• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      助催化劑強化電芬頓技術去除水中難降解有機物的研究進展

      2021-09-13 04:51:52鄭豪程松沈晨于偉華劉福強
      土木建筑與環(huán)境工程 2021年6期

      鄭豪 程松 沈晨 于偉華 劉福強

      摘 要:化工、醫(yī)藥等行業(yè)會產生大量含難降解有機物的工業(yè)廢水,這類廢水成分復雜、毒性大,已成為工業(yè)水處理領域的難題。電芬頓技術因具有高效去除能力而備受關注,但傳統(tǒng)的電芬頓技術仍面臨鐵離子在中性條件下穩(wěn)定性差、三價鐵還原速率慢、過氧化氫產量低等問題。通過投加有機或無機配體、過渡金屬協(xié)同作用、雜原子修飾碳材料等不同強化方法,可有效解決上述難題,從而強化電芬頓技術處理效果。綜述助催化劑強化電芬頓技術的主導作用原理,比較分析典型助催化劑的優(yōu)缺點,并針對機理研究不夠透徹、催化劑合成工藝復雜、單一技術不能充分發(fā)揮優(yōu)勢等問題,展望其在制備與應用等方面的發(fā)展方向,以期為助催化劑強化電芬頓技術去除難降解有機物提供參考。

      關鍵詞:電芬頓;助催化劑;難降解有機物;強化去除

      中圖分類號:X703.1 文獻標志碼:A 文章編號:2096-6717(2021)06-0124-10

      Abstract: Large amounts of wastewater containing refractory organics would be produced in chemical, pharmaceutical and other industries. This kind of wastewater has complex composition and high toxicity, which has become a puzzle in the field of industrial water treatment. Recent years, electro-Fenton(EF) technology has attracted much attention due to its efficient removal ability towards organic pollutants. However, traditional EF technology still has some shortcomings such as low solubility of iron ions at neutral condition, slow reduction rate of Fe3+ and insufficient hydrogen peroxide production. Fortunately, the problems mentioned above can be effectively fixed by different enhancing methods like adding organic or inorganic ligands, synergistic effects of transition metals, as well as heteroatom-modified carbon materials, enhancing the effect of electro-Fenton technology. This review briefly introduces some latest work focused on the enhancement of EF process via different co-catalysis methods and analyzes their main mechanism. The advantages and disadvantages of typical co-catalysts are compared and analyzed. The main development direction in preparation and application is prospected according to the problems like insufficient mechanism research, complex synthesis process and that single technology cannot give full play to its advantages. This article aims to provide a reference for enhancing the EF removal of refractory organics by co-catalyst.

      Keywords: electro-Fenton; co-catalyst; refractory organic; enhance removal

      化工、醫(yī)藥、農藥等行業(yè)生產過程中產生大量含多環(huán)芳烴、鹵代烴、雜環(huán)類化合物、農藥、抗生素等難降解有機物的工業(yè)廢水,通常具有高毒性、高鹽分等特征,已成為工業(yè)水處理領域的難點[1-2]。

      對于工業(yè)廢水中難降解有機物,通常采用氧化法、物化法等技術處理。近年來,高級氧化技術因作用效率高、適用范圍廣等優(yōu)勢而獲得快速發(fā)展,其中以羥基自由基(HO·)為主導的芬頓氧化技術受到持續(xù)關注,但因H2O2利用率低、Fe2+用量大以及大量鐵泥后續(xù)處置難等問題,限制了其進一步應用推廣[3]。

      電芬頓技術將電化學與芬頓技術相結合,主要優(yōu)勢包括:可原位生成H2O2,降低H2O2在運輸、存儲等過程的安全風險,緩解了一次性投加H2O2導致的自分解問題;陰極提供電子,將Fe3+有效還原為Fe2+,大幅減少鐵泥產量;實現(xiàn)陽極氧化、電吸附等協(xié)同作用,顯著提高有機物去除效率[4-6]。

      筆者基于電芬頓原理、局限性以及強化方法,著重分析助催化劑強化電芬頓技術的原理、特性并展望了改良方向。

      1 電芬頓及其強化方法

      1.1 電芬頓原理

      電芬頓技術以Fe2+和電化學產生的H2O2作為芬頓試劑的來源[7],通過Fe2+與H2O2發(fā)生芬頓反應生成HO·,從而實現(xiàn)污染物的高效降解,如式(1)~式(5)所示。

      電芬頓可以分為均相電芬頓和非均相電芬頓兩大類。其中,均相電芬頓中Fe2+與H2O2在溶液中發(fā)生均相反應產生活性氧物種,而非均相電芬頓則以鐵活性物種或將其負載至載體作為鐵源催化劑,在其表面發(fā)生非均相反應并產生自由基。

