王育璐 逄曙光
[摘要]膽汁酸(BA)參與脂質(zhì)和脂溶性維生素的吸收,在葡萄糖等能量代謝中起著重要作用。BA 的代謝失調(diào)和信號傳導(dǎo)異常在多種疾病中起作用,包括血脂異常、非酒精性脂肪性肝病、糖尿病、肥胖、動脈粥樣硬化、膽汁淤積、膽結(jié)石、腫瘤等。腸道法尼醇 X 受體(FXR)和 G 蛋白偶聯(lián)膽汁酸受體5(TGR5)信號通路是重要的 BA 合成調(diào)節(jié)劑,它們是維持葡萄糖體內(nèi)穩(wěn)態(tài)的相關(guān)代謝調(diào)節(jié)劑,可將其轉(zhuǎn)化為糖尿病治療的新靶標(biāo)。
[關(guān)鍵詞]膽汁酸;糖尿病;腸道法尼醇 X 受體; G 蛋白偶聯(lián)膽汁酸受體5
[中圖分類號] R587.1;R-1? [文獻標(biāo)識碼] A?? [文章編號]2095-0616(2021)23-0070-04
Progress? of the research? on diabetes mellitus and bile acid metabolism
WANG? Yulu1????? PANG? Shuguang2
1. Teaching and Research Section of Internal Medicine, Weifang Medical University, Shandong, Weifang 261000, China;2. Department of Endocrinology, Ji'nan Central Hospital Affiliated to Shandong University, Shandong, Ji'nan 250000, China
[Abstract] Bile acid (BA) is involved in the absorption of lipids and fat-soluble vitamins, which plays an important role in energy metabolism of glucose, etc. Bile acid metabolic disorders and abnormal signal conduction play a role in a variety of diseases, including dyslipidemia, nonalcoholic fatty liver disease, diabetes mellitus (DM), obesity, atherosclerosis, cholestasis, gallstones, tumors, etc. The signal paths of intestinal farnesol X receptor (FXR) and G protein-coupled bile acid receptor 5(TGR5) are important regulators of bile acid synthesis. In addition, they have been found to be related metabolic regulators to maintain the homeostasis of glucose in vivo and turn it into a new target for DM treatment.
[Key words] Bile acid; Diabetes mellitus; Intestinal farnesol X receptor; G protein-coupled bile acid receptor 5
糖尿病是一種由高血糖引起的代謝性疾病,全球發(fā)病率持續(xù)上升[1]。早期血糖控制對于避免視網(wǎng)膜疾病、終末期腎病、動脈粥樣硬化、心肌梗死、腦卒中、截肢等血管并發(fā)癥至關(guān)重要[2]。膽汁酸(bile acid,BA)是膽固醇分解代謝的最終產(chǎn)物,腸道法尼醇 X 受體(intestinal farnesoid X receptor, FXR)和 G 蛋白偶聯(lián)膽汁酸受體5(G protein coupled bile acid receptor 5,TGR5)信號通路是重要的膽汁酸合成調(diào)節(jié)劑[3]。最近的研究提示這些受體參與調(diào)節(jié)糖異生、外周胰島素敏感性、糖原合成、胰高血糖素樣肽-1(glucagon-like peptide-1,GLP-1)、胰島素的分泌、炎癥、腸道微生物組配置,并與葡萄糖、脂質(zhì)和能量消耗相關(guān)[4]。本文對糖尿病與 BA 代謝的發(fā)生機制、治療等進行綜述。
1 BA的合成與代謝
BA 是由肝細胞合成的兩親性類固醇分子,儲存在膽囊中。肝臟中 BA 的生物合成涉及一系列的酶促反應(yīng),其過程涉及兩個主要途徑和至少17種肝酶的激活[5]。進餐后,BA 被釋放到腸道,然后通過與腸道菌群的相互作用轉(zhuǎn)化為初級 BA,在腸道遠端管腔由腸道微生物進行解偶聯(lián)和脫羥基反應(yīng),生成次級 BA[6]。BA 在回腸末端被主動吸收,進行腸肝循環(huán)。BA 代謝和信號傳導(dǎo)是代謝調(diào)節(jié)的關(guān)鍵因素,因此有望成為代謝疾病的治療靶點[7]。
