw RM1000 Raman spec?trometer with a 514 nm excitation laser light.Scanning electron microscope(SEM)images were obtained using a Hitachi S?4800 instrument under an accelerating voltage of 20~40 kV,0.2~5 kV in 100 V steps,and 5~40 kV in 1 kV steps.The UV?Vis diffuse reflectance(DRS)spectra of the samples over a range of 200~1 000 nm were recorded by a Nicolet Evolution 500 Scan UV?Vis system with a scanning rate of 60 nm·min-1.The FT?IR spectra were recorded by a Nicole Nexus 670 spectrometer with a resolution of 4 cm-1using KBr pellet method.The photoluminescence(PL)spectra of the samples were obtained at room tempera?ture by a spectrofluorometer (NanoLOG?TCSPC,Horiba Jobin Yvon,USA)with an excitation wave?length of 325 nm.X?ray photoelectron spectroscopy(XPS)measurement was carried out on a RBO upgrad?ed PHI?5000 C ESCA system(Perkin Elmer)using monochromated Al Kα X?rays(E=1 486.6 eV)as a radi?ation at 250 W operating at an accelerating voltage of 15 kV.All binding energies were calibrated using car?bon(C1s,284.6 eV)as a reference.

    1.3 Photocatalytic tests

    The photocatalytic activities of WO3,3% Zn?WO3,5% Zn?WO3,and 7% Zn?WO3were evaluated by the photodegradation of RhB under visible light irradia?tion.In a typical experiment,50 mg of photocatalyst(WO3,3% Zn?WO3,5% Zn?WO3or 7% Zn?WO3)was dis?persed into 50 mL of RhB solution(5 mg·L-1)under magnetic stirring for 15 min.The pH of all the solu?tions containing RhB used for the photocatalytic experi?ments was adjusted to the desired value using 0.1 mol·L-1HCl and/or NaOH solutions.Afterwards,the sus?pensions were stirred in the dark for 30 min to reach the equilibrium.At given time intervals,a small amount of suspension was withdrawn and centrifuged to remove the photocatalyst.The residual RhB levels in the filtrates were then analyzed by recording the varia?tions of the absorbance at 552 nm with a UV?Vis spec?trophotometer(Evolution 500LC).The removal efficien?cy of RhB was evaluated as η:

    Where A0is the initial absorbance of RhB and A is the absorbance of RhB in the filtrates.

    2 Results and discussion

    The crystalline structure of WO3and the samples prepared with different Zn amounts were characterized by XRD technique,which is presented in Fig.1a.It can be seen from Fig.1a that the XRD patterns of all the samples can be identified as monoclinic WO3(PDF No.46?1096),whose characteristic peaks are located at 23.1°,23.6°,24.4°,33.3°,34.2°which corresponding to(002),(020),(200),(120),(202)[20].It is obvious from Fig.1a that the characteristic peak located at about 30.68°(marked with five pointed star)can be detected for the Zn?doped samples,which is the(100)reflection of ZnO.It also can be found from Fig.1a that the inten?sity of(100)reflection increased with the increasing of Zn doping amount,implying that Zn can effectively entry into WO3lattice,in good agreement with our above inference.The Raman spectra of as?prepared Zn?doped WO3were also recorded and compared with that of WO3in the range of 200~1 000 cm-1(Fig.1b).The peaks at around 270.4,715.8 and 805.8 cm-1are typi?cal features of the monoclinic structure of WO3[21],which is consistent with the XRD results.The lack of the peak at approximately 950 cm-1attributed to the stretching mode of W6+=O[22],confirms the crystallini?ty of the catalysts.After Zn doping,the two mostintense peaks at 715.8 and 805.8 cm-1,corresponding to O—W—O vibration mode,became wider.Further?more,the Raman band at about 325 cm-1assigned to 2E2(M)vibration mode of hexagonal wurtzite ZnO[23]was observed in Zn doped WO3samples,confirming the presence of Zinc in the catalyst.The result(Fig.S1)further prove the presence of Zinc in the synthesized samples.It can be seen from Fig.1c and 1d that WO3and 5% Zn?WO3have a block?shaped morphology.Oth?er Zn doped samples also have similar structures to that of WO3,indicating that Zn doping amount arrang?ing from 3% to 7% can not change the block?shaped morphology of initial WO3.

