廖遠蘇,胡啟鋒
一種隔水隔卡的自鎖式繩索取心鉆具及應用
廖遠蘇,胡啟鋒
(江西有色地質勘查二隊,江西 贛州 341000)
近年來,國內外對復雜地層繩索取心鉆具的研究取得了長足進步,但是未能很好解決卡心構件對巖心入管的阻礙和底噴式鉆頭易產生“泥墊”現象,從而影響取心質量和鉆進效率的關鍵技術問題。以普通S95繩索取心鉆具為研究對象,通過在內管里增設0.7 mm 厚度的不銹鋼襯管,封隔卡簧等卡心構件裝置,增加底噴式鉆頭水孔數量并增大水槽體積,設計可供選擇的發(fā)夾式和卡簧式巖心提斷器等技術改造,研制一款用于復雜地層鉆進,具備隔水、隔卡、自動鎖心的三層管繩索取心鉆具。選用發(fā)夾式巖心提斷器在水敏性強的破碎地層中試驗,平均回次進尺1.13 m,獲取巖心采取率94.48%,對比附近同類地層鉆孔的巖心采取率提高了50%以上;選用卡簧式巖心提斷器在裂隙發(fā)育的泥質地層中試驗,卡簧卡心如同普通鉆具上的卡簧一樣可靠。試驗結果表明:用襯管封隔卡心構件的取心技術方案可行,解決了卡心構件對軟弱松散巖心入管的阻礙,有利于保護巖心的原狀性;所用底噴式鉆頭孔底沖洗效果好,降低了鉆頭“泥墊”現象對鉆進速度的影響。該鉆具操作方便,使用成本低廉,有望在我國現行繩索取心機臺推廣應用,具有較強的普適性和廣泛的應用前景。
復雜地層;取心鉆具;巖心提斷器;底噴式鉆頭;發(fā)夾;卡簧;襯管
普通繩索取心鉆具是雙管單動鉆進,采用卡簧自鎖方式提動鉆具卡取巖心。對于堅硬完整或一般裂隙地層,該鉆具能夠滿足常規(guī)地質鉆探的巖心質量要求,一般巖心采取率可達到90%以上。但是對于節(jié)理發(fā)育、水敏性強的復雜地層,該鉆具在使用中存在兩個主要問題:一是巖心提斷器中的卡簧和擋圈,對松散破碎巖心入管的阻礙,影響回次進尺、巖心采取率及鉆進效率;二是鉆孔沖洗液從鉆具內外管總成間隙流經鉆頭內水槽直接沖刷巖心,導致巖心被沖蝕或失去原狀性,影響礦產資源或地層情況的分析和評價[1-2]。
繩索取心鉆進工藝以其鉆進效率高、鉆孔質量好等諸多優(yōu)越性,在國內外得到普遍應用?;谠撱@進工藝的優(yōu)勢,為解決普通繩索取心鉆具結構設計缺陷,影響復雜地層取心質量問題,衍生出以液動錘、反循環(huán)、半合管、巖心爪、攔簧、底噴式鉆頭等不同構件組合的眾多復雜地層繩索取心鉆具[3-15]。這些鉆具對地層條件、鉆孔口徑及深度具有不同程度的選擇性或局限性,對鉆探設備、鉆孔沖洗液等技術條件有一定的特別要求。盡管一些創(chuàng)新型取心鉆具配合泥漿技術解決了某些勘探項目的復雜地層取心質量問題,但是未能很好解決鉆具自身的卡心構件,對松散破碎巖心的入管阻礙和底噴式鉆頭發(fā)生“泥墊”現象[16],影響回次進尺及鉆進速度的關鍵技術問題。
基于現有復雜地層繩索取心鉆具不足,以普通S95繩索取心鉆具結構設計為基礎,通過在內管里面增設襯管封隔卡簧等卡心構件裝置、增加底噴式鉆頭水孔數并拓寬排水通道、用壓力彈簧替代巖心堵塞報信機構的碟簧、設計可供選擇的發(fā)夾式和卡簧式巖心提斷器,以及對單向球閥增設扶正裝置等技術改造,設計一款隔水隔卡的自鎖式繩索取心鉆具,簡稱“雙隔取心鉆具”[17-18],希冀優(yōu)化取心鉆具結構,降低或避免在復雜地層鉆進過程中,因鉆具自身缺陷所造成的堵心、磨心及鉆頭“泥墊”問題的不利因素,從而提高回次進尺、巖心采取率及鉆進效率。