      電芬頓去除難降解有機物的效率主要受3方面因素限制:1)pH值適用范圍窄,通常需要酸性條件(pH≈3.0);2)陰極H2O2產率和電流效率低,限制了芬頓反應速率;3)Fe3+/Fe2+的循環(huán)速率是生成羥基自由基降解污染物的主要限速步驟。

      1.2 電芬頓強化方法

      為提高電芬頓技術對難降解有機物的去除效率,研究和應用較多的強化方法主要包括3方面:1)優(yōu)化設計反應器,通過增強傳質使污染物與活性氧充分接觸[4];2)載體固定催化劑,能夠提高催化劑的穩(wěn)定性、減少金屬離子的浸出,同時,催化劑分散在載體上,活性位點增加,可以提高催化活性;3)添加助催化劑,包括直接投加到電解液中或同催化劑一起制備到陰極上,能有效增加Fe2+的含量或提高H2O2的選擇性生成,提高催化劑的活性、穩(wěn)定性等。

      近年來大量研究發(fā)現(xiàn),添加少量助催化劑即可有效提升電芬頓對難降解有機物的去除效果[8-11]。研究較多的3種助催化手段及其機理如表1所示。

      2 助催化劑強化電芬頓技術

      電芬頓涉及的催化反應主要為陰極催化O2通過兩電子氧還原反應(2e- ORR)生成H2O2以及Fe2+催化H2O2生成HO·。為增強催化劑的催化作用,可通過優(yōu)選優(yōu)用助催化劑,直接或間接增強電芬頓技術性能。

      2.1 改善鐵離子穩(wěn)定性

      鐵在較高pH值條件下會沉淀形成大量鐵泥,導致有效鐵含量減少,進而削弱污染物的去除效率。鐵離子與配體的配位作用可以保證其在接近中性pH的條件下以離子形態(tài)存在,因此,添加配體能拓寬有效pH范圍。而且,絡合物可通過一系列反應產生更多自由基,從而增強電芬頓去除有機污染物的性能。其反應機理如圖1所示。

      乙二胺四乙酸(EDTA)、氮三乙酸(NTA)、乙二胺二琥珀酸(EDDS)、羥胺等有機配體被廣泛應用到芬頓體系中,可在pH>3.0的條件下有效去除難降解有機物。Zhang等[12]將NTA加入電芬頓體系,pH=5.0~8.0下均可在20 min內完全去除水中苯酚,速率常數(shù)約為0.26 min-1,較不加助催化劑提高了近63%。強絡合劑EDDS是一種具有生物降解性的有機配體,與NTA相比,對環(huán)境的二次污染更小,Ye等[13]將其引入電芬頓體系,以Fe(Ⅲ)-EDDS為可溶性催化劑,pH=9.0下僅約6%的鐵發(fā)生沉淀,而未添加EDDS時89%以上的鐵發(fā)生沉淀。不同的Fe-L(配體)絡合物的氧化還原性能存在差異,Liu等[14]結合理論計算發(fā)現(xiàn),[Fe(Ⅲ)-EDTA]-絡合物的電子還原速率約是[Fe(Ⅲ)-EDDS]-絡合物的兩倍,更強的得電子能力有助于加速鐵循環(huán),進而促進電芬頓性能。除了拓寬pH值范圍外,部分有機配體不僅作為螯合劑,同時作為還原劑,利用配體金屬間的電荷轉移,促進Fe3+還原為Fe2+,從而增強電芬頓效率[15-17],Hou等[18]發(fā)現(xiàn)在芬頓體系中添加羥胺后HO·的生成速率常數(shù)是未添加時的100~10 000倍。然而,有機配體投加會增加有機負荷,進一步增加處理成本。此外,在處理過程中產生的活性物質會氧化分解有機配體,從而降低活性及穩(wěn)定性[19]。

      為此,近年來無機配體頗受重視。Wang等[20]用四聚磷酸鈉(Na6TPP)作為電芬頓體系電解質,形成的鐵四聚磷酸鹽絡合物(Fe-TPP)保證鐵以離子形態(tài)存在于溶液中,可以在pH值4.0~10.2的范圍內有效降解阿特拉津(ATZ)。聚磷酸鹽雖然不會消耗HO·,但其使用會導致后續(xù)除磷難題。Cui等[21]采用環(huán)境友好的無機配體二硅酸鈉(SD)增強鐵電解系統(tǒng),F(xiàn)e2+/Fe3+-SD絡合物的生成有效避免了鐵離子的水解沉淀,因此,可在pH值為5.0~8.0條件下穩(wěn)定運行。另一方面,鐵離子與SD絡合,可以有效降低Fe3+/Fe2+的氧化還原電位,使O2的還原熱力學過程更有利[22]。