    Fig.1 XRD patterns(a)and Raman spectra(b)of WO3,3% Zn?WO3,5% Zn?WO3,and 7% Zn?WO3;SEM images of WO3(c)and 5% Zn?WO3(d)

    The photocatalytic activities of WO3,3% Zn?WO3,5% Zn?WO3,and 7% Zn?WO3are showed in Fig.2.It is clear that the photocatalytic efficiency of WO3increased when Zn doping amount increased from 3% to 5%,but decreased when the doping amount exceeded 5%.Fig.3 can explain the above experimental results.The photocatalytic results show that an appropriate amount of Zn doping is good for the improvement of WO3photo?catalysis performance.It can be concluded from Fig.S2 that RhB was actually degraded over 5% Zn?WO3.

    In order to explain the above photocatalytic re?sults,UV?Vis DRS and PL spectra of WO3,3% Zn?WO3,5% Zn?WO3,and 7% Zn?WO3were recorded and the results are shown in Fig.3.It can be seen from Fig.3a that the light(especially visible light)absorption efficiency of 5% Zn?WO3was higher than that of WO3,resulting in efficient generation of photogenerated elec?trons and holes over 5% Zn?WO3under the irradiation of visible light.The PL spectra of pure WO3and Zndoped WO3are shown in Fig.3b.It is obvious that the position and pattern of the emission peaks of all sam?ples were almost similar,but the PL intensities of the samples were noticeably different.Generally,the lower the PL intensity,the higher the separation efficiency for photogenerated electron?hole pairs[24].From Fig.3b,it is easy to find that the PL intensity of 5% Zn?WO3was the lowest,indicating that the charge separation efficient in 5% Zn?WO3was better than that in WO3.This may be due to the fact that the photogenerated electrons and holes are separated by the charge trans?fer at the heterojunction interfaces of 5% Zn?WO3.Con?sequently,the photocatalytic activity of 5% Zn?WO3was higher than that of WO3.It can be seen that the light absorption efficiency of 7% Zn?WO3was lower than those of other samples,and the PL intensity of it was the highest one,resulting in the lowest photocata?lytic activity.

    Fig.2 Photodegradation of 5 mg·L?1RhB in the presence of different photocatalysts under visible light irradiation at pH of 6(VRhB=50 mL,mphotocatalyst=0.05 g)

    In order to study the reason why 5% Zn?WO3had higher separation efficiency of photogenerated electron?hole pairs,W4f XPS spectra for 5% Zn?WO3and WO3were carried out(Fig.4).It is clear from Fig.4 that the W4f7/2and W4f5/2peaks centered at 35.4 and 37.6 eV are typical binding energies corresponding to W6+oxi?dation state[25].Moreover,the peak at about 36.2 eV cor?responding to orbital spin of W5+4f5/2[26]was detected in 5% Zn?WO3and WO3,but the peak intensity of the for?mer was higher than that of the latter,implying that Zn doping is beneficial for the formation of W5+.The possi?ble reason is that Zn2+is beneficial to the interaction between WO3precursor(H2WO4)and PVP.Therefore,the W6+is easier to be reduced by PVP in 5% Zn?WO3precursor than in the WO3precursor,resulting in a larger number of oxygen vacancies arising from the replacement of W6+by W5+in 5% Zn?WO3,as expressed by the following equation:

    Where VO··represents an oxygen vacancy.From our previous report[27],it can be concluded that the photo?generated electrons can be easily captured by oxygen vacancy,which can cause efficient separation efficien?cy for photogenerated electron?hole pairs.Therefore,the photocatalytic efficiency of 5% Zn?WO3was higher than that of WO3.