2 BA代謝與糖尿病
循環(huán)膽汁酸譜的變化與2型糖尿?。╠iabetes mellitus type 2,T2DM)的發(fā)病機制有關(guān)[8]。不同的 BA 亞型表現(xiàn)出不同程度的疏水性,疏水程度取決于電離狀態(tài)以及羥基的數(shù)量、位置和方向等因素, T2DM 與人循環(huán)膽汁酸池的疏水性增加有關(guān)[8-9]。與此一致的是,在嚙齒動物模型和 T2DM 患者中,親水性膽汁酸亞型(如?;侨パ跄懰幔┮驯蛔C明可以預(yù)防炎癥并提高胰島素敏感性,疏水性膽汁酸亞型(如脫氧膽酸)已顯示出與葡萄糖調(diào)節(jié)受損的炎癥和內(nèi)質(zhì)網(wǎng)應(yīng)激有關(guān)[10]。腸肝循環(huán)中的 FXR 和 TGR5受體有助于調(diào)控 BA 的合成,這些受體參與調(diào)節(jié)糖異生、外周胰島素敏感性、糖原合成、GLP-1和胰島素的分泌方式[11]。BA 激活 FXR 的下游靶標(biāo)成纖維細胞生長因子15/21(fibroblast growth factor 15/21,F(xiàn)GF15/21)對于葡萄糖和胰島素穩(wěn)態(tài)也很重要[12]。
3 BA與FXR
FXR 是第一個被發(fā)現(xiàn)的 BA 激活核受體,在胃腸道、胰腺中廣泛表達[11-12]。FXR 對葡萄糖代謝有益作用機制包括:FXR 通過激活轉(zhuǎn)錄抑制因子 SHP48抑制糖異生;通過依賴 FXR 的脂質(zhì)代謝保護骨骼肌免于脂毒性[13];通過激活 FXR-BA-TGR5- GLP-1途徑,改善肝糖和脂質(zhì)代謝,并導(dǎo)致脂肪組織褐變,體重減少[14];由于腸道菌群組成的改變,增加了 GLP-1和胰島素的分泌,從而增加 TGR5激動劑?;鞘懰?、FGF15和 FGF19的分泌[14]。
抑制 FXR 有益作用的機制包括:由于丙酮酸羧化酶活性降低,肝糖原異生減少[15];由于產(chǎn)熱增加,導(dǎo)致體重減少[16];釋放 FXR 依賴性的胰高血糖素,從而導(dǎo)致葡萄糖刺激 GLP-1釋放增加[17];腸上皮細胞中葡萄糖磷酸化增加導(dǎo)致腸道葡萄糖吸收延遲[18];釋放FXR 依賴性抑制肝糖酵解基因,減少肝糖輸出[19]。
4 BA與TGR5
TGR5是一種 G 蛋白偶聯(lián)受體,在許多器官和組織中表達,包括腸、膽囊、棕色和白色脂肪組織、骨骼肌、大腦和胰腺[14]。腸道 L 細胞中的 TGR5信號傳導(dǎo)可誘導(dǎo)線粒體氧化磷酸化,三磷酸腺苷/二磷酸腺苷(adenosine triphosphate/adenosine diphosphate,ATP/ADP)比例升高, ATP 依賴性鉀通道關(guān)閉以及細胞內(nèi)鈣動員增強,從而促進 GLP-1分泌[20]。TGR5結(jié)合 BA 活化導(dǎo)致環(huán)磷酸腺苷(cyclic adenosine monophosphate, cAMP)的產(chǎn)生,進而激活不同組織和細胞類型中的蛋白激酶 A(protein kinase A,PKA)途徑,有研究[21]證明 BA 通過 TGR5-cAMP-PKA 軸抑制 NLRP3炎性體的活化,阻斷脂多糖誘導(dǎo)的全身炎癥、明礬引起的腹膜炎和 T2DM 相關(guān)炎癥[22]。TGR5可能影響代謝的其他機制包括 C/EBPβ依賴性抑制巨噬細胞浸入白色脂肪組織和增加能量消耗[23]。
腸道 FXR 的激活會引起高血糖,而 TGR5信號傳導(dǎo)可改善血糖控制和能量穩(wěn)態(tài)[13-14]。因此, TGR5信號的激活與阻斷腸道 FXR 的結(jié)合可能成為控制 T2DM 患者血糖的一種創(chuàng)新方法。但是,在不同環(huán)境條件下(如不同的飲食和營養(yǎng)狀況),F(xiàn)XR 和 TGR5信號的組織特異性和長期作用會調(diào)節(jié)整體血糖水平,這值得進一步研究[24]。
5 BA與糖尿病治療
5.1 BA螯合劑
BA 螯合劑是陰離子交換樹脂,它與腸道中 BA 結(jié)合形成不可吸收的復(fù)合物,從而防止 BA 的重吸收并增加糞便的排泄[25]。BA 螯合劑除了降血脂,還對 T2DM 患者和糖尿病動物模型的血糖控制和胰島素敏感性有益,BA 螯合劑可將 HbA1c 降低0.55%[26]。BA 螯合劑改善血糖的機制仍存在爭議,一種可能是螯合劑會增加結(jié)腸中 BA 濃度,從而激活 GLP-1依賴性的 BA 分泌,但這尚未在其他研究中得到證實[27]。另一個可能是螯合劑增加了內(nèi)臟葡萄糖的攝取和利用,這可能是由于腸道中較低的 FXR 信號導(dǎo)致[28]。第二代螯合劑colesevelam已獲得美國食品藥品監(jiān)督管理局的批準(zhǔn),并被納入 T2DM 的治療管理中[11]。
5.2減肥手術(shù)