      綜上,多種有機和無機配體均可有效拓寬電芬頓體系pH適應范圍,并在近中性條件下獲得優(yōu)良去除效果,如表2所示。然而,鐵配合物的重復利用以及后續(xù)處理問題亟待解決。Jin等[23]發(fā)現(xiàn)用載體固定鐵絡合物可提高重復利用率,通過將鐵二吡啶甲酰胺絡合物(Fedpa)固定在SiO2上成功制備Fedpa@SiO2催化劑,重復利用3次后,仍能去除90%以上的2,4二氯苯酚(2,4-DCP)。

      目前,對于配體強化電芬頓技術的研究仍集中在單一配體的作用機制。實際廢水水質復雜,通常同時存在多種有機配體和無機配體,闡明不同配體之間的相互作用規(guī)律與機制,可為直接利用水體中存在的配體提供重要參考,進而減少外源投加,降低可能造成的二次污染風險。

      2.2 提升Fe3+/Fe2+循環(huán)速率

      Fe3+還原為Fe2+的速率直接影響了電芬頓中HO·的生成速率以及污染物的降解速率,因此,加速Fe3+/Fe2+循環(huán)一直是研究熱點。添加能夠改善催化劑電子傳遞性能的助催化劑,可以加速Fe2+的再生。目前研究較多的是雙金屬協(xié)同催化技術。

      在Fe-M(M為其他金屬)雙金屬體系中,利用雙金屬協(xié)同效應可以促進Fe2+再生,機理圖如圖2所示。金屬硫化物是研究較多的助催化劑,其表面不飽和的S原子捕獲質子形成H2S后,暴露具有還原性的金屬活性位點,從而加速Fe3+/Fe2+循環(huán),Li等[26]在電芬頓體系中投加WS2后,羅丹明B(RhB)降解的速率常數(shù)提升了63.1%,這得益于W4+快速還原Fe3+。Mo是工業(yè)上常用的低毒性催化劑,Tian等[27]用MoS2助催化電芬頓技術去除磺胺甲嘧啶(SMT),污染物去除的表觀速率常數(shù)從原先的0.26 min-1增加到0.54 min-1。往反應池中直接投加助催化劑存在難以重復利用、增加運行成本的問題,因此,將過渡金屬與Fe一起制備成復合材料得到了學者們的關注。

      Cu是一種導電性好、廉價的過渡金屬,因而應用廣泛,多種鐵銅雙金屬催化劑被成功用于電芬頓體系,如表3所示。Luo等[28]通過兩步還原法制備了Cu摻雜的Fe@Fe2O3(CFF)納米粒子,Cu/Fe質量比為50%時,2 h內四環(huán)素(TC)去除率較nZVI提升了近12%。Barros等[29]通過共沉淀法合成Fe3-xCuxO4(0≤x≤0.25)NPs,由于鐵和銅離子在尖晶石結構八面體表面位置的協(xié)同作用,Cu2+/Cu+表面物種的存在對紫紅花食用染料的降解有顯著促進作用,F(xiàn)e2.75Cu0.25O4體系的TOC去除率遠高于Fe3O4體系,前者約為70%,而后者僅不足39%。由于Cu本身也能催化H2O2生成HO·,因此,鐵銅協(xié)同作用的相對貢獻需要進一步計算。Ren等[30]利用一種新亞銅試劑捕獲Cu(Ⅰ),屏蔽Cu(Ⅰ)與鐵和H2O2的相互作用,從而定量鑒別各因素對增強芬頓反應催化活性的貢獻,其中19%的增強作用被確定為鐵銅協(xié)同作用。Co是一種具有類芬頓活性的過渡金屬,Ganiyu等[31]在碳氈(CF)上生長了分級CoFe-層狀雙氫氧化物(CoFe-LDH)并制成陰極,可在較寬的pH值范圍內(pH值為2.0~7.1)實現(xiàn)酸性橙II (AO7)的有效礦化,在pH值為3.0的條件下2 h內TOC去除率可達87%以上,Co2+的協(xié)同催化作用促進了Fe2+再生和HO·生成。

      除了直接促進Fe3+還原,部分金屬助催化劑通過生成其他物質來促進Fe3+/Fe2+循環(huán)。Liu等[37]制備了Ni負載CF陰極(Ni-CF)并用于強化電芬頓降解環(huán)丙沙星(CIP),Ni的引入能夠明顯改善TOC去除率,8 h的TOC去除率可從約42%(CF)提升至81%(Ni-CF)以上,這主要歸因于Ni涂層誘導產生的大量還原性氫原子(H*)能提供電子能有效還原三價鐵,促進鐵循環(huán)過程,如式(5)所示。

