• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Machine Learning for Next-generation Printed Technologies

    2021-09-10 20:47:18LittyV.ThekkekaraShaminiP.BabyJefferyChanIvanCole

    Litty V.Thekkekara Shamini P. Baby Jeffery Chan Ivan Cole

    Abstract

    Modern science advances towards the development of lightweight wearable and portable applications for the promotion of human-machine interfaces. Among them, the most beneficial ones include the technologies for healthcare, telecommunications, and energy resources. Recent developments in the additive manufacturing otherwise 3D printing sector are promising for largescale applications. It promotes cost-effective production of technologies like sensors, lab on chips, solar cells, and energy storage. However, these applications' efficiency is lower to technologies fabricated using other methods like chemical approaches due to the non-optimized parameters involved in the fabrication and characterization phases. Machine learning on the other hand expands its science and engineering capabilities. It has a broader opportunity to support 3D printing to develop the potentials and efficiency through effective prediction methods for printing methods and design aspects. In this review, we discuss the use of machine learning prediction algorithms for technologies using 3D printing.

    1. Introduction

    Additive manufacturing (AM) [1], also known as 3D printing, is used to create objects using layer-by-layer fabrication methods using a CAD design model. Rapid fabrication time and better process control for even arbitrary shape formation from nano to mesoscale results in cost-effective interactive devices with minimum material wastage and lower energy requirements, ensuring the promising future of the 3D printing industries [2]. Different 3D printing methods include binder jetting, material extrusion, material jetting, powder bed fusion, sheet lamination, direct energy deposition, metal casting, and photopolymerization methods like dynamic laser printing (DLP) and Stereolithography (SLA) [3].

    It profoundly impacts areas like automotive, lightweight wearables, portable electronics, energy storage, solar cells, optics, bioengineering, medical applications, and the fashion industry [4]. The applications are not limited to the previously listed, as discovery of materials that support the more dimensions for the fabrication, like 4D printing promotes new applications [5].

    However, the 3D printing process-based applications have several limitations in achieving the best performance due to the non-optimal final structures [6]. The primary issue preventing the development of an ideal output structure using 3D printing processing could be the reduced heat dissipation time in the fabrication materials. It can lead to difficulties in developing desired shapes in the output with non-desired roughness. Besides, the stitching errors contributed by the 3D printing source can result in resolution issues, which results in misconfigured structures, voids, and interlayer spacing problems in the final output.

    Several other factors, like the mechanical delays in the printing system, non-coordination between computer software used for the control and the printing system, thermal relaxation of dynamic optical and other mechanical systems, non-optimization of the designs utilized, can influence the printing process [7]. In recent years, the utilization of artificial intelligence (AI) and its sub-fields like machine learning (ML) for 3D printing show a promise in developing a self-intelligent automated fabrication process through assistance in design, choosing material, material tuning, process optimization, in situ monitoring, defect recognition, cloud service, and cybersecurity [8].

    With the utilization of the processed information and data, the ML training network figure out how to make decisions [9]. ML is dynamic, implying that it can alter itself when exposed to more information. The 'learning' part of ML means that the algorithms attempt to limit the errors and boost likelihood of their predictions being valid.

    The field of ML has organized around three primary research: (1) task-oriented studies, involving the development and analysis of learning systems to improve performance in a predetermined set of tasks, (2) cognitive simulation used for investigation and computer simulation of human learning processes and finally, (3) analysis such as the theoretical space exploration of possible learning methods and algorithms independent of application domain [10].

    Deep Learning (DL) which is a subset of ML incorporates computational models and algorithms that imitate the architecture of the brains biological neural networks, which are termed artificial neural networks (ANNs)[11]. Deep Neural Networks (DNNs) are used in various applications, such as object recognition in images and acoustic processing for speech recognition [12]. Whenever the brain gets new data, it attempts to contrast with known data to make sense. The brain decodes the information through labeling and assigning the items to various categories, and DL employs the same concept.

    ‘Deep is a technical term and refers to the number of layers in an ANN. There are three types of layers: (a) an input layer (receives the input data), (b) a output layer (produces the result of data processing), and (3) the hidden layer (extracts the patterns within the data) [13]. While the information moves from one hidden layer to another, more superficial features recombine and recompose complex elements. DL works exceptionally well on unstructured data and has higher accuracy than traditional ML approaches for unsupervised training, but requires a considerable volume of training data, along with expensive hardware and software.

    Here, we discuss the current use of ML in 3D printing, and perspectives about the improvement in this area using advanced ML methodologies significantly to optimize the prefabrication design process, defect/failure detection, real-time 3D printing control/failure compensation, predictive maintenance, cost optimization and photopolymerization using ML-based algorithm to maximize control on chemicals and energy dose input.