    Fig.3 UV?Vis DRS(a)and PL(b)spectra of WO3,3% Zn?WO3,5% Zn?WO3,and 7% Zn?WO3

    Fig.4 W4f XPS spectra for 5% Zn?WO3(a)and WO3(b)

    Besides the above factor affecting the photocata?lytic activity,the adsorption ability of dyes on the sur?face of photocatalyst also play an important role.It is reported that the content of hydroxyl groups on the sur?face of photocatalyst can greatly influence the adsorp?tion ability of RhB and hence the photocatalytic effi?ciency[28].Generally,the content of hydroxyl groups can be reflected by the O1s XPS spectra[29].In order to in?vest the effect of Zn doping on the content of hydroxyl groups on the surface of WO3,the O1s XPS spectra of 5% Zn?WO3and WO3were obtained(Fig.5).According to Han et al.,the peak at about 530.5 eV is related to oxygen in the lattice(O2-,OⅡ),and another peak,located at about 531.5 eV,corresponds to adsorbed oxygen(OⅠ)in the form of O—H on the surface[30].Generally,the content of hydroxyl groups can be reflected by the ratio of SOⅠ(the peak area of adsorbed oxygen in the form of O—H)to SOⅡ(the peak area of oxygen in the lattice).The higher the value of SOⅠ/SOⅡ,the richer the content of hydroxyl groups in the pre?pared sample.It can be found from Fig.5 that the value of SOⅠ/SOⅡfor 5% Zn ?WO3was higher than that for WO3,implying that the content of hydroxyl groups in 5% Zn?WO3was higher than that in WO3.The reason may be that Zn2+is easy to combined with OH-to form[Zn(OH)4]2-coordination ion,which is good for the improvement of hydroxyl content in the precursor of 5% Zn?WO3.Consequently,the adsorbed amount of RhB on 5% Zn?WO3was higher than that on WO3,re?sulting in a higher photocatalytic activity.The results of Fig.S3 show that·O2-and h+are the main active species to degrade RhB.

    Fig.5 O1s XPS spectra for 5% Zn?WO3(a)and WO3(b)

    3 Conclusions

    In summary,Zn?doped WO3was synthesized by a facile method.The photocatalytic results show that the photocatalytic activity of WO3is enhanced after doping of Zn because the photoelectrons and holes can be effi?ciently separated due to the formation of oxygen vacan?cies.Furthermore,Zn doping can improve the content of hydroxyl groups,which is beneficial for the improve?ment of RhB adsorption ability and hence the photocat?alytic efficiency.

    Acknowledgement:This work was supported by the National Natural Science Foundation of China (Grant No.21876158).