①正常鉆進時,卡心構件宜于封隔狀態(tài);當鉆進堵心或巖心滿管頂頭時,卡心構件又能自動裸露卡取巖心,保證巖心提斷器鎖心可靠。
②底噴式鉆頭除應滿足隔水效果外,還應具備在泥質地層鉆進中,抑制鉆頭“泥墊”現象的功能,保證持續(xù)正常鉆速。
③同一礦區(qū)甚至同一鉆孔,常有不同類型的復雜地層并存,繩索取心鉆具的巖心提斷器應有可供選擇類型,以便采集不同狀態(tài)巖心的需要。
④普通繩索取心鉆具在復雜地層鉆進中,常見堵心報警信號失靈或報信不準確。提高巖心堵塞報信機構的靈敏度和報警信號的準確性至關重要,其報警壓力設定值應與所鉆地層變化相適應。
⑤單向球閥裝置應能適應大頂角鉆孔施工需要,保證單向球閥的鋼球與閥座閉水嚴密、工作的可靠性,避免沖洗液從調節(jié)接頭中心孔流入內管沖刷巖心。
⑥根據我國地質巖心鉆探設備現狀,復雜地層繩索取心鉆具,宜與現行普通繩索取心鉆具通用、互換,成為地質巖心鉆探機臺常備的一種取心鉆具。
該鉆具保留了原S95繩索取心鉆具[19]的基本技術特征,改造了巖心堵塞報信機構、單向球閥、內管、巖心提斷器及鉆頭5個部分的功能結構,如圖1所示。
該機構拆除了原鉆具滑套內的碟簧,添加了壓力彈簧和調壓墊圈,目的是通過降低彈簧壓力來適應軟弱地層鉆進堵心時,以適度的巖心頂力克服彈簧力推動滑套堵水報警的需要。該彈簧的預壓力由調壓墊圈調節(jié),滑套工作行程由調節(jié)螺栓調節(jié)。設定彈簧預壓力300~400 N,最大工作載荷800~1 500 N。
該機構增加了原鉆具彈簧套下端螺紋孔深度,添加了扶正彈簧和彈簧座。其目的是便于大頂角鉆進時,通過扶正彈簧彈力阻止球閥在重力和離心力作用下跳動,避免沖洗液從調節(jié)接頭內孔進入襯管沖刷巖心,導致巖心被沖蝕或失去原狀性。
圖1 隔水隔卡的自鎖式繩索取心鉆具結構
該部分由開卡裝置、襯管總成及內管組成。開卡裝置通過自身懸掛接頭兩端的公螺紋把原鉆具的調節(jié)接頭與內管連接起來;襯管總成置于內管里面,并與開卡裝置為掛鉤連接。
襯管總成由攻絲鋼球、調節(jié)螺桿、調節(jié)螺母、錐接頭、錐接套、背帽及襯管組成。襯管選用201不銹鋼裝飾管制作,規(guī)格?63 mm×0.7 mm,沿軸向剖切一道開縫,上端為錐套連接,下端伸入巖心提斷器內腔封隔卡心構件。調節(jié)螺桿與攻絲鋼球、錐接頭均為螺紋連接。襯管與內管的配合長度由調節(jié)螺桿及調節(jié)螺母調節(jié)。
開卡裝置由懸掛接頭、防松螺母、開卡彈簧、懸掛軸及掛鉤組成。襯管總成頂端的攻絲鋼球置于掛鉤的開口槽內。套在中心軸上的開卡彈簧有兩個作用:一是在鉆進堵心或巖心滿管頂頭時,通過巖心繼續(xù)上行的頂力推動襯管總成上移,壓縮開卡彈簧來打開襯管對卡心構件的封鎖;二是在取心提鉆的瞬間,襯管總成失去巖心頂力后,襯管底端在開卡彈簧回力的作用下,頂靠在卡心構件上端,迫使卡心構件收縮或卡心,從而使巖心提斷器在提升力作用下以自鎖方式收割巖心。
與雙隔取心鉆具配套的巖心提斷器有兩種設計形式:一種是發(fā)夾式巖心提斷器,另一種是卡簧式
巖心提斷器。發(fā)夾式巖心提斷器主要用于流砂、砂礫、松散黏土及無膠結構造破碎帶等地層的巖心采集??ɑ墒綆r心提斷器主要用于水敏性地層、構造裂隙地層及成巖裂隙地層的巖心采集。
1) 發(fā)夾式巖心提斷器