    2. ML for 3D Printing Applications

    There has been a lot of recent interest in adopting ML methods for scientific and engineering applications using 3D printing[14]. Recently, a lot of attention has been given for printable graphical codes enabling a link between the physical and digital worlds, which is of great interest for anti-counterfeiting, Internet of Things (IoT), and brand protection applications[15].

    In a demonstrated work, an automated ML segmentation procedure to create a virtual object to be printed [16]. They made an accurate 3D printed core sample replicas using an ML image processing tool (MLIPT). Another application of ML technique s in the? prediction of the hole-filling in pin-in-paste technology[17]. A detailed evaluation of ML-based prediction methods is performed in this research, including artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (AFNIS), and gradient boosted decision trees to optimize the process parameters of pin-in-paste. Another relevant 3D printing application that has potential use is concrete printing. In this application, the ANN model optimizes the surface finish quality and potentially affects bonding strength between layers [18].

    In addition to all these printable applications, shape accuracy is an important performance measure or product built via 3D printing. Some works[19] adopted Gaussian process regression to capture spatial correlations. The printed 2-D and 3-D shapes are used to demonstrate the proposed modeling framework and derive new process insights for fabrication process. The proposal for developing a useful tool with the potential for broad application in planning and optimizing 3D printing of soft materials with Hierarchical ML algorithms (HML)[20]. HML algorithm predicts the problematic physical system behaviours using sparse data sets through the integration of physical modeling using statistical learning. This methodology simultaneously optimizes material, formulation, and process variables.

    In a report on manufacturing a 3D printer, the functional surfaces of printing medium are developed with DLs help[21]. This methodology is beneficial for printing highly biological samples like bone prosthetics, regenerative biomedicines, and fabrication directly on the human bodys internal organs like implantation of sensors for in-situ monitoring of lungs functioning and heart. 3D printing of biomaterials for tissue-engineering by utilizing random forest ML algorithms is a significant step towards more accurate and efficient biomedical applications [22] 3D printed personalized pharmaceuticals and medicines depending on the individual patient necessities are now accomplished using ML algorithms[23].

    ML applications in optical technologies attain exceptional attention in recent years.? The ML use gained rapid growth in the sectors like laser beam-material interactions for fundamental material science studies helped understand the physical and chemical property changes [24]. ML is used to enhance the disc's data storage capacity by fabricating the optical structures beyond the diffraction limit of light[25]. ML algorithms have helped to develop and discover better photonic designs for optical communications, augmented realities, displays, holography, meta-optics, adaptive optics, metrology, and quantum optics using 3D printing [26]. Apart from these studies, recently, researchers are successful in 3D printing a framework of multiple layers of diffractive surfaces, which in the collective form an optical analog of a neural network for statistical learning and termed as a diffractive deep neural network (D2NN)[26f]. In the framework, both the networks interference and prediction mechanism are all-optical through a computer-controlled design.

    We have summarized the ML applications in different steps of developing a 3D printing from material selection towards the optimization and characterization of the processed device in Figure 1.

    3. Challenges of ML use in 3D printing

    For ML, the training data is the critical input where having the right quality and quantity of data sets is essential to get accurate results. The larger the ML algorithms training data, it will more likely to help the model to see diverse types of objects, making it easier to recognize and generalize to diverse real-life scenarios. Data collection is a significant bottleneck in ML. We envision that requirement for (training) data play a larger role in specifying ML systems than for conventional methods. This information needs to be elicited from the problem domain and serves as an input[27].

    It is known that the major time for running ML end-to-end is spent on preparing the data, which includes collecting, cleaning, analyzing, visualizing, and feature engineering. There are two reasons for which data collection has recently become a critical issue. First, as ML is becoming more widely used, we can see new applications that do not necessarily have enough labeled data. Second, unlike traditional ML, deep learning techniques can be used by unsupervised training to generate automatic features, which saves feature engineering costs, but in return, may require more massive amounts of labeled data [27].

    Supervised ML models are successfully used to respond to a whole range of challenges. However, these models need more data, and their performance relies heavily on the size of training sets available. In many cases, it is not easy to create training datasets that are large enough, particularly for engineering tasks. It is impossible to precisely estimate the minimum amount of data required for AI projects. The nature of every project will significantly influence the amount of data we will need. Many 3D printing systems do record data during the builds, and that this data could be curated and collected to assist with ML. Besides, other factors such as ‘number of categories to be predicted and ‘model performance should be considered to make an accurate estimate.

    4. Perspectives

    There is a wide range of ML algorithms available, and their applications are immense. Here we can adopt a suitable method that gives minimum errors and maximum accuracy for our printing applications. It will enable the analysis to focus on the available scientific measurements and the actual optimization process using the essential experimental and simulated data points. One successful example in this field is a study conducted by Google Health to measure breast cancer signs with few input variables [28]. Another approach is in the designing of pharmacologically relevant chemical space with drug-like molecular entities on demand with limited training data [29]. The final model aims to have better accuracy and a lesser time frame than numerical simulations.