    Supporting information is available at http://www.wjhxxb.cn

    色吧在线观看| 毛片女人毛片| 一本久久精品| 国产 精品1| 一级av片app| av线在线观看网站| 秋霞伦理黄片| 99视频精品全部免费 在线| 亚洲精品乱码久久久久久按摩| 亚洲熟女精品中文字幕| 国产爱豆传媒在线观看| 女性生殖器流出的白浆| 天天躁夜夜躁狠狠久久av| 五月伊人婷婷丁香| 你懂的网址亚洲精品在线观看| 成人午夜精彩视频在线观看| 人人妻人人爽人人添夜夜欢视频 | 少妇人妻精品综合一区二区| 国产视频内射| 99热这里只有是精品50| 精品酒店卫生间| 一个人看的www免费观看视频| 高清黄色对白视频在线免费看 | 99热这里只有是精品50| 18+在线观看网站| 黄色日韩在线| 亚洲av国产av综合av卡| 一区二区av电影网| 一级二级三级毛片免费看| 欧美成人一区二区免费高清观看| 秋霞在线观看毛片| 一级爰片在线观看| 精品酒店卫生间| 午夜福利网站1000一区二区三区| 日韩制服骚丝袜av| 人人妻人人添人人爽欧美一区卜 | 中文乱码字字幕精品一区二区三区| 人妻系列 视频| 蜜桃久久精品国产亚洲av| 日本欧美视频一区| www.av在线官网国产| 国产熟女欧美一区二区| 久久久久精品久久久久真实原创| 中国国产av一级| 国产成人a∨麻豆精品| 亚洲精品日本国产第一区| 99热全是精品| 美女中出高潮动态图| 黄色配什么色好看| 自拍偷自拍亚洲精品老妇| 亚洲欧美成人综合另类久久久| 日韩av免费高清视频| 91精品伊人久久大香线蕉| 99久久精品国产国产毛片| 久久精品国产亚洲网站| 免费少妇av软件| 亚洲无线观看免费| 天天躁夜夜躁狠狠久久av| 日韩制服骚丝袜av| 91久久精品国产一区二区成人| 下体分泌物呈黄色| 亚洲第一av免费看| 人妻制服诱惑在线中文字幕| 亚洲成人中文字幕在线播放| 天堂8中文在线网| 国产淫片久久久久久久久| 18禁动态无遮挡网站| 午夜免费观看性视频| 性高湖久久久久久久久免费观看| av在线观看视频网站免费| 亚洲av男天堂| 18禁在线播放成人免费| 少妇熟女欧美另类| 亚洲av成人精品一区久久| 免费看不卡的av| 国产有黄有色有爽视频| 91aial.com中文字幕在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 国语对白做爰xxxⅹ性视频网站| 亚洲av综合色区一区| 成人二区视频| 精品国产一区二区三区久久久樱花 | 亚洲色图av天堂| 日韩av在线免费看完整版不卡| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产精品一区三区| 人妻系列 视频| 久久婷婷青草| 91久久精品电影网| 大片电影免费在线观看免费| 一二三四中文在线观看免费高清| 老司机影院成人| 久久精品国产鲁丝片午夜精品| 另类亚洲欧美激情| 日本-黄色视频高清免费观看| 国产女主播在线喷水免费视频网站| 日韩制服骚丝袜av| 亚洲综合精品二区| 国产久久久一区二区三区| 99re6热这里在线精品视频| 永久免费av网站大全| 在线观看一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 久久精品久久久久久久性| 亚洲av成人精品一区久久| 黄色配什么色好看| 在线观看一区二区三区| 在线观看美女被高潮喷水网站| 欧美3d第一页| 一个人看视频在线观看www免费| 