該巖心提斷器是利用女性頭飾發(fā)夾卡取軟弱松散巖心的一種取心裝置,由發(fā)夾、發(fā)夾室及發(fā)夾座組成,與攔簧式巖心提斷器類同,在文獻[20]中有詳細介紹。該巖心提斷器用在雙隔取心鉆具上,正常鉆進時發(fā)夾被襯管封隔,巖心進入襯管不受發(fā)夾擾動和阻攔。為了避免發(fā)夾卡在襯管開縫上,另外增設1個套在襯管底端,依靠襯管張力和摩擦力固定的防卡套[18]。該巖心提斷器安裝時需借助1個引套[18],把發(fā)夾的夾頭撐開才能完成安裝,其安裝結構如圖2所示。
圖2 發(fā)夾式巖心提斷器安裝結構
2) 卡簧式巖心提斷器
該巖心提斷器與普通取心鉆具上的卡簧式巖心提斷器類同,其構件由卡簧、卡簧座組成,無需卡簧擋圈;正常鉆進時,卡簧套在襯管外,頂靠在內管下端,依靠襯管張力和摩擦力固定,與卡簧座內壁保有一定的活動間隙,巖心進入襯管不受卡簧障礙,其安裝結構如圖3所示。
圖3 卡簧式巖心提斷器安裝結構
該鉆頭結構如圖4所示,其特點是:①鉆頭胎體唇面設有8個噴水槽,每槽有2個并排通水孔,通水面積比普通底噴式鉆頭增加了1倍,目的是可依據鉆進復雜地層的工況條件,獲取泵量和有效水孔的最佳匹配參數,并采用封堵水孔的辦法,提高孔底沖洗效果;②鉆頭體外表設有過水錐面,噴水槽與過水錐面連通的外水槽,其寬度與噴水槽平齊,通過加寬鉆頭體部位的排水通道,有利減少鉆頭唇面的巖屑聚集,保持孔底清潔。
圖4 鉆頭結構
3.1.1 ZK205孔試驗概況
試驗前,某鉆機在附近ZK603孔127.18~ 175.85 m孔段,采用普通S75繩索取心鉆具泥漿護孔鉆進,因巖心采取率不足40%而報廢,裝箱巖心如圖5所示[17]。
ZK 205孔設計深度260 m,鉆孔傾角75°,要求巖心采取率大于70%,礦心及礦體頂底板3~5 m的圍巖采取率大于85%,終孔口徑75 mm。該孔以?110 mm口徑開孔,下完?108 mm孔口管后用雙隔取心鉆具試驗。試驗孔段巖性為泥質砂巖夾板巖和千枚巖;巖體風化成泥質或泥夾石,吸水膨脹率大;基巖可鉆性6~8級,研磨性強,裂隙發(fā)育,裝箱巖心如圖6所示。
圖5 ZK603試驗孔段裝箱巖心
圖6 ZK205試驗孔段裝箱巖心
本次試驗未對普通S95繩索取心鉆具的巖心堵塞報信機構進行改進,試驗鉆具選配的是發(fā)夾式巖心提斷器,鉆孔沖洗為清水加高效潤滑劑;鉆進參數:鉆壓8~12 kN,轉速187~267 r/min,泵量60~96 L/min;鉆進過程不漏失,但有孔壁超徑、掉塊現象;回次鉆進的基本情況見表1。
3.1.2 試驗效果
從表1分析可知,雙隔取心鉆具巖心采取率提高了50%以上。該試驗孔段的回次進尺量和鉆進效率,顯然是采用普通繩索取心鉆具難以實現的。盡管取出的巖心極其破碎,但從襯管開縫線可以看到,管內巖心排列整齊,裂紋清晰,未受到沖刷和擾動。
表1顯示連續(xù)鉆進14.73 m后,發(fā)夾只在第13個鉆進回次更換過1次,其使用壽命比在某礦區(qū)[20]未采用襯管封隔發(fā)夾鉆進提高了3倍以上,這說明襯管端頭在鉆進過程中對發(fā)夾起到了很好的保護作用。
表1 ZK205孔試驗孔段回次鉆進的基本情況
從第4鉆進回次起,鉆進泵量比上一鉆進孔段加大了0.6倍,并在鉆頭每個噴水槽上堵塞1個通水孔;從后續(xù)鉆進對鉆頭使用情況觀察,有效通水孔數基本保持在6~8個,且分布較為均勻,胎體唇面的“泥墊”程度也得到了相應的扼制。