    Fault management is a functional area of systems management related to the detection, prediction, isolation, and prevention of faults. A model is trained by looking at the systems fault-free state, and can be used in all printing processes today as they have much simpler requirements to system expertise or data needed or training the fault-free models [30]. AI can have a more significant influence in the field of automating 3D printing workflows. The printability of an object can be analyzed before starting the fabrication process. The quality of a part can also be predicted, and the process can be controlled to avoid printing errors, effectively saving time. Material selection can also be automated with AI depending on the requirements of the design to be printed. A flowchart for the process is as shown in Figure 3 below.

    We propose a model that can predict accurate results with the supply of minimum input data for printable scientific applications using appropriate design and suitable materials. Using the data prediction aspects of machine learning by incorporating computer simulation, develop an ML model that can predict better and accurate results using lesser input data. The final model aims to have better accuracy and a more secondary time frame than numerical simulations. Design optimization of printable applications can be done with the help of a Deep Neural network (DNN), which is a self-learning model and accurate by nature. In this approach, performance improvement and optimization methodologies such as Backtracking in DNN [31] and Bayesian optimization [32] can be applied iteratively to get precise outcomes. At each iteration, local optima can be evolved, and that can be used as the input to the next iteration. In this way, the performance will increase and minimize errors, which will result in an optimized design model. A perspective for our hypothesis is given in Figure 4 below.

    In conclusion, we propose a model that can predict accurate results with minimum input data supply. We consider printable scientific applications using appropriate design, suitable materials, and optimization of the fabrication process. This research aims to utilize the data prediction aspects of ML by incorporating computer simulation techniques. In this process, we can develop an ML model that can predict better and accurate results using lesser input data for the feed loop mechanism.

    ACKNOWLEDGMENTS

    This research was supported (partially or fully) by the Australian Government through the Australian Research Councils Discovery Projects funding scheme (project DP170103174).

    AUTHOR CONTRIBUTIONS

    All authors contributed equally to the design, writing, and editing of the manuscript.

    COMPETING INTERESTS

    The authors declare no competing financial interests.

    Reference

    [1] I. Gibson, D. W. Rosen, B. Stucker, Additive manufacturing technologies, Springer, 2014.

    [2] a) H. Lipson, M. Kurman, Fabricated: The new world of 3D printing, John Wiley & Sons, 2013; b) B. Berman, Business horizons 2012, 55, 155; c) L. Jonu?auskas, D. Gailevi?ius, S. Rek?tyt?, T. Baldacchini, S. Juodkazis, M. Malinauskas, Optics express 2019, 27, 15205.

    [3] a) T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Nguyen, D. Hui, Composites Part B: Engineering 2018, 143, 172; b) S. Maruo, O. Nakamura, S. Kawata, Optics letters 1997, 22, 132; c) S. Kawata, H.-B. Sun, T. Tanaka, K. Takada, Nature 2001, 412, 697.

    [4] a) J. Chang, T. Ge, E. Sanchez-Sinencio, presented at 2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS) 2012; b) A. Vanderploeg, S.-E. Lee, M. Mamp, International Journal of Fashion Design, Technology and Education 2017, 10, 170; c) S. Khan, L. Lorenzelli, R. S. Dahiya, IEEE Sensors Journal 2014, 15, 3164; d) Q. Yan, H. Dong, J. Su, J. Han, B. Song, Q. Wei, Y. Shi, Engineering 2018, 4, 729; e) C. Schubert, M. C. Van Langeveld, L. A. Donoso, British Journal of Ophthalmology 2014, 98, 159; f) J. A. Lewis, B. Y. Ahn, Nature 2015, 518, 42; g) S.-Y. Wu, C. Yang, W. Hsu, L. Lin, Microsystems & Nanoengineering 2015, 1, 1; h) Y. L. Kong, I. A. Tamargo, H. Kim, B. N. Johnson, M. K. Gupta, T.-W. Koh, H.-A. Chin, D. A. Steingart, B. P. Rand, M. C. McAlpine, Nano letters 2014, 14, 7017; i) G. Comina, A. Suska, D. Filippini, Lab on a Chip 2014, 14, 424; j) L. V. Thekkekara, M. Gu, Scientific reports 2017, 7, 45585; k) Y. Liu, T. T. Larsen-Olsen, X. Zhao, B. Andreasen, R. R. S?ndergaard, M. Helgesen, K. Norrman, M. J?rgensen, F. C. Krebs, X. Zhan, Solar energy materials and solar cells 2013, 112, 157; l) A. Ghilan, A. P. Chiriac, L. E. Nita, A. G. Rusu, I. Neamtu, V. M. Chiriac, Journal of Polymers and the Environment 2020, 1.