蜜臀久久99精品久久宅男| 五月伊人婷婷丁香| 男男h啪啪无遮挡| 嘟嘟电影网在线观看| h视频一区二区三区| 欧美日韩综合久久久久久| 我的女老师完整版在线观看| 毛片女人毛片| 老女人水多毛片| 纵有疾风起免费观看全集完整版| 精品久久久久久久久av| 男人爽女人下面视频在线观看| 中文乱码字字幕精品一区二区三区| 精品一区二区三卡| 亚洲av国产av综合av卡| 人人妻人人添人人爽欧美一区卜 | 女的被弄到高潮叫床怎么办| 日韩国内少妇激情av| 自拍偷自拍亚洲精品老妇| a级毛片免费高清观看在线播放| 一级毛片我不卡| 中文字幕免费在线视频6| 精品少妇黑人巨大在线播放| 亚洲精品日韩在线中文字幕| 美女xxoo啪啪120秒动态图| 狂野欧美白嫩少妇大欣赏| 国产精品麻豆人妻色哟哟久久| 人人妻人人澡人人爽人人夜夜| 日产精品乱码卡一卡2卡三| 久久综合国产亚洲精品| 女的被弄到高潮叫床怎么办| 久久国产精品大桥未久av | 国产精品成人在线| 久久ye,这里只有精品| 少妇猛男粗大的猛烈进出视频| 天堂俺去俺来也www色官网| 小蜜桃在线观看免费完整版高清| 中文欧美无线码| 免费大片18禁| 天堂俺去俺来也www色官网| 男人添女人高潮全过程视频| 国产黄色免费在线视频| 丰满迷人的少妇在线观看| 啦啦啦视频在线资源免费观看| 日本黄色片子视频| 伦精品一区二区三区| 亚洲av成人精品一二三区| 亚洲精品久久午夜乱码| 狠狠精品人妻久久久久久综合| 欧美人与善性xxx| 日产精品乱码卡一卡2卡三| 成人漫画全彩无遮挡| 少妇熟女欧美另类| 成人高潮视频无遮挡免费网站| 亚洲熟女精品中文字幕| 美女内射精品一级片tv| 精品人妻一区二区三区麻豆| 伊人久久精品亚洲午夜| 男女下面进入的视频免费午夜| 国产高清有码在线观看视频| 18禁动态无遮挡网站| 黄色配什么色好看| 亚洲伊人久久精品综合| 成人无遮挡网站| 新久久久久国产一级毛片| 大陆偷拍与自拍| 高清日韩中文字幕在线| 亚洲国产精品一区三区| 青春草国产在线视频| 97超碰精品成人国产| 男人舔奶头视频| 欧美少妇被猛烈插入视频| 水蜜桃什么品种好| 18+在线观看网站| 看免费成人av毛片| 少妇被粗大猛烈的视频| 亚洲精品国产色婷婷电影| 国产黄片视频在线免费观看| 麻豆乱淫一区二区| 国产大屁股一区二区在线视频| 久久女婷五月综合色啪小说| 国产精品人妻久久久影院| 国产在视频线精品| 在线观看免费视频网站a站| 在线看a的网站| 丰满人妻一区二区三区视频av| videossex国产| 成年av动漫网址| 成人亚洲精品一区在线观看 | 国产亚洲午夜精品一区二区久久| 国产精品熟女久久久久浪| 久久这里有精品视频免费| 中文天堂在线官网| 夫妻午夜视频| 亚洲精品中文字幕在线视频 | 精品少妇久久久久久888优播| 蜜桃亚洲精品一区二区三区| 成人毛片a级毛片在线播放| 欧美性感艳星| 久久久a久久爽久久v久久| 最近中文字幕2019免费版| 九九久久精品国产亚洲av麻豆| 午夜老司机福利剧场| 老熟女久久久| 免费观看在线日韩| 日韩av免费高清视频| 国产 精品1| 国产久久久一区二区三区| 亚洲成色77777| 少妇人妻久久综合中文| 午夜福利影视在线免费观看| 美女中出高潮动态图| 不卡视频在线观看欧美| 观看av在线不卡| 91精品国产国语对白视频| 老司机影院成人| 国产又色又爽无遮挡免| 日本黄大片高清| 看非洲黑人一级黄片| 亚洲精品久久午夜乱码| 伊人久久国产一区二区| 日本黄大片高清| 男女边吃奶边做爰视频| 特大巨黑吊av在线直播| 