本次試驗存在巖心堵塞報警信號反應不靈、退心操作非常困難等不足之處;此外,還未取得充裕的數據支撐該鉆頭在結構設計和使用方法上更有效的結論。
3.2.1 ZK501孔試驗概況
該孔設計深度120 m,鉆孔傾角90°,要求全孔巖心采取率大于70%,強烈風化帶或斷層破碎帶的巖心采取率大于40%,無巖心間隔不超過3 m,開孔口徑?200 mm,終孔口徑?150 mm。主要巖性為白堊紀粉砂巖,可鉆性5~7級,巖體裂隙發(fā)育,巖心在水中浸泡后有微弱膨脹,巖屑易粘附鉆頭。針對雙隔取心鉆具在營孜里礦區(qū)試驗存在的問題,改進了巖心堵塞報信機構、應用了與該鉆具配套的卡簧式巖心提斷器及襯管取出器[18]。ZK501孔身結構如圖7所示。
該孔?150 mm口徑鉆進至孔深27.60 m時巖心較為破碎,換用?95 mm口徑的變徑鉆具鉆進至孔深30.12 m,然后采用雙隔取心鉆具,配用?60 mm普提鉆桿開始提鉆取心鉆進;鉆孔沖洗為清水;鉆進參數:鉆壓10~15 kN,轉速187~267 r/min,泵量60~166 L/min;鉆進過程微漏失,有孔壁超徑、掉塊現象;試驗孔段有局部巖心破碎,完整巖心直徑比鉆頭內徑小1~3 mm,裝箱巖心如圖8所示。
圖7 ZK501孔身結構
圖8 ZK501孔試驗孔段裝箱巖心
該鉆具試驗進行了14回次,進尺20.46 m,試驗孔段回次鉆進的基本情況見表2。
3.2.2 試驗效果
由表2分析可知,試驗鉆具除襯管較短限制回次進尺長度外,在一般性破碎地層所獲巖心采取率及鉆進效率均高于普通繩索取心鉆具。本次試驗在鉆進回次堵心和巖心滿管頂頭時,巖心堵塞報信機構反應靈敏,報信準確,減少了磨心進尺。在采心提升過程中,卡簧能有效卡取巖心,未發(fā)生巖心脫落和巖心殘留現象。所用鉆頭歷經6次調整通水孔個數和4次變換鉆進泵量,從第12鉆進回次開始,求取的鉆進泵量和有效通水孔數趣于穩(wěn)定,鉆頭“泥墊”面積有明顯減少,回次鉆進持續(xù)平穩(wěn),巖心采取率近乎100%。退心操作簡便易行,不傷及襯管和巖心。
雙隔取心鉆具試驗證實了鉆進堵心或巖心滿管頂頭時,巖心頂力推動襯管總成上行,打開發(fā)夾或卡簧自動鎖心的可行性。
該設計只有當上行巖心頂力足以克服作用襯管阻力時,才能推動襯管上行。假如意外原因,在正常鉆進中需要提鉆或打撈取心時,發(fā)夾或卡簧處于被封隔狀態(tài)顯然是無法卡取巖心。在此情況下可借鑒干鉆卡取法采心[19]:先停泵,然后反復提動并回轉鉆具至孔底,行程0.2~0.5 m,促使脫落巖心擠壓襯管,通過巖心與襯管內壁的摩擦力推動襯管上行,從而打開發(fā)夾或卡簧自動鎖心;當鉆具能自由落至孔底后便可提鉆或打撈取心。
表2 ZK501孔試驗孔段回次鉆進的基本情況
該設計的最大質疑點是襯管強度。試驗結果表明,所用襯管自始至終未發(fā)生卷邊、凹陷及彎曲變形。襯管的材質比普通內管好,有較高的剛度、硬度和強度;襯管在內管里緊貼內壁且沒有彎曲變形空間,無論孔底巖心對襯管的頂力有多大,都不至于造成襯管損壞,除非隨內管一同彎曲變形;襯管退心時只需輕輕震動錐接頭部位,無須敲打襯管,巖心便可退出。