    [5] a) A. Mitchell, U. Lafont, M. Ho?yńska, C. Semprimoschnig, Additive Manufacturing 2018, 24, 606; b) D. Bourell, J. P. Kruth, M. Leu, G. Levy, D. Rosen, A. M. Beese, A. Clare, CIRP Annals 2017, 66, 659.

    [6] a) B. Ahuja, M. Karg, M. Schmidt, presented at Laser 3d manufacturing II 2015; b) S. Yang, Y. F. Zhao, The International Journal of Advanced Manufacturing Technology 2015, 80, 327; c) N. Kouraytem, X. Li, W. Tan, B. Kappes, A. Spear, Journal of Physics: Materials 2020.

    [7] a) D. I. Wimpenny, P. M. Pandey, L. J. Kumar, Advances in 3D Printing and Additive Manufacturing Technologies, Springer Singapore Pte. Limited, Singapore, SINGAPORE 2016; b) G. A. Adam, D. Zimmer, Rapid Prototyping Journal 2015.

    [8] a) U. Delli, S. Chang, Procedia Manufacturing 2018, 26, 865; b) Z. Jin, Z. Zhang, J. Ott, G. X. Gu, Additive Manufacturing 2020, 101696; c) H. Zhang, S. K. Moon, T. H. Ngo, ACS applied materials & interfaces 2019, 11, 17994; d) T. Wang, T.-H. Kwok, C. Zhou, S. Vader, Journal of manufacturing systems 2018, 47, 83; e) T. DebRoy, T. Mukherjee, H. Wei, J. Elmer, J. Milewski, Nature Reviews Materials 2020, 1; f) C. Wang, X. P. Tan, S. B. Tor, C. S. Lim, Additive Manufacturing 2020, 36, 101538; g) G. D. Goh, S. L. Sing, W. Y. Yeong, Artificial Intelligence Review 2020, 1; h) L. Scime, J. Beuth, Additive Manufacturing 2019, 25, 151; i) L. Scime, J. Beuth, Additive Manufacturing 2018, 19, 114; j) A. Caggiano, J. Zhang, V. Alfieri, F. Caiazzo, R. Gao, R. Teti, CIRP Annals 2019, 68, 451.

    [9] F. Pesapane, M. Codari, F. Sardanelli, European radiology experimental 2018, 2, 35.

    [10] R. MICHALSIK, J. Carbonell, L. MICHE, Palo Alto: Tioga Publishing,? 1983.

    [11] J. Schmidhuber, Neural networks 2015, 61, 85.

    [12] M. E. Morocho-Cayamcela, H. Lee, W. Lim, IEEE Access 2019, 7, 137184.

    [13] B. F. King Jr, Am Roentgen Ray Soc,? 2017.

    [14] D. Jakhar, I. Kaur, Clinical and experimental dermatology 2020, 45, 131.

    [15] O. Taran, S. Bonev, S. Voloshynovskiy, presented at ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2019.

    [16] A. Almetwally, H. Jabbari, Journal of Natural Gas Science and Engineering 2020, 76, 103192.

    [17] P. Martinek, O. Krammer, Computers & Industrial Engineering 2019, 136, 187.

    [18] W. Lao, M. Li, T. N. Wong, M. J. Tan, T. Tjahjowidodo, Virtual and Physical Prototyping 2020, 15, 178.

    [19] Q. Huang, Y. Wang, M. Lyu, W. Lin, IEEE Transactions on Automation Science and Engineering 2020.

    [20] A. Menon, B. Póczos, A. W. Feinberg, N. R. Washburn, 3D Printing and Additive Manufacturing 2019, 6, 181.

    [21] Z. Zhu, D. W. H. Ng, H. S. Park, M. C. McAlpine, Nature Reviews Materials 2021, 6, 27.

    [22] A. Conev, E. E. Litsa, M. R. Perez, M. Diba, A. G. Mikos, L. E. Kavraki, Tissue Engineering Part A 2020.

    [23] M. Elbadawi, B. Mu?iz Castro, F. K. H. Gavins, J. J. Ong, S. Gaisford, G. Pérez, A. W. Basit, P. Cabalar, A. Goyanes, International Journal of Pharmaceutics 2020, 590, 119837.

    [24] a) G. Casalino, Optics & Laser Technology 2018, 100, 165; b) J. Zhou, B. Huang, Z. Yan, J.-C. G. Bünzli, Light: Science & Applications 2019, 8, 1.

    [25] P. R. Wiecha, A. Lecestre, N. Mallet, G. Larrieu, Nature nanotechnology 2019, 14, 237.