久久久久久久久久人人人人人人| 成人漫画全彩无遮挡| 国产精品蜜桃在线观看| 亚洲丝袜综合中文字幕| 精华霜和精华液先用哪个| 欧美日韩国产mv在线观看视频 | 视频区图区小说| 在线观看免费高清a一片| 国产色爽女视频免费观看| 人人妻人人爽人人添夜夜欢视频 | 纵有疾风起免费观看全集完整版| 久久韩国三级中文字幕| 少妇的逼水好多| 插逼视频在线观看| 国产精品人妻久久久影院| 王馨瑶露胸无遮挡在线观看| 老熟女久久久| 国产精品一区二区性色av| 国产视频首页在线观看| 日本黄色片子视频| av.在线天堂| 欧美bdsm另类| 美女cb高潮喷水在线观看| 伊人久久国产一区二区| 午夜免费观看性视频| 国产黄频视频在线观看| av卡一久久| 亚洲美女搞黄在线观看| 欧美精品人与动牲交sv欧美| 日韩成人av中文字幕在线观看| 99热这里只有精品一区| 大话2 男鬼变身卡| 舔av片在线| 91精品国产九色| 色综合色国产| 日韩制服骚丝袜av| 简卡轻食公司| 97超碰精品成人国产| 夜夜看夜夜爽夜夜摸| 18禁裸乳无遮挡动漫免费视频| 国产精品爽爽va在线观看网站| 久久精品国产亚洲网站| 精品酒店卫生间| 在线观看三级黄色| 国产69精品久久久久777片| 80岁老熟妇乱子伦牲交| 亚洲成人中文字幕在线播放| 一级毛片我不卡| 成人美女网站在线观看视频| 国产永久视频网站| 天天躁日日操中文字幕| 蜜桃在线观看..| av免费观看日本| 亚洲va在线va天堂va国产| 99久久精品一区二区三区| 亚洲精品亚洲一区二区| 亚洲高清免费不卡视频| 青春草视频在线免费观看| 午夜福利在线在线| 国产成人a∨麻豆精品| 国产免费又黄又爽又色| 国产午夜精品久久久久久一区二区三区| 欧美xxxx黑人xx丫x性爽| 久久这里有精品视频免费| 欧美日韩精品成人综合77777| 在线免费观看不下载黄p国产| 少妇高潮的动态图| 麻豆国产97在线/欧美| 妹子高潮喷水视频| 寂寞人妻少妇视频99o| 偷拍熟女少妇极品色| 涩涩av久久男人的天堂| 97在线视频观看| 综合色丁香网| 高清日韩中文字幕在线| 欧美日韩在线观看h| 婷婷色综合大香蕉| 草草在线视频免费看| 久久99蜜桃精品久久| 久久精品国产自在天天线| 国产精品秋霞免费鲁丝片| 在线观看一区二区三区| 2022亚洲国产成人精品| 精品人妻视频免费看| 日本午夜av视频| 久久久久精品久久久久真实原创| 精品国产三级普通话版| 欧美bdsm另类| 日本色播在线视频| 日本午夜av视频| 麻豆国产97在线/欧美| 在线观看美女被高潮喷水网站| av不卡在线播放| 国产v大片淫在线免费观看| 中文字幕制服av| 国产高清三级在线| 91狼人影院| 亚洲久久久国产精品| 国产成人一区二区在线| 亚洲成人av在线免费| 午夜福利网站1000一区二区三区| 久久久午夜欧美精品| 交换朋友夫妻互换小说| 国产成人免费观看mmmm| 国精品久久久久久国模美| 水蜜桃什么品种好| 又黄又爽又刺激的免费视频.| 精品少妇黑人巨大在线播放| 成人毛片60女人毛片免费| 亚洲av.av天堂| 91精品伊人久久大香线蕉| 免费在线观看成人毛片| 人妻 亚洲 视频| 亚洲在久久综合| 日本午夜av视频| 高清日韩中文字幕在线| 久久午夜福利片| 亚洲三级黄色毛片| 免费高清在线观看视频在线观看| 国产在视频线精品| 亚洲丝袜综合中文字幕| 亚洲欧洲国产日韩| 亚洲精品久久午夜乱码| 狠狠精品人妻久久久久久综合| 午夜福利网站1000一区二区三区| 搡老乐熟女国产| 精品亚洲成国产av| 亚洲精品乱码久久久久久按摩| 国产精品熟女久久久久浪| 91狼人影院| 亚洲av福利一区| 免费看日本二区| 亚洲av中文av极速乱| 99久久中文字幕三级久久日本| 婷婷色av中文字幕| 国产黄色免费在线视频| 亚洲成人手机| 欧美高清成人免费视频www| 国产精品人妻久久久影院| 久久精品国产亚洲网站| .