底噴式鉆頭與普通鉆頭的主要區(qū)別,在于鉆頭水路通道的設計,賦予了鉆頭的隔水性,從而避免了鉆取巖心被沖洗液沖刷[21-25]。但是,由于底噴式鉆頭體內徑與巖心提斷器的間隙小、過水阻力大,沖洗液從鉆頭通水孔泄壓后,侵入鉆頭唇面與巖面之間的壓差小,不能像普通鉆頭一樣,有少部分沖洗液能夠流經該漫流區(qū)把巖屑適時排出,保證鉆頭持續(xù)正常鉆進。因此,底噴式鉆頭所刻取的巖屑,因不能及時獲得水力作用而滯留在胎體唇面,阻礙了金剛石出刃。只有當巖屑被水浸潤后,在鉆具軸向擠壓力和鉆頭旋向摩擦力的持續(xù)作用下排出胎體唇面,才能使鉆頭有所進尺。
通常在水敏性地層鉆進中,底噴式鉆頭的通水孔常堵,而且被堵孔大多連成一線,粘附在胎體唇面的巖屑未能及時得到排除,導致鉆頭冷卻不良,從而使巖屑燒結成墊層,嚴重阻礙了金剛石出刃,影響了鉆進速度。筆者認為,其根本原因在于沖洗液流經鉆頭通水孔的流速或勢能不足以有效沖洗孔底。
復雜地層鉆進,必然要受到孔壁穩(wěn)定性、泥漿性能及通水條件等限制或影響。只有在孔內安全和鉆進條件許可的情況下,通過求取鉆進泵量和鉆頭有效通水孔的最佳匹配參數,才能獲取較好的鉆進效果。據此理念,所用底噴式鉆頭的設計比常規(guī)底噴式鉆頭的通水孔數增加了1倍。試驗結果表明,合理調節(jié)鉆進泵量和鉆頭通水孔個數,能夠提高孔底沖洗效果,降低鉆頭“泥墊”現象對鉆進速度的影響,能夠保證鉆頭持續(xù)正常鉆進。
雙隔取心鉆具的巖心堵塞報信機構在ZK205孔試驗用的是碟簧,鉆進堵心時不能保證及時發(fā)出堵水報警信號,從而導致了巖心無癥狀磨耗;在ZK501孔試驗換用壓力彈簧后,鉆進堵心時泵壓反應靈敏,報信準確,從而減少了巖心磨耗。經彈簧參數計算,使用原裝碟簧在滑套頂靠在接頭臺階部位時,所施巖心頂力較所述壓力彈簧大10倍以上。需要指出的是,在ZK501孔第5鉆進回次,孔深35.30 m處鉆遇裂隙層時,鉆具驟降0.15 m無堵水報警信號反應,導致磨心進尺0.17 m。遇此極軟弱地層,該巖心堵塞報信機構,還可通過更換較為弱小彈性能力的壓力彈簧來適應地層變化的需要,從而提高報警信號的靈敏性和準確性。
a. 雙隔取心鉆具,在ZK205孔松散破碎的水敏性地層中,應用發(fā)夾式巖心提斷器試驗了16回次,進尺18.03 m,獲取巖心采取率94.48%,解決了所在礦區(qū)同類地層應用普通繩索取心鉆具獲取巖心采取率不足40%的難題;在ZK501孔構造裂隙地層中,應用卡簧式巖心提斷器試驗了14回次,進尺20.46 m,獲取巖心采取率97.90%,其使用效果優(yōu)于普通取心鉆具。
b. 選用不銹鋼裝飾管制作襯管,封隔發(fā)夾和卡簧自動鎖心的取心技術方案可行。用壓力彈簧替代碟簧,提高巖心堵塞報信機構的靈敏性和報警信號的準確性,減少無癥狀巖心磨耗。對原鉆具單向球閥的改進,在頂角0°~25°斜孔試驗中顯示效果良好,沖洗液未對巖心造成沖蝕,打撈取心過程也未發(fā)生巖心脫落現象。至于頂角大于25°斜孔中的使用效果如何,有待后續(xù)探討。
c.所用底噴式鉆頭累計進尺38.49 m,歷經變換鉆進泵量5次,調整通水孔個數8次,兩孔通過泵量和有效通水孔的最佳匹配參數后,降低了鉆頭“泥墊”現象對鉆進速度的影響,保證了鉆頭持續(xù)正常鉆進。實踐證明,該鉆頭設計合理。
d. 雙隔取心鉆具與現行復雜地層繩索取心鉆具比較,尚屬操作方便,使用成本低廉,有望在我國現行繩索取心機臺推廣應用,具有較強的普適性和廣泛的應用前景。
[1] 施山山,閆家,李寬,等.破碎地層取心鉆具研究現狀及展望[J]. 探礦工程(巖土鉆掘工程),2020,47(7):56–61.