      綜上,雙金屬協(xié)同效應對電芬頓效率的提升十分顯著,但金屬離子浸出以及可能造成的二次污染仍不可忽視,將過渡金屬固定在載體上(常用的有碳材料)的復合催化劑能提高金屬的穩(wěn)定性,然而金屬的負載會顯著影響H2O2的生成。Cheng等[38]制備了一種OCNT封裝Fe-Co-85 PBA的鎧甲式催化劑,能夠保證H2O2高效生成與活化,同時,碳層的保護作用進一步減少了金屬離子的泄露。未來雙(多)金屬催化劑的研究重心仍在于研發(fā)合適的載體及其有效的復合方式,使其兼具芬頓活性位點以及兩電子氧還原活性位點。此外,納米形式的雙金屬催化劑具有更高的活性,但易流失、難回收的缺點限制了其在實際應用中的推廣,催化劑的應用形式仍是未來的研究重點。

      2.3 提高H2O2產量

      O2通過2e- ORR生成過氧化氫的過程(式(1),E0=0.70 V vs.RHE)是保證電芬頓技術高效降解有機物的關鍵因素之一,但O2還能通過四電子氧還原反應(4e- ORR)生成H2O(式(6),E0=1.23 V vs.RHE),嚴重影響了H2O2的產量。施加低的應用電位有助于提高H2O2的產量,但伴隨著析氫反應的出現(xiàn)(式(7),E0=0 V vs.RHE),電流效率進一步下降。為了提高H2O2的選擇性生成,往往需要添加助催化劑引導反應向2e-ORR方向進行。

      碳材料具有較大的比表面積、良好的導電性、容易修飾等優(yōu)點而被廣泛用作陰極,但是其H2O2選擇性較差。碳材料對H2O2合成的電催化活性和選擇性可以通過改變電子結構來調整[39]。Wang等[40]在碳質載體上原位合成Pd催化劑,H2O2選擇性可達95%左右。除了金屬負載修飾外,非金屬雜原子(O、N、F等)修飾也是常見的方法[41-46]。氧分子的吸附模式對還原途徑影響較大,其中末端吸附即泡林模式更容易通過2e-還原途徑生成H2O2[47-48],羰基(C=O)或羧基(O=C—OH)中正電碳原子可以優(yōu)先以末端吸附模式吸附氧分子,如圖3所示。在碳中摻雜電負性較高的氮原子,可以通過破壞π共軛體系的完整性和誘導電荷重分布來激活碳π電子,從而改變碳材料的吸附性能,有利于H2O2的生成[45]。Su等[49]證明了引入石墨N可有效促進H2O2的生成。電負性最高的氟在碳納米材料中摻雜后,可以誘導相鄰的碳極化形成活性位點,增強O2與碳的相互作用[50]。Zhao等[51]通過控制F的含量和種類調節(jié)對氧還原反應選擇性,與吸附在石墨碳上相比,中間體OOH*吸附在CF2上C的吸附能降低,有利于H2O2的生成。幾種典型的碳基陰極材料及其氧還原活性位點如表4所示。

      各種改性碳材料被應用于電芬頓體系中。Shen等[52]將鈀鐵合金嵌碳氣凝膠(PdFe /CA)作為陰極降解3-氯酚(3-CP),與鐵碳氣凝膠(Fe/CA)陰極對比發(fā)現(xiàn),Pd的摻雜能夠增強2e- ORR選擇性,PdFe/CA通過(2+1)e-還原途徑先將O2還原為H2O2,然后進一步形成HO·。PdFe /CA陰極電芬頓體系能在不添加外源性H2O2的情況下完全礦化50 mg/L的3-CP。非金屬雜原子摻雜可以避免金屬離子二次泄露問題,Zhang等[53]通過簡單的煅燒法在炭黑表面引入含氧官能團,在-0.1 V vs.Ag/AgCl 的電位下,CB600 FAC(600 ℃煅燒得到的材料)30 min產生(517.7±2.4)mg/L的H2O2,約是未經煅燒處理CB FAC(65.3±5.6)mg/L的8倍,用于電芬頓降解50 mg/L的RhB,2 min內去除率高達91.1%。Cao等[43]在不同溫度下高溫碳化NH2-MIL-88B(Fe)制備了嵌入氧化鐵顆粒的含氮分層多孔碳 (FeOX/NHPCt,t為碳化溫度),在-0.3~-0.8 V vs.SCE電位下,F(xiàn)eOX/NHPC750的H2O2選擇性達到95%~98%,電子轉移數(shù)為2.04~2.08,是近似的2e- ORR過程。Lu等[57]以MIL-100 (Fe)∶PANI質量比為2∶1制備了Fe2O3/N-C催化劑,在溶液中檢測出55 mg/L的H2O2,2 h內能完全去除10 mg/L的雙酚A。MOF衍生物保留的孔結構提供了更多的活性位點以及增強傳質過程,有利于高效去除污染物。