国产精品久久| 九色成人免费人妻av| 免费看av在线观看网站| 国产黄片美女视频| 国产精品秋霞免费鲁丝片| 免费观看性生交大片5| 久久99热6这里只有精品| 不卡视频在线观看欧美| 搡女人真爽免费视频火全软件| 中国国产av一级| 色视频www国产| 观看免费一级毛片| 国产成人午夜福利电影在线观看| 国产女主播在线喷水免费视频网站| 深夜a级毛片| 亚洲内射少妇av| 国产精品国产三级国产专区5o| 中文字幕久久专区| 两个人的视频大全免费| 深爱激情五月婷婷| 免费看av在线观看网站| 女人久久www免费人成看片| 日韩伦理黄色片| 嫩草影院入口| 久久精品国产鲁丝片午夜精品| 久久人妻熟女aⅴ| 一边亲一边摸免费视频| 青春草国产在线视频| 国产探花极品一区二区| 日韩中字成人| 国产老妇伦熟女老妇高清| 国产精品一区二区在线观看99| 成人影院久久| 国产淫语在线视频| 一本—道久久a久久精品蜜桃钙片| 亚洲精品第二区| 三级国产精品欧美在线观看| 91久久精品国产一区二区三区| 欧美精品亚洲一区二区| 午夜视频国产福利| 国产精品偷伦视频观看了| 精品久久久久久久末码| 18+在线观看网站| 99久久精品热视频| 国产中年淑女户外野战色| 欧美激情国产日韩精品一区| 国产成人91sexporn| 国产精品久久久久久av不卡| 亚洲不卡免费看| 永久免费av网站大全| 91久久精品国产一区二区成人| 日韩视频在线欧美| 国产 一区精品| 国产成人免费无遮挡视频| 国产免费又黄又爽又色| 交换朋友夫妻互换小说| 亚洲一级一片aⅴ在线观看| 亚洲欧美中文字幕日韩二区| 夜夜爽夜夜爽视频| 欧美日韩在线观看h| 六月丁香七月| 日日啪夜夜爽| 亚洲电影在线观看av| 一级毛片 在线播放| 久久久久精品性色| 免费大片黄手机在线观看| 高清日韩中文字幕在线| 免费黄色在线免费观看| 在线观看免费视频网站a站| 在线看a的网站| 国产精品爽爽va在线观看网站| 久久久久久久国产电影| 精品国产露脸久久av麻豆| 高清av免费在线| 久久99热6这里只有精品| 伊人久久精品亚洲午夜| 成人黄色视频免费在线看| 亚洲国产最新在线播放| 99热这里只有是精品50| 久久热精品热| 国产成人a∨麻豆精品| 男人添女人高潮全过程视频| 天天躁夜夜躁狠狠久久av| 婷婷色综合www| 网址你懂的国产日韩在线| 国产中年淑女户外野战色| 国产探花极品一区二区| 一本久久精品| 亚洲精品乱码久久久久久按摩| 免费看日本二区| 色婷婷av一区二区三区视频| 美女中出高潮动态图| 国产精品免费大片| 免费看光身美女| 插阴视频在线观看视频| 亚洲av中文av极速乱| 嘟嘟电影网在线观看| 亚洲国产av新网站| 99久久精品一区二区三区| 日韩成人av中文字幕在线观看| 欧美最新免费一区二区三区| 人妻少妇偷人精品九色| 亚洲精品日韩av片在线观看| 少妇精品久久久久久久| 国产精品精品国产色婷婷| 亚洲色图av天堂| 插阴视频在线观看视频| 99视频精品全部免费 在线| 啦啦啦视频在线资源免费观看| 在线精品无人区一区二区三 | 在线观看美女被高潮喷水网站| 国产伦理片在线播放av一区| 日本猛色少妇xxxxx猛交久久| tube8黄色片| 