    [26] a) J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, S. Lloyd, Nature 2017, 549, 195; b) F. N. Khan, Q. Fan, C. Lu, A. P. T. Lau, Journal of Lightwave Technology 2019, 37, 493; c) F. N. Khan, C. Lu, A. P. T. Lau, presented at 2018 Optical Fiber Communications Conference and Exposition (OFC) 2018; d) Z. A. Kudyshev, A. V. Kildishev, V. M. Shalaev, A. Boltasseva, Nanophotonics 2020, 1; e) L. Li, H. Ruan, C. Liu, Y. Li, Y. Shuang, A. Alù, C.-W. Qiu, T. J. Cui, Nature communications 2019, 10, 1; f) X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, A. Ozcan, Science 2018, 361, 1004; g) H. Ren, W. Shao, Y. Li, F. Salim, M. Gu, Science Advances 2020, 6, eaaz4261; h) S. You, J. Guan, J. Alido, H. H. Hwang, R. Yu, L. Kwe, H. Su, S. Chen, Journal of Manufacturing Science and Engineering 2020, 142.

    [27] J. P. Winkler, J. Gr?nberg, A. Vogelsang, presented at 2019 IEEE 27th International Requirements Engineering Conference (RE) 2019.

    [28] S. M. McKinney, M. Sieniek, V. Godbole, J. Godwin, N. Antropova, H. Ashrafian, T. Back, M. Chesus, G. C. Corrado, A. Darzi, Nature 2020, 577, 89.

    [29] M. Moret, L. Friedrich, F. Grisoni, D. Merk, G. Schneider, Nature Machine Intelligence 2020, 2, 171.

    [30] F. Baumann, D. Roller, presented at MATEC web of conferences 2016.

    [31] G. Chartrand, P. M. Cheng, E. Vorontsov, M. Drozdzal, S. Turcotte, C. J. Pal, S. Kadoury, A. Tang, Radiographics 2017, 37, 2113.

    [32] F. Archetti, A. Candelieri, Bayesian Optimization and Data Science, Springer, 2019.