      由于摻雜O、N、F陰極材料的H2O2選擇性與其形態(tài)、含量密切相關,因此,如何有效調控摻雜元素的形態(tài)以及比例是未來的研究重點。與此同時,目前已有的調控手段較為復雜,成本大幅增加,開發(fā)簡單的合成方法有助于提高實際應用價值。另外,強氧化性環(huán)境對催化劑穩(wěn)定性的影響規(guī)律以及對催化位點的失活機制分析仍有待加強。

      3 結論與展望

      電芬頓技術是一項具有廣闊應用前景的廢水處理技術,無需投加化學試劑,對污染物去除效率高,通過添加助催化劑能改善鐵離子穩(wěn)定性、加速Fe3+/Fe2+循環(huán)以及提高H2O2產量,從而顯著增強難降解有機污染物的去除性能。然而,運行成本高、催化劑穩(wěn)定性差以及合成工藝復雜、納米催化劑易流失、難以回收等問題仍將限制其大規(guī)模應用推廣。助催化劑強化電芬頓技術的改良與發(fā)展,仍需側重以下幾個方面:

      1)結合計算、表征等手段深入剖析助催化劑強化電芬頓的作用機理以及催化劑的失活機制,進一步解決因催化位點破壞而導致的催化活性降低和二次污染問題。

      2)開發(fā)簡單、低成本的助催化劑制備方法,并著重研發(fā)多功能型助催化劑,兼具兩電子氧還原催化位點和芬頓活性位點,從而簡化電芬頓工藝流程。

      3)探究高效穩(wěn)定的催化劑應用形式與高效穩(wěn)定型反應器,減少在運行過程中催化劑的損失以及提高重用性,進而降低工程投資和運行成本。

      4)聯(lián)合電芬頓技術以及其他技術,充分發(fā)揮聯(lián)合技術氧化還原的性能優(yōu)勢,實現(xiàn)復合污染物的協(xié)同去除。

      參考文獻:

      [1]尹玉玲, 肖羽堂, 朱瑩佳. 電Fenton法處理難降解廢水的研究進展[J]. 水處理技術, 2009, 35(3): 5-9,17.

      YIN Y L, XIAO Y T, ZHU Y J. Process of refractory wastewater treatment by electro-Fenton method[J]. Technology of Water Treatment, 2009, 35(3): 5-9,17. (in Chinese)

      [2]尚秀麗, 陳淑芬, 甘黎明, 等. 電芬頓氧化法處理染料廢水的研究進展[J]. 毛紡科技, 2015, 43(11): 35-38.

      SHANG X L, CHEN S F, GAN L M, et al. Study progress of dye wastewater treatment byelectro-Fenton oxidation[J]. Wool Textile Journal, 2015, 43(11): 35-38. (in Chinese)

      [3]潘繼生, 鄧家云, 張棋翔, 等. 羥基自由基高級氧化技術應用進展綜述[J]. 廣東工業(yè)大學學報, 2019, 36(2): 70-77,85.

      PAN J S, DENG J Y, ZHANG Q X, et al. A review of the application of advanced oxidation technology of hydroxyl radicals[J]. Journal of Guangdong University of Technology, 2019, 36(2): 70-77,85. (in Chinese)

      [4]邱珊, 柴一荻, 古振澳, 等. 電芬頓反應原理研究進展[J]. 環(huán)境科學與管理, 2014, 39(9): 55-58.

      QIU S, CHAI Y D, GU Z A, et al. Review on reaction mechanism of electro-Fenton process[J]. Environmental Science and Management, 2014, 39(9): 55-58. (in Chinese)

      [5]BABUPONNUSAMI A, MUTHUKUMAR K. A review on Fenton and improvements to the Fenton process for wastewater treatment[J]. Journal of Environmental Chemical Engineering, 2014, 2(1): 557-572.

      [6]周蕾, 周明華. 電芬頓技術的研究進展[J]. 水處理技術, 2013, 39(10): 6-11,17.

      ZHOU L, ZHOU M H. Review on the electro-Fenton technology[J]. Technology of Water Treatment, 2013, 39(10): 6-11,17. (in Chinese)

      [7]王奇, 潘家榮, 梅朋森, 等. 電Fenton及光電Fenton法廢水處理技術研究進展[J]. 三峽大學學報(自然科學版), 2008, 30(2): 89-94.