Roux-en-Y 胃旁路術(shù)(Roux-en-Y gastric bypass, RYGB)和垂直袖狀胃切除術(shù)(vertical sleeve gastrectomy, VSG)在減肥手術(shù)中是最有效的,當(dāng) BA 的濃度增加, T2DM 的患者在體重減輕之前,血糖已經(jīng)下降[29]。減肥手術(shù)增加 BA 濃度的機制與胃腸道解剖重排有關(guān)。RYGB 將膽汁轉(zhuǎn)移至遠端腸道可增加 BA 濃度并改善血糖調(diào)節(jié),提示 RYGB 對于遠端胃腸道具有重要作用[30]。小鼠進行 RYGB 后,觀察到回腸 TGR5表達增加,促進 GLP-1的分泌[31]。在接受 Roux-en-Y 或 VSG 的患者中,短期內(nèi) BA 合成降低,隨后回到正常水平[32]??傊x手術(shù)后循環(huán) BA 濃度增加。減肥手術(shù)對 BA 組成的影響尚未達成共識,這可能是由于手術(shù)程序的差異、動物與人類之間的差異以及環(huán)境因素不同所致,BA 水平的變化是否是引起血糖變化的原因尚有爭議,可能與 GLP-1、胰島素以及 FGF19分泌增加有關(guān)[33]。
5.3 TGR5激動劑
全身性 TGR5激動劑可能會增加膽囊體積[34],因此,最佳的腸特異性 TGR5激動劑將能誘導(dǎo) L 細胞分泌,而不會產(chǎn)生其他全身不良反應(yīng)。但是,將 TGR5激活限制在腸道內(nèi)會阻礙 TGR5對棕色脂肪組織能量代謝的有益作用。有一種新型的 TGR5局部腸道激動劑,肥胖和胰島素抵抗的小鼠口服后, GLP-1水平顯著升高,葡萄糖耐量顯著改善,且不會引起膽囊大小的顯著變化[34]。腸 TGR5對膽囊的影響及其對 T2DM 的治療潛力尚需進一步研究。
5.4影響腸肝循環(huán)
在糖尿病大鼠模型上進行的根尖鈉依賴性膽汁鹽轉(zhuǎn)運蛋白(apical sodium-dependent bile salt transporter, ASBT)抑制劑最新研究顯示,口服 ASBT 抑制劑兩周可增加糞便 BA,使血漿 GLP-1水平升高, HbA1c 水平和血糖水平明顯改善[35]。轉(zhuǎn)錄因子 EB(transcription factor EB, TFEB)是一種營養(yǎng)和壓力敏感的轉(zhuǎn)錄因子,膽固醇誘導(dǎo)的溶酶體應(yīng)激前饋通過促進 TFEB 核易位激活 TFEB,而 BA 誘導(dǎo)的 FGF19通過 mTOR/ERK 信號和 TFEB 磷酸化作用,反饋抑制 TFEB 核易位。通過 ASBT 抑制劑阻止腸內(nèi) BA 的吸收能降低回腸 FGF 的含量,增強肝 TFEB 核的定位,并改善膽固醇的體內(nèi)穩(wěn)態(tài)[36]。
5.5腸道菌群
腸道 FXR-腸道微生物群-TGR5-GLP-1軸介導(dǎo)腸道膽汁酸受體信號傳導(dǎo)在調(diào)節(jié)肝臟代謝和體內(nèi)平衡中起關(guān)鍵作用,研究表明[14],可以通過刺激 TGR5-GLP-1信號傳導(dǎo)來減輕體重和改善肝臟代謝,從而改變腸道菌群來調(diào)節(jié) BA 的代謝。BA 會激活腸道 TGR5,然后刺激腸道 L 細胞分泌 GLP-1,從而改善肝糖和脂質(zhì)代謝,并導(dǎo)致脂肪組織褐變 , 通過調(diào)節(jié)腸道菌群來激活 TGR5-GLP-1信號可能具有治療非酒精性脂肪性肝病、糖尿病和肥胖癥的潛力[14]。
6總結(jié)
膽汁酸是膽固醇分解代謝的最終產(chǎn)物,在維持膽固醇穩(wěn)態(tài)中起著重要作用。此外,越來越多的研究[4,11,14]表明膽汁酸可能調(diào)節(jié)葡萄糖耐量、胰島素敏感性和能量代謝,提示膽汁酸可能是 T2DM 的潛在治療靶點。目前仍需進行大量試驗來評估文中相應(yīng)治療方案的有效性,明確具體的膽汁酸類型、代謝產(chǎn)物、腸道菌群種類,針對性地診斷、治療和預(yù)防糖尿病。
[參考文獻]
[1]Harding JL,Pavkov ME,Magliano DJ,et al.Global trends in diabetes complications: A review of current evidence[J].Diabetologia,2019,62(1):3-16.
[2]Harreiter J,RodenM.Diabetes mellitus –definition, klassifikation, diagnose, screening und pr?vention (update 2019)[J].Wien KlinWochenschr,2019,131(1):6-15.
[3]Zheng X,Chen T,Jiang R,et al.Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism[J].Cell Metab,2021,33(4):791-803,e7.