    女性被躁到高潮视频| 麻豆国产av国片精品| 一个人免费在线观看的高清视频| 人妻一区二区av| 国产主播在线观看一区二区| 两个人看的免费小视频| 成人三级做爰电影| 国产成人免费观看mmmm| 最新在线观看一区二区三区| 亚洲国产av新网站| 国产欧美日韩综合在线一区二区| 国产成人一区二区三区免费视频网站| 无人区码免费观看不卡 | 男人舔女人的私密视频| 国产深夜福利视频在线观看| 亚洲av成人不卡在线观看播放网| 99国产极品粉嫩在线观看| 免费看a级黄色片| 免费黄频网站在线观看国产| 丁香欧美五月| 精品人妻在线不人妻| 久久精品国产亚洲av香蕉五月 | 黄片小视频在线播放| 高清视频免费观看一区二区| 日韩欧美三级三区| 99在线人妻在线中文字幕 | 在线看a的网站| 久久免费观看电影| 国产精品偷伦视频观看了| 国产黄频视频在线观看| 99riav亚洲国产免费| 如日韩欧美国产精品一区二区三区| 美女主播在线视频| 亚洲伊人久久精品综合| 国产成人免费观看mmmm| 美女扒开内裤让男人捅视频| 黑人猛操日本美女一级片| 国产aⅴ精品一区二区三区波| 黄片播放在线免费| 亚洲中文日韩欧美视频| av电影中文网址| 777久久人妻少妇嫩草av网站| 亚洲成人免费电影在线观看| 久久久久久久大尺度免费视频| 三上悠亚av全集在线观看| videos熟女内射| 成年动漫av网址| 人妻一区二区av| 女性生殖器流出的白浆| 免费观看av网站的网址| a级毛片在线看网站| 中文欧美无线码| 久久性视频一级片| 视频区图区小说| 欧美黄色淫秽网站| 国产精品欧美亚洲77777| 怎么达到女性高潮| 亚洲av成人一区二区三| 欧美国产精品va在线观看不卡| 亚洲午夜精品一区,二区,三区| 一边摸一边做爽爽视频免费| 女人被躁到高潮嗷嗷叫费观| 大型黄色视频在线免费观看| 亚洲精品在线观看二区| 天天影视国产精品| 激情视频va一区二区三区| 日韩一区二区三区影片| 一区二区三区国产精品乱码| 国产精品熟女久久久久浪| 亚洲欧美日韩另类电影网站| 国产成人欧美| 免费看a级黄色片| 一区二区日韩欧美中文字幕| 一二三四社区在线视频社区8| 午夜福利在线免费观看网站| 狠狠狠狠99中文字幕| 欧美日韩成人在线一区二区| 国产国语露脸激情在线看| 精品午夜福利视频在线观看一区 | 麻豆成人av在线观看| 999久久久精品免费观看国产| 国产深夜福利视频在线观看| 国产精品香港三级国产av潘金莲| 亚洲久久久国产精品| 日韩视频一区二区在线观看| 国产精品 国内视频| 国产熟女午夜一区二区三区| 国产精品亚洲av一区麻豆| 黄色丝袜av网址大全| 国产1区2区3区精品| 老司机亚洲免费影院| 热re99久久精品国产66热6| 免费看a级黄色片| 1024香蕉在线观看| 国产一区二区三区在线臀色熟女 | www.自偷自拍.com| 午夜福利欧美成人| 天堂动漫精品| 91av网站免费观看| 一区二区三区精品91| 99久久精品国产亚洲精品| 亚洲欧洲精品一区二区精品久久久| 久久国产亚洲av麻豆专区| 成年人午夜在线观看视频| 精品一区二区三区视频在线观看免费 | 久久久久国内视频| tocl精华| 婷婷丁香在线五月| 青青草视频在线视频观看| 丰满少妇做爰视频| 又紧又爽又黄一区二区| 欧美+亚洲+日韩+国产| 国产精品香港三级国产av潘金莲| 成年人免费黄色播放视频| 日本a在线网址| 欧美乱妇无乱码| 久久精品国产99精品国产亚洲性色 | av网站免费在线观看视频| 中文字幕人妻熟女乱码| 久久久久视频综合| 久久青草综合色| 国产老妇伦熟女老妇高清| 999久久久精品免费观看国产| 欧美av亚洲av综合av国产av| 精品少妇黑人巨大在线播放| 叶爱在线成人免费视频播放| 99riav亚洲国产免费| e午夜精品久久久久久久| 91大片在线观看| 成人永久免费在线观看视频 | 亚洲色图 男人天堂 中文字幕| 首页视频小说图片口味搜索| 我的亚洲天堂| 岛国在线观看网站| 国产高清视频在线播放一区| 日韩 欧美 亚洲 中文字幕| 在线天堂中文资源库| 久久久久久久精品吃奶| 国产熟女午夜一区二区三区| 免费久久久久久久精品成人欧美视频| 男男h啪啪无遮挡| 亚洲熟女毛片儿| videos熟女内射| 久久久水蜜桃国产精品网| av网站免费在线观看视频| 极品人妻少妇av视频| 欧美久久黑人一区二区| 国产精品熟女久久久久浪| 中文字幕制服av| 久久久欧美国产精品| 肉色欧美久久久久久久蜜桃| 麻豆国产av国片精品| √禁漫天堂资源中文www| 一区二区三区国产精品乱码| 亚洲中文字幕日韩| 日韩视频在线欧美| 90打野战视频偷拍视频| 十八禁人妻一区二区| 可以免费在线观看a视频的电影网站| 脱女人内裤的视频| 成年版毛片免费区| videos熟女内射| 亚洲精品粉嫩美女一区| 麻豆av在线久日| 首页视频小说图片口味搜索| 日日摸夜夜添夜夜添小说| 在线观看66精品国产| 国产亚洲精品第一综合不卡| 亚洲久久久国产精品| 久久免费观看电影| 日韩中文字幕视频在线看片| 中文字幕av电影在线播放| 麻豆成人av在线观看| 啦啦啦免费观看视频1| 国产精品.