      WANG Q, PAN J R, MEI P S, et al. Research progress of water treatment technology by electro-Fenton and photoelectron-Fenton[J]. Journal of China Three Gorges University (Natural Sciences), 2008, 30(2): 89-94. (in Chinese)

      [8]ZHANG B G, HOU Y P, YU Z B, et al. Three-dimensional electro-Fenton degradation of Rhodamine B with efficient Fe-Cu/Kaolin particle electrodes: Electrodes optimization, kinetics, influencing factors and mechanism[J]. Separation and Purification Technology, 2019, 210: 60-68.

      [9]XIE L B, MI X Y, LIU Y G, et al. Highly efficient degradation of polyacrylamide by an Fe-doped Ce0.75Zr0.25O2 solid solution/CF composite cathode in a heterogeneous electro-Fenton process[J]. ACS Applied Materials & Interfaces, 2019, 11(34): 30703-30712.

      [10]HAMMOUDA S B, SALAZAR C, ZHAO F P, et al. Efficient heterogeneous electro-Fenton incineration of a contaminant of emergent concern-cotinine- in aqueous medium using the magnetic double perovskite oxide Sr2FeCuO6 as a highly stable catalayst: Degradation kinetics and oxidation products[J]. Applied Catalysis B: Environmental, 2019, 240: 201-214.

      [11]DENG F X, OLVERA-VARGAS H, GARCIA-RODRIGUEZ O, et al. Unconventional electro-Fenton process operating at a wide pH range with Ni foam cathode and tripolyphosphate electrolyte[J]. Journal of Hazardous Materials, 2020, 396: 122641.

      [12]ZHANG Y Q, ZHANG Q Z, ZUO S J, et al. A highly efficient flow-through electro-Fenton system enhanced with nitrilotriacetic acid for phenol removal at neutral pH[J]. Science of the Total Environment, 2019, 697: 134173.

      [13]YE Z H, BRILLAS E, CENTELLAS F, et al. Electro-Fenton process at mild pH using Fe(III)-EDDS as soluble catalyst and carbon felt as cathode[J]. Applied Catalysis B: Environmental, 2019, 257: 117907.

      [14]LIU X C, HE C S, SHEN Z Y, et al. Mechanistic study of Fe(III) chelate reduction in a neutral electro-Fenton process[J]. Applied Catalysis B: Environmental, 2020, 278: 119347.

      [15]ZHU Y P, ZHU R L,XI Y F, et al. Strategies for enhancing the heterogeneous Fenton catalytic reactivity: A review[J]. Applied Catalysis B: Environmental, 2019, 255: 117739.

      [16]ZHANG X H, CHEN Y Z, ZHAO N, et al. Citrate modified ferrihydrite microstructures: Facile synthesis, strong adsorption and excellent Fenton-like catalytic properties[J]. RSC Advances, 2014, 4(41): 21575-21583.

      [17]QIN Y X, SONG F H, AI Z H, et al. Protocatechuic acid promoted alachlor degradation in Fe(III)/H2O2 Fenton system[J]. Environmental Science & Technology, 2015, 49(13): 7948-7956.

      [18]HOU X J, HUANG X P, JIA F L, et al. Hydroxylamine promoted goethite surface Fenton degradation of organic pollutants[J]. Environmental Science & Technology, 2017, 51(9): 5118-5126.

      [19]鄧鳳霞. 三聚磷酸鈉電芬頓體系氧化效能強化及作用機制[D]. 哈爾濱: 哈爾濱工業(yè)大學, 2019.

      DENG F X. Oxidation enhancement in electro-Fenton based on sodium tripolyphosphate and its mechanism[D]. Harbin: Harbin Institute of Technology, 2019. (in Chinese)

      [20]WANG L, CAO M H, AI Z H, et al. Design of a highly efficient and wide pH electro-Fenton oxidation system with molecular oxygen activated by ferrous-tetrapolyphosphate complex[J]. Environmental Science & Technology, 2015, 49(5): 3032-3039.

      [21]CUI J X, WANG X, ZHANG J, et al. Disilicate-assisted iron electrolysis for sequential Fenton-oxidation and coagulation of aqueous contaminants[J]. Environmental Science & Technology, 2017, 51(14): 8077-8084.

      [22]WANG L, CAO M H, AI Z H, et al. Dramatically enhanced aerobic atrazine degradation with Fe@Fe2O3 core-shell nanowires by tetrapolyphosphate[J]. Environmental Science & Technology, 2014, 48(6): 3354-3362.

      [23]JIN Q Q, KANG J, CHEN Q, et al. Efficiently enhanced Fenton-like reaction via Fe complex immobilized on silica particles for catalytic hydrogen peroxide degradation of 2, 4-dichlorophenol[J]. Applied Catalysis B: Environmental, 2020, 268: 118453.

      [24]DENG F X, OLVERA-VARGAS H, GARCIA-RODRIGUEZ O, et al. The synergistic effect of nickel-iron-foam and tripolyphosphate for enhancing the electro-Fenton process at circum-neutral pH[J]. Chemosphere, 2018, 201: 687-696.