SHI Shanshan,YAN Jia,LI Kuan,et al. Research status and prospects of coring tools for broken formation[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling),2020,47(7):56–61.
[2] 尹國明,郎猛,陳志鵬,等. 復雜地層用繩索取心鉆具的研制[J]. 探礦工程(巖土鉆掘工程),2020,47(2):63–67.
YIN Guoming,LANG Meng,CHEN Zhipeng,et al. Development of wire-line drilling tools for complex formation[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling),2020,47(2):63–67.
[3] 楊澤英,齊力強,崔淑英,等. 深孔繩索取心液動錘鉆具的研制與應用[J]. 探礦工程(巖土鉆掘工程),2017,44(12):66–70.
YANG Zeying,QI Liqiang,CUI Shuying,et al. Development and application of wire-line coring hydro-hammer for deep hole[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling) ,2017,44(12):66–70.
[4] 曹學斌,王發(fā)民,何玉云,等. SYZX96型繩索取心液動錘在甘肅李壩金礦復雜地層中的應用及效果[J]. 探礦工程(巖土鉆掘工程),2016,43(6):30–33.
CAO Xuebin,WANG Famin,HE Yuyun,et al. Application of SYZX96 wire-line coring hydro-hammer in complex strata of Gansu Liba gold mine and the effects[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling),2016,43(6):30–33.
[5] 唐進軍,劉海斌. HFS繩索取心孔底局部反循環(huán)三合管組合取心鉆具[J]. 探礦工程(巖土鉆掘工程),2014,41(2):52–55.
TANG Jinjun,LIU Haibin. HFS triple pipe composite coring tool with bottom partial reverse circulation for wire-line coring[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling),2014,41(2):52–55.
[6] 劉成才. 噴射式局部反循環(huán)繩索取心鉆具[J]. 探礦工程(巖土鉆掘工程),2008,35(9):35–36.
LIU Chengcai. Wire-line coring drilling tool with local rejecting reverse circulation[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling),2008,35(9):35–36.
[7] 葉蘭肅,苗曉曉,王建興,等. 91單動三重半合管鉆具的研制與應用[J]. 探礦工程(巖土鉆掘工程),2017,44(7):56–61.
YE Lansu,MIAO Xiaoxiao,WANG Jianxing,et al. Development of 91 single-action triple coupling pipe core drilling tools and its application[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling),2017,44(7):56–61.
[8] 尤建武,曹其友,楊明奇,等. 汶川地震斷裂帶科學鉆探一號孔(WFSD–1)不同取心方法的應用效果分析[J]. 探礦工程(巖土鉆掘工程),2009,36(12):9–12.
YOU Jianwu,CAO Qiyou,YANG Mingqi,et al. Analysis on application results of different coring methods in the hole WFSD-1 of Wenchuan earthquake fault scientific drilling project[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling),2009,36(12):9–12.
[9] 李鑫淼,梁健,尹浩,等. 國內外割心鉆具研發(fā)概況與分析[J].探礦工程(巖土鉆掘工程),2020,47(7):47–55.
LI Xinmiao,LIANG Jian,YIN Hao,et al. Development and analysis of core catchers[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling),2020,47(7):47–55.
[10] 楊昌杰,張紹和,蘇宏岸,等. 適用于破碎地層的新型單動雙管鉆具[J]. 煤田地質與勘探,2014,42(1):87–89.
YANG Changjie,ZHANG Shaohe,SU Hongan,et al. The application test of the new double-barreled and single-acting coring tool in fractured formation[J]. Coal Geology & Exploration,2014,42(1):87–89.