久久久| 一区二区三区精品91| 国产男女内射视频| 无限看片的www在线观看| 成人av一区二区三区在线看| 欧美午夜高清在线| 亚洲七黄色美女视频| 操美女的视频在线观看| 啦啦啦中文免费视频观看日本| 少妇 在线观看| 丁香欧美五月| 99精国产麻豆久久婷婷| 欧美乱妇无乱码| 伦理电影免费视频| 女性被躁到高潮视频| 国产亚洲精品第一综合不卡| 五月开心婷婷网| 亚洲色图 男人天堂 中文字幕| av一本久久久久| 手机成人av网站| 亚洲伊人色综图| 亚洲精品美女久久av网站| 嫁个100分男人电影在线观看| 午夜成年电影在线免费观看| 国产成+人综合+亚洲专区| 纯流量卡能插随身wifi吗| 黄片小视频在线播放| 中亚洲国语对白在线视频| 老司机午夜福利在线观看视频 | 亚洲国产毛片av蜜桃av| 日韩视频一区二区在线观看| 精品国产乱码久久久久久小说| 丰满迷人的少妇在线观看| 精品福利观看| 搡老岳熟女国产| 五月开心婷婷网| 精品熟女少妇八av免费久了| 淫妇啪啪啪对白视频| 一区二区三区激情视频| 国产高清激情床上av| 免费女性裸体啪啪无遮挡网站| 国产成人一区二区三区免费视频网站| 久久青草综合色| 蜜桃国产av成人99| 精品乱码久久久久久99久播| 老鸭窝网址在线观看| 亚洲人成伊人成综合网2020| 丰满迷人的少妇在线观看| 久久久久网色| 精品人妻1区二区| 亚洲男人天堂网一区| 电影成人av| 久久久国产一区二区| 亚洲av片天天在线观看| 每晚都被弄得嗷嗷叫到高潮| 午夜福利一区二区在线看| 俄罗斯特黄特色一大片| 久久香蕉激情| 国产一区二区 视频在线| 黄色视频在线播放观看不卡| 丝袜喷水一区| 成人亚洲精品一区在线观看| 久久久国产成人免费| 丰满迷人的少妇在线观看| 亚洲欧美日韩另类电影网站| 午夜福利乱码中文字幕| 欧美激情高清一区二区三区| 人人妻人人澡人人看| xxxhd国产人妻xxx| 久久久精品区二区三区| 国产精品国产av在线观看| 大型av网站在线播放| 成人国语在线视频| 咕卡用的链子| 丝瓜视频免费看黄片| 欧美激情极品国产一区二区三区| 免费人妻精品一区二区三区视频| 法律面前人人平等表现在哪些方面| 久久精品亚洲精品国产色婷小说| 午夜精品国产一区二区电影| 亚洲久久久国产精品| 欧美日韩成人在线一区二区| 久久久精品94久久精品| 美女国产高潮福利片在线看| tube8黄色片| 中文字幕人妻丝袜制服| 国产成人一区二区三区免费视频网站| 一级毛片精品| 欧美 日韩 精品 国产| 精品人妻熟女毛片av久久网站| 最近最新免费中文字幕在线| 久久久精品94久久精品| av免费在线观看网站| 国产不卡一卡二| 亚洲七黄色美女视频| 18禁裸乳无遮挡动漫免费视频| 欧美日韩国产mv在线观看视频| 男人舔女人的私密视频| 欧美激情极品国产一区二区三区| av福利片在线| 国产成人免费无遮挡视频| 中文字幕制服av| 国产精品九九99| 国产av又大| 久久青草综合色| 黄色 视频免费看| 日韩熟女老妇一区二区性免费视频| 国产成人av教育| 99九九在线精品视频| 亚洲成人免费av在线播放| 国产福利在线免费观看视频| 亚洲国产中文字幕在线视频| 国产精品1区2区在线观看. | 韩国精品一区二区三区| 国产男女超爽视频在线观看| 久久久久视频综合| 精品福利观看| 亚洲,欧美精品.| 精品国产乱码久久久久久小说| 精品国产国语对白av| 在线观看人妻少妇| 一夜夜www| 国产精品欧美亚洲77777| 黄网站色视频无遮挡免费观看| 国产在线视频一区二区| 久久香蕉激情| 丰满少妇做爰视频| 日韩视频在线欧美| 丝袜人妻中文字幕| 亚洲精品久久午夜乱码| 老熟女久久久| 久久精品国产亚洲av高清一级| 大片电影免费在线观看免费| 黑人巨大精品欧美一区二区mp4| 欧美黑人欧美精品刺激| 18禁黄网站禁片午夜丰满| 我要看黄色一级片免费的| 男女无遮挡免费网站观看| 中国美女看黄片| 亚洲色图综合在线观看| 极品少妇高潮喷水抽搐| 欧美在线一区亚洲| 久久午夜综合久久蜜桃| 中文字幕制服av| 肉色欧美久久久久久久蜜桃| 欧美另类亚洲清纯唯美| 天堂俺去俺来也www色官网| 美女高潮到喷水免费观看| 一本色道久久久久久精品综合| 亚洲精品一卡2卡三卡4卡5卡| 男女床上黄色一级片免费看| 国产精品秋霞免费鲁丝片| 亚洲欧美一区二区三区久久| 涩涩av久久男人的天堂| 天堂中文最新版在线下载| 国产人伦9x9x在线观看| 最新美女视频免费是黄的| 丝袜在线中文字幕| 日韩视频一区二区在线观看| 亚洲综合色网址| 