      [25]DENG F X, GARCIA-RODRIGUEZ O, OLVERA-VARGAS H, et al. Iron-foam as a heterogeneous catalyst in the presence of tripolyphosphate electrolyte for improving electro-Fenton oxidation capability[J]. Electrochimica Acta, 2018, 272: 176-183.

      [26]LI L S, CHEN S, ZHANG Y, et al. Tungsten sulfide co-catalytic radical chain-reaction for efficient organics degradation and electricity generation[J]. Applied Catalysis B: Environmental, 2020, 268: 118471.

      [27]TIAN Y S, ZHOU M H, PAN Y W, et al. MoS2 as highly efficient co-catalyst enhancing the performance of Fe0 based electro-Fenton process in degradation of sulfamethazine: Approach and mechanism[J]. Chemical Engineering Journal, 2021, 403: 126361.

      [28]LUO T, FENG H P, TANG L, et al. Efficient degradation of tetracycline by heterogeneous electro-Fenton process using Cu-doped Fe@Fe2O3: Mechanism and degradation pathway[J]. Chemical Engineering Journal, 2020, 382: 122970.

      [29]BARROS W R P, STETER J R, LANZA M R V, et al. Catalytic activity of Fe3-xCuxO4 (0≤x≤0.25) nanoparticles for the degradation of Amaranth food dye by heterogeneous electro-Fenton process[J]. Applied Catalysis B: Environmental, 2016, 180: 434-441.

      [30]REN Y, SHI M Q, ZHANG W M, et al. Enhancing the Fenton-like catalytic activity of nFe2O3 by MIL-53(Cu) support: A mechanistic investigation[J]. Environmental Science & Technology, 2020, 54(8): 5258-5267.

      [31]GANIYU S O, HUONG LE T X, BECHELANY M, et al. A hierarchical CoFe-layered double hydroxide modified carbon-felt cathode for heterogeneous electro-Fenton process[J]. Journal of Materials Chemistry A, 2017, 5(7): 3655-3666.

      [32]LIU Z J, WAN J Q, MA Y W, et al.In situ synthesis of FeOCl@MoS2 on graphite felt as novel electro-Fenton cathode for efficient degradation of antibiotic ciprofloxacin at mild pH[J]. Chemosphere, 2021, 273: 129747.

      [33]LABIADH L, AMMAR S, KAMALI A R. Oxidation/mineralization of AO7 by electro-Fenton process using chalcopyrite as the heterogeneous source of iron and copper catalysts with enhanced degradation activity and reusability[J]. Journal of Electroanalytical Chemistry, 2019, 853: 113532.

      [34]ZHAO H Y, QIAN L, GUAN X H, et al. Continuous bulk FeCuC aerogel with ultradispersed metal nanoparticles: An efficient 3D heterogeneous electro-Fenton cathode over a wide range of pH 3-9[J]. Environmental Science & Technology, 2016, 50(10): 5225-5233.

      [35]CAO P K, ZHAO K, QUAN X, et al. Efficient and stable heterogeneous electro-Fenton system using iron oxides embedded in Cu, N co-doped hollow porous carbon as functional electrocatalyst[J]. Separation and Purification Technology, 2020, 238: 116424.

      [36]CAMPOS S, SALAZAR R, ARANCIBIA-MIRANDA N, et al. Nafcillin degradation by heterogeneous electro-Fenton process using Fe, Cu and Fe/Cu nanoparticles[J]. Chemosphere, 2020, 247: 125813.

      [37]LIU X C, LI W Q, WANG Y R, et al. Cathode-introducedatomic H* for Fe(II)-complex regeneration to effective electro-Fenton process at a natural pH[J]. Environmental Science & Technology, 2019, 53(12): 6927-6936.

      [38]CHENG S, SHEN C, ZHENG H, et al. OCNTs encapsulating Fe-Co PBA as efficient chainmail-like electrocatalyst for enhanced heterogeneous electro-Fenton reaction[J]. Applied Catalysis B: Environmental, 2020, 269: 118785.

      [39]SIAHROSTAMI S, VERDAGUER-CASADEVALL A, KARAMAD M, et al. Enabling direct H2O2 production through rational electrocatalyst design[J]. Nature Materials, 2013, 12(12): 1137-1143.

      [40]WANG Y L, GURSES S, FELVEY N, et al.In situ deposition of Pd during oxygen reduction yields highly selective and active electrocatalysts for direct H2O2 production[J]. ACS Catalysis, 2019, 9(9): 8453-8463.