[11] 周云,張紹和. 淺孔復雜地層 ?110 型繩索取心鉆具的研制與應用[J]. 煤田地質與勘探,2017,45(4):163–169.
ZHOU Yun,ZHANG Shaohe. Research and application of wire-line coring drilling tools for shallow hole in heterogeneous layers[J]. Coal Geology & Exploration,2017,45(4):163–169.
[12] 張偉. 科學深孔復雜地層鉆進技術難題與對策[J]. 探礦工程(巖土鉆掘工程),2014,41(9):7–12.
ZHANG Wei. Technical problems and countermeasures for the drilling operation in complex formations of scientific deep drilling projects[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling),2014,41(9):7–12.
[13] 李鑫淼,李寬,孫建華,等. 國內外繩索取心鉆具研發(fā)應用概況及特深孔鉆進問題分析[J]. 探礦工程(巖土鉆掘工程),2020,47(4):15–23.
LI Xinmiao,LI Kuan,SUN Jianhua,et al. Development and application of wireline coring tool and diagnosis of ultra-deep hole drilling problems[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling),2020,47(4):15–23.
[14] 韓毅,張紹和,白銳,等. 囊袋多節(jié)捆綁式繩索取心鉆具的設計與應用[J]. 煤田地質與勘探,2019,47(5):220–224.
HAN Yi,ZHANG Shaohe,BAI Rui,et al. Design and application of multi-section bundled bag wire-line coring drilling tools[J]. Coal Geology &Exploration,2019,47(5):220–224.
[15] 孔祥旺,張紹和,王文彬,等. 湘西北復雜構造區(qū)破碎地層繩索取心鉆進技術難點及優(yōu)化[J]. 煤田地質與勘探,2021,49(2):247–252.
KONG Xiangwang,ZHANG Shaohe,WANG Wenbin,et al. Difficulties and optimization of wire-line core drilling technology for broken formation in complex structure area of northwest Hunan[J]. Coal Geology & Exploration,2021,49(2):247–252.
[16] 胡郁樂,胡晨,張恒春,等. 鉆頭泥包原因分析及松科二井防泥包鉆井液的應用[J]. 煤田地質與勘探,2020,48(5):254–261.
HU Yule,HU Chen,ZHANG Hengchun,et al. Analysis of bit balling and application of the balling-preventing drilling fluid in well Songke-2[J]. Coal Geology & Exploration,2020,48(5):254–261.
[17] 廖遠蘇,胡啟鋒,繆賽,等. 發(fā)夾式復雜地層取心鉆具的研制成果報告[R]. 贛州:江西有色地質勘查二隊,2019.
LIAO Yuansu,HU Qifeng,MIU Sai,et al. A report on the development of hairpin core drilling tools in complex forma tions[R]. Ganzhou:Jiangxi Nonferrous Geological Exploration Team Ⅱ,2019.
[18] 江西有色地質勘查二隊. 復雜地層雙隔自鎖式三層管繩索取心鉆具:CN 111636838 A[P]. 2020-09-08.
Jiangxi Nonferrous Geological Exploration Team Ⅱ. Double- partition self-locking three-layer pipe rope coring tool for complex stratum:CN 111636838 A[P]. 2020-09-08.
[19] 王達,何遠信. 地質鉆探手冊[M]. 長沙:中南大學出版社,2014.
WANG Da,HE Yuanxin. Geological drilling handbook[M]. Changsha:Central South University Press,2014.
[20] 廖遠蘇,胡啟鋒,繆賽,等. 提高復雜地層取心質量的一種發(fā)夾式巖心提斷器及其應用[J]. 煤田地質與勘探,2020,48(6):249–255.
LIAO Yuansu,HU Qifeng,MIAO Sai,et al. Hair clip type core lifter for improving coring quality in complex formation and its application[J]. Coal Geology & Exploration,2020,48(6):249–255.
[21] 王穩(wěn)石,朱永宜,賈軍,等. 汶川地震斷裂帶科學鉆探項目取心鉆進技術[J]. 探礦工程(巖土鉆掘工程),2012,39(9):28–31.
WANG Wenshi,ZHU Yongyi,JIA Jun,et al. Coring drilling technology in Wenchuan earthquake fault scientific drilling project[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling),2012,39(9):28–31.