[4]Wu Y,Zhou A,Tang L,et al.Bile acids: Key regulatorsand novel treatment targets for type 2 diabetes[J].J Diabetes Res,2020,2020(s68):1-11.
[5]Funabashi M,Grove TL,Wang M,et al.A metabolic pathway for bile acid dehydroxylation by the gut microbiome[J].Nature,2020,582(7813):566-570.
[6]Ridlon JM, Kang DJ,Hylemon PB,et al.Bile acids and the gut microbiome[J].CurrOpin Gastroenterol,2014,30(3):332-338.
[7]Thomas C,Pellicciari R,Pruzanski M,et al.Targeting bile-acid signalling for metabolic diseases[J].Nat Rev Drug Discov,2008,7(8):678-693.
[8]Lee SG, Lee Y, Choi E, et al.Fasting serum bile acids concentration is associated with insulin resistance independently of diabetes status[J].Clin Chem Lab Med,2019,57(8):1218-1228.
[9]Palumbo P,Melchiorre E,La Torre C,et al.Effects of phosphatidylcholine and sodium deoxycholate on human primary adipocytes and fresh human adipose tissue[J].Int J ImmunopatholPharmacol,2010,23(2):481-489.
[10]Shima KR,Ota T,Kato K,et al.Ursodeoxycholic acid potentiates dipeptidyl peptidase-4 inhibitor sitagliptin by enhancing glucagon-like peptide-1 secretion in patients with type 2 diabetes and chronic liver disease: A pilot randomized controlled and add-on study[J].BMJ Open Diabetes Res Care,2018,6(1):e000469.
[11]González-RegueiroJA, Moreno-Casta?edaL,UribeM, et al. The role of bile acids in glucose metabolism and their relation with diabetes[J].Ann Hepatol,2018,16(1):15-20.
[12]Rajani C,Jia W.Bile acids and their effects ondiabetes[J].Front Med,2018,12(6):608-623.
[13]Ma K,Saha PK,Chan L,et al.Farnesoid X receptor is essential for normal glucose homeostasis[J].J Clin Invest,2006,116(4):1102-1109.
[14]Pathak P,Xie C,Nichols RG,et al.Intestinefarnesoid X receptor agonist and the gut microbiota activate G ‐protein bile acid receptor ‐1 signaling to improve metabolism[J]. Hepatology,2018,68(4):1574-1588.
[15]Xie C,Jiang C,Shi J,et al.An intestinal farnesoid X receptor –ceramide signaling axis modulates hepatic gluconeogenesis in mice[J].Diabetes,2017,66(3):613-626.
[16]Jiang C,Xie C,Lv Y,et al.Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction[J].Nat Commun,2015,6(1):1-18.
[17]Trabelsi MS,Daoudi M,Prawitt J,et al.Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells[J].Nat Commun,2015,6(1):1-13.