      [41]PARK J, NABAE Y, HAYAKAWA T, et al. Highly selective two-electron oxygen reduction catalyzed by mesoporous nitrogen-doped carbon[J]. ACS Catalysis, 2014, 4(10): 3749-3754.

      [42]ZHAO K, QUAN X, CHEN S, et al. Enhanced electro-Fenton performance by fluorine-doped porous carbon for removal of organic pollutants in wastewater[J]. Chemical Engineering Journal, 2018, 354: 606-615.

      [43]CAO P K, QUAN X, ZHAO K, et al. Selective electrochemical H2O2 generation and activation on a bifunctional catalyst for heterogeneous electro-Fenton catalysis[J]. Journal of Hazardous Materials, 2020, 382: 121102.

      [44]ZHANG D Y, LIU T C, YIN K, et al. Selective H2O2 production on N-doped porous carbon from direct carbonization of metal organic frameworks for electro-Fenton mineralization of antibiotics[J]. Chemical Engineering Journal, 2020, 383: 123184.

      [45]FELLINGER T P, HASCH F, STRASSER P, et al. Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide[J]. Journal of the American Chemical Society, 2012, 134(9): 4072-4075.

      [46]WANG W, HU Y C, LIU Y C, et al. Self-powered and highly efficient production of H2O2 through a Zn-air battery with oxygenated carbon electrocatalyst[J]. ACS Applied Materials & Interfaces, 2018, 10(38): 31855-31859.

      [47]MIAO J, ZHU H, TANG Y, et al. Graphite felt electrochemically modified in H2SO4 solution used as a cathode to produce H2O2 for pre-oxidation of drinking water[J]. Chemical Engineering Journal, 2014, 250: 312-318.

      [48]SHI Z, ZHANG J J, LIU Z S, et al. Current status of ab initio quantum chemistry study for oxygen electroreduction on fuel cell catalysts[J]. Electrochimica Acta, 2006, 51(10): 1905-1916.

      [49]SU P, ZHOU M H, LU X Y, et al. Electrochemical catalytic mechanism of N-doped graphene for enhanced H2O2 yield and in situ degradation of organic pollutant[J]. Applied Catalysis B: Environmental, 2019, 245: 583-595.

      [50]HE W H, WANG Y, JIANG C H, et al. Structural effects of a carbon matrix in non-precious metal O2-reduction electrocatalysts[J]. Chemical Society Reviews, 2016, 45(9): 2396-2409.

      [51]ZHAO K, SU Y, QUAN X, et al. Enhanced H2O2 production by selective electrochemical reduction of O2 on fluorine-doped hierarchically porous carbon[J]. Journal of Catalysis, 2018, 357: 118-126.

      [52]SHEN X Q, XIAO F, ZHAO H Y, et al. In situ-formed PdFe nanoalloy and carbon defects in cathode for synergic reduction-oxidation of chlorinated pollutants in electro-Fenton process[J]. Environmental Science & Technology, 2020, 54(7): 4564-4572.

      [53]ZHANG H C, LI Y J, ZHAO Y S, et al. Carbon black oxidized by air calcination for enhanced H2O2 generation and effective organics degradation[J]. ACS Applied Materials & Interfaces, 2019, 11(31): 27846-27853.

      [54]LU Z Y, CHEN G X, SIAHROSTAMI S, et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials[J]. Nature Catalysis, 2018, 1(2): 156-162.

      [55]HAIDER M R, JIANG W L, HAN J L, et al.In-situ electrode fabrication from polyaniline derived N-doped carbon nanofibers for metal-free electro-Fenton degradation of organic contaminants[J]. Applied Catalysis B: Environmental, 2019, 256: 117774.

      [56]ZHAO K, QUAN X, CHEN S, et al. Preparation of fluorinated activated carbon for electro-Fenton treatment of organic pollutants in coking wastewater: The influences of oxygen-containing groups[J]. Separation and Purification Technology, 2019, 224: 534-542.

      [57]LU J Y, YUAN Y R, HU X, et al. MOF-derived Fe2O3/nitrogen/carbon composite as a stable heterogeneous electro-Fenton catalyst[J]. Industrial & Engineering Chemistry Research, 2020, 59(5): 1800-1808.

      (編輯 胡玲)

      澄迈县| 井冈山市| 习水县| 监利县| 商洛市| 长阳| 千阳县| 离岛区| 长垣县| 洛浦县| 广水市| 蒙自县| 金坛市| 乐东| 仁化县| 江油市| 长治市| 迁安市| 云梦县| 霍城县| 长春市| 张北县| 象山县| 茌平县| 当涂县| 衡阳市| 高陵县| 阳曲县| 荥经县| 闵行区| 醴陵市| 宁明县| 罗城| 邓州市| 九台市| 成武县| 托里县| 开封市| 建水县| 康平县| 武定县|