[22] 李鑫淼,李寬,梁健,等. 復雜地層取心鉆進堵心原因分析及其預防措施[J]. 探礦工程(巖土鉆掘工程),2018,45(12):12–15.
LI Xinmiao,LI Kuan,LIANG Jian,et al. Core jamming causes and prevention in drilling difficult formation[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling),2018,45(12):12–15.
[23] 楊相茂,彭漢華,許華松. 破碎帶取心鉆進技術[J]. 探礦工程(巖土鉆掘工程),2014,41(3):33–35.
YANG Xiangmao,PENG Hanhua,XU Huasong. Coring drilling technology in fracture zone[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling),2014,41(3):33–35.
[24] 朱恒銀,王強,楊展,等. 深部地質鉆探金剛石鉆頭研究與應用[M]. 武漢:中國地質大學出版社,2014.
ZHU Hengyin,WANG Qiang,YANG Zhan,et al. Research and application of diamond bit for deep geological drilling[M]. Wuhan:China University of Geoscience Press,2014.
[25] 吳金生,陳禮儀,張偉. 破碎松軟地層取心鉆頭孔底流場數值模擬及應用[J]. 探礦工程(巖土鉆掘工程),2013,40(7):107–110.
WU Jinsheng,CHEN Liyi,ZHANG Wei. Numerical stimulation of bottom flow field of core bit in broken soft formation and the application[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling),2013,40(7):107–110.
Introductions and applications of a self-locking wire-line coring system with a water-shielding bit and a circlip-shielded core barrel
LIAO Yuansu, HU Qifeng
(No.2 Geological Party of Jiangxi Nonferrous Metals Geological Exploration Bureau, Ganzhou 341000, China)
The great progresses have been made in the research of wire-line coring system used in complex formations at home and abroad in recent years. However, the key technology problems that affect coring quality and drilling efficiency have not been well solved, such as the resistence caused by core clamping components when the core gets into the core-barrel and the mud pad at the bottom of jet bits. The common S95 wire-line coring system is selected as the example in our study. Adding stainless steel liner with 0.7 millimetres thickness in the inner core barrel separates circlip components. The methods of increasing the number of water holes at the bottom of jet bit and widening the drainage channels have been adopted in these tests. There are two kinds of core lifters alternatives, one is hairpin spring and the other is clip spring. A new type of wire-line coring system with three-ply core barrels has been developed for drilling in complex formation, which has the advantages of water shielding, circlip-shield and automatic core locking. This new kind of wire-line coring system with hairpin core lifter is tested in the broken formations with strong water sensitivity. The average roundtrip footage is 1.13 m and the core recovery is 94.48%, which is increased by more than 50 percent comparing with the core recovery rate of similar formation nearby. The test has been carried out in the muddy formation with developmental fractures by using the circlip core lifter. The core cutting is as reliable as the circlip used in the ordinary wire-line coring system. The tests show that the coring technology by using liner to separate the core clamping components is feasible, which solves the obstruction of the core clamping components to the soft and loose core, and which is effective to protect the core in original state. The water-shielding jet bit improves the flush effect at the bottom of the bit and reduces the damage of the mud pad on the drilling speed by calculating the reasonable drilling pump volume and the effective number of water holes. This new kind of wire-line coring system is easy to operate and is cheap to use. It is expected to be popular and applied in the current wire-line coring drilling crew in China, which is going to have a strong universality and wide application.
complex formation; core drilling tool; core lifter; bottom jet bit; hair clips; circlip; liner pipe
P634.4
A
1001-1986(2021)04-0278-09
2021-01-13;
2021-06-20
江西有色地質勘查局科技開發(fā)基金項目(KF201802)
廖遠蘇,1962 年生,男,江西贛州人,高級工程師,從事復雜地層治理及取心鉆具研究工作. E-mail:15970096813@126.com
廖遠蘇,胡啟鋒. 一種隔水隔卡的自鎖式繩索取心鉆具及應用[J]. 煤田地質與勘探,2021,49(4):278–286. doi: 10.3969/j.issn.1001-1986.2021.04.033
LIAO Yuansu,HU Qifeng. Introductions and applications of a self-locking wire-line coring system with a water- shielding bit and a circlip-shielded core barrel[J]. Coal Geology & Exploration,2021,49(4):278–286. doi: 10.3969/ j.issn.1001-1986.2021.04.033
(責任編輯 郭東瓊 聶愛蘭)