[18]van Dijk TH,Grefhorst A,Oosterveer MH,et al.An Increased Flux through the Glucose 6-Phosphate Pool in Enterocytes Delays Glucose Absorption in Fxr–/–Mice[J]. J Biol Chem,2009,284(16):10315-10323.
[19]Caron S,Samanez CH,Dehondt H,et al.Farnesoid X receptor inhibits the transcriptional activity of carbohydrate response element binding protein in human hepatocytes[J]. Mol Cell Biol,2013,33(11):2202-2211.
[20]Pathak P,Liu H,Boehme S,et al.Farnesoid X receptor induces Takeda G-protein receptor 5 cross-talk to regulate bile acid synthesis and hepatic metabolism[J].J Biol Chem,2017,292(26):11055-11069.
[21]Hu X, Yan J,Huang L,et al.INT-777 attenuates NLRP3- ASC inflammasome-mediated neuroinflammation via TGR5/cAMP/PKA signaling pathway after subarachnoid hemorrhage in rats[J].Brain BehavImmun,2021,91:587-600.
[22]Guo C,Xie S,Chi Z,et al.Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome[J].Immunity,2016,45(4):802-816.
[23]Velazquez-Villegas LA,Perino A,Lemos V,et al.TGR5 signalling promotes mitochondrial fission and beige remodelling of white adipose tissue[J].Nat Commun,2018,9(1):1-13.
[24]Shapiro H,Kolodziejczyk AA,Halstuch D,et al.Bile acids in glucose metabolism in health and disease[J].J Exp Med,2018,215(2):383-396.
[25]Br?nden A,Albér A,Rohde U,et al.The bile acid ‐ sequestering resin sevelamer eliminates the acute GLP ‐1 stimulatory effect of endogenously released bile acids in patients with type 2 diabetes[J].Diabetes ObesMetab,2018,20(2):362-369.
[26]Hansen M,Sonne DP,Mikkelsen KH,et al.Bile acid sequestrants for glycemic control in patients with type 2 diabetes: A systematic review with meta-analysis ofrandomized controlled trials[J].Diabetes Complications,2017,31(5):918-927.
[27]Smushkin G,Sathananthan M,Piccinini F,et al.The effect of a bile acid sequestrant on glucose metabolism in subjects with type 2 diabetes[J].Diabetes,2013,62(4):1094-1101.
[28]Hansen M, Scheltema MJ,Sonne DP,et al.Effect of chenodeoxycholic acid and the bile acid sequestrant colesevelam on glucagon ‐like peptide ‐1 secretion[J]. Diabetes ObesMetab,2016,18(6):571-580.
[29]Nemati R,Lu J,Dokpuang D,et al.Increased bile acids and FGF19 after sleeve gastrectomy and Roux- en-Y gastric bypass correlate with improvement in type 2 diabetes in a randomized trial[J].Obes Surg,2018,28(9):2672-2686.
[30]Flynn CR,Albaugh VL,Cai S,et al.Bile diversion to the distal small intestine has comparable metabolic benefits to bariatric surgery[J].Nat Commun,2015,6(1):1-14.
[31]Zhai H,Li Z,Peng M,et al.Takeda G protein-coupled receptor 5-mechanistic target of rapamycin complex 1 signaling contributes to the increment of glucagon-like peptide-1 production after Roux-en-Y gastric bypass[J]. EBioMedicine,2018,32:201-214.
[32]Escalona A,Mu?oz R,Irribarra V,et al.Bile acids synthesis decreases after laparoscopic sleevegastrectomy[J].Surg ObesRelat Dis,2016,12(4):763-769.
[33]Albaugh VL,Banan B,Ajouz H,et al.Bile acids and bariatric surgery[J].Mol Aspects Med,2017,56:75-89.
[34]Briere DA,Ruan X,Cheng CC,et al.Novel small molecule agonist of TGR5 possesses anti-diabetic effects but causes gallbladder filling in mice[J].PLoS One,2015,10(8):e0136873.
[35]Saveleva EE,Tyutrina ES,Nakanishi T,et al.The inhibitors of the apical sodium-dependent bile acid transporter(ASBT) as promising drugs[J].Biomed Khim,2020,66(3):185-195.
[36]Wang Y,Gunewardena S,Li F,et al.An FGF15/19- TFEB regulatory loop controls hepatic cholesterol and bile acid homeostasis[J].Nat Commun,2020,11(1):1-16.
(收稿日期:2021-07-19)