欧美bdsm另类| 国产成人aa在线观看| 国内少妇人妻偷人精品xxx网站| 水蜜桃什么品种好| 三级国产精品欧美在线观看| 高清不卡的av网站| 高清视频免费观看一区二区| 国产精品一区二区在线不卡| 亚洲丝袜综合中文字幕| 高清av免费在线| 亚洲三级黄色毛片| 国产成人精品婷婷| 黄色欧美视频在线观看| 日韩中文字幕视频在线看片 | 七月丁香在线播放| 尤物成人国产欧美一区二区三区| 日本vs欧美在线观看视频 | 亚洲第一av免费看| 日韩大片免费观看网站| 国产亚洲av片在线观看秒播厂| 最近最新中文字幕免费大全7| 又爽又黄a免费视频| 日韩制服骚丝袜av| 伊人久久国产一区二区| 国产成人免费观看mmmm| 一个人免费看片子| 精品久久国产蜜桃| 看十八女毛片水多多多| 熟女人妻精品中文字幕| 黄片wwwwww| 精品久久久噜噜| 黄色怎么调成土黄色| 天堂中文最新版在线下载| 三级国产精品片| 国产成人免费观看mmmm| 亚洲国产精品999| 能在线免费看毛片的网站| 中文字幕av成人在线电影| 99热这里只有精品一区| 欧美另类一区| h日本视频在线播放| 黄色视频在线播放观看不卡| 又大又黄又爽视频免费| av专区在线播放| 久久韩国三级中文字幕| 亚洲精品乱码久久久久久按摩| 国产深夜福利视频在线观看| 激情五月婷婷亚洲| 国产高清不卡午夜福利| 国产乱来视频区| 色吧在线观看| 亚洲在久久综合| 女性被躁到高潮视频| 免费观看a级毛片全部| 国产成人a区在线观看| 黄色怎么调成土黄色| av在线蜜桃| 国产91av在线免费观看| 丰满乱子伦码专区| av福利片在线观看| 一级黄片播放器| 99久久中文字幕三级久久日本| 亚洲性久久影院| 男人和女人高潮做爰伦理| 美女主播在线视频| av专区在线播放| 美女内射精品一级片tv| 国产极品天堂在线| 老女人水多毛片| 日韩成人av中文字幕在线观看| 人妻夜夜爽99麻豆av| 亚洲人成网站在线播| 国国产精品蜜臀av免费| 成人亚洲欧美一区二区av| 韩国高清视频一区二区三区| 中国三级夫妇交换| 国产精品99久久久久久久久| 亚洲四区av| 日韩伦理黄色片| 国产精品国产av在线观看| 一本久久精品| 精华霜和精华液先用哪个| 日韩一区二区视频免费看| 国产免费一区二区三区四区乱码| 国产精品福利在线免费观看| 亚洲国产毛片av蜜桃av| 成人特级av手机在线观看| 一个人看视频在线观看www免费| 美女福利国产在线 | 黑人猛操日本美女一级片| 亚洲国产精品999| 久久99热这里只频精品6学生| 国产黄片美女视频| 午夜福利影视在线免费观看| 永久免费av网站大全| 麻豆精品久久久久久蜜桃| 精品国产乱码久久久久久小说| 亚洲图色成人| 国产亚洲91精品色在线| 精品少妇黑人巨大在线播放| 乱系列少妇在线播放| 高清日韩中文字幕在线| 国产在线视频一区二区| 久久精品夜色国产| 久久久久视频综合| www.av在线官网国产| 国产中年淑女户外野战色| 亚洲精品色激情综合| 女性生殖器流出的白浆| 亚洲欧美日韩另类电影网站 | 欧美极品一区二区三区四区| a级毛片免费高清观看在线播放| 日本免费在线观看一区| 国产精品久久久久久久久免| 激情五月婷婷亚洲| 成年美女黄网站色视频大全免费 | 韩国高清视频一区二区三区| 又粗又硬又长又爽又黄的视频| 波野结衣二区三区在线| 成年免费大片在线观看| 国产男女内射视频| 精品国产露脸久久av麻豆| 久久久久久久大尺度免费视频| 久久ye,这里只有精品| av在线蜜桃| av黄色大香蕉| 国精品久久久久久国模美|