亚洲精品一卡2卡三卡4卡5卡| 中文字幕人妻丝袜一区二区| 99热国产这里只有精品6| 无限看片的www在线观看| 久久精品国产亚洲av香蕉五月 | 国产麻豆69| 欧美日韩av久久| 中文字幕人妻丝袜一区二区| 99久久精品国产亚洲精品| 国产精品一区二区精品视频观看| 天堂动漫精品| 国产区一区二久久| 亚洲精品一卡2卡三卡4卡5卡| 久久久水蜜桃国产精品网| 精品久久蜜臀av无| 一边摸一边做爽爽视频免费| 成人亚洲精品一区在线观看| 高清av免费在线| 丝袜在线中文字幕| 水蜜桃什么品种好| 精品人妻熟女毛片av久久网站| 色婷婷av一区二区三区视频| 777久久人妻少妇嫩草av网站| 99re6热这里在线精品视频| 精品久久久久久电影网| 欧美国产精品va在线观看不卡| 18禁国产床啪视频网站| 操出白浆在线播放| 757午夜福利合集在线观看| 亚洲av美国av| 免费不卡黄色视频| 97人妻天天添夜夜摸| 在线天堂中文资源库| av又黄又爽大尺度在线免费看| 欧美成人午夜精品| 午夜福利免费观看在线| 午夜久久久在线观看| 在线亚洲精品国产二区图片欧美| 天堂中文最新版在线下载| 国产成人av激情在线播放| 一个人免费看片子| 嫁个100分男人电影在线观看| 丰满少妇做爰视频| 久久天堂一区二区三区四区| 菩萨蛮人人尽说江南好唐韦庄| 9热在线视频观看99| 国产在线免费精品| www.精华液| 亚洲av成人不卡在线观看播放网| 老鸭窝网址在线观看| 在线观看免费高清a一片| 男女无遮挡免费网站观看| 操出白浆在线播放| 老司机在亚洲福利影院| 99在线人妻在线中文字幕 | 国产日韩一区二区三区精品不卡| 新久久久久国产一级毛片| 国产精品偷伦视频观看了| 欧美人与性动交α欧美软件| 99国产精品免费福利视频| 亚洲第一欧美日韩一区二区三区 | 国产亚洲欧美在线一区二区| 亚洲国产中文字幕在线视频| 天天躁夜夜躁狠狠躁躁| 一边摸一边抽搐一进一小说 | 色老头精品视频在线观看| 国产欧美亚洲国产| 午夜成年电影在线免费观看| www.自偷自拍.com| 最新的欧美精品一区二区| 午夜福利影视在线免费观看| 国产精品免费一区二区三区在线 | 高清毛片免费观看视频网站 | 亚洲成av片中文字幕在线观看| 日韩大片免费观看网站| 丝袜在线中文字幕| 电影成人av| 香蕉久久夜色| 深夜精品福利| 婷婷丁香在线五月| 天天躁夜夜躁狠狠躁躁| 亚洲av国产av综合av卡| 91九色精品人成在线观看| 人人妻人人爽人人添夜夜欢视频| 日韩中文字幕视频在线看片| 午夜视频精品福利| 国产精品久久久久久人妻精品电影 | 精品福利观看| 99精国产麻豆久久婷婷| 久久99热这里只频精品6学生| 一区二区日韩欧美中文字幕| 操美女的视频在线观看| 亚洲精品中文字幕在线视频| 国产精品久久久久久人妻精品电影 | 18禁观看日本| 汤姆久久久久久久影院中文字幕| 欧美国产精品va在线观看不卡| 国产亚洲欧美在线一区二区| 久久午夜综合久久蜜桃| 美女午夜性视频免费| 极品人妻少妇av视频| 亚洲精品中文字幕在线视频| 欧美精品一区二区大全| 中文字幕高清在线视频| 欧美黄色片欧美黄色片| 精品午夜福利视频在线观看一区 | av福利片在线| 天天躁日日躁夜夜躁夜夜| 在线天堂中文资源库| 伦理电影免费视频| 天天影视国产精品| 无人区码免费观看不卡 | 欧美亚洲 丝袜 人妻 在线| 欧美精品啪啪一区二区三区| 露出奶头的视频| 亚洲欧美日韩高清在线视频 | 国产成人啪精品午夜网站| 色在线成人网| 国产极品粉嫩免费观看在线| 黄网站色视频无遮挡免费观看| 精品福利永久在线观看| 又黄又粗又硬又大视频| 久久精品人人爽人人爽视色| 午夜免费鲁丝| 亚洲视频免费观看视频| 人妻久久中文字幕网| 精品人妻1区二区| 精品熟女少妇八av免费久了| 天堂俺去俺来也www色官网| 亚洲国产欧美一区二区综合| 亚洲自偷自拍图片 自拍| 色94色欧美一区二区| 黄色怎么调成土黄色| 国产免费av片在线观看野外av| 婷婷丁香在线五月| 亚洲美女黄片视频| 精品一区二区三区四区五区乱码| 免费在线观看影片大全网站| 嫁个100分男人电影在线观看| 国产精品99久久99久久久不卡| 黑丝袜美女国产一区| 一级毛片精品| 99re6热这里在线精品视频| 国产精品一区二区在线不卡| 两个人免费观看高清视频| 久久精品国产99精品国产亚洲性色 | 一级毛片精品| 天堂动漫精品| 两个人看的免费小视频| 国产不卡av网站在线观看| 国产男女内射视频| 国产真人三级小视频在线观看| 欧美黄色淫秽网站| 97在线人人人人妻| 久久久精品国产亚洲av高清涩受| 女人被躁到高潮嗷嗷叫费观| 制服诱惑二区| 亚洲欧美精品综合一区二区三区| 天堂中文最新版在线下载| 天天躁日日躁夜夜躁夜夜| videosex国产| 亚洲精品av麻豆狂野| 成年人免费黄色播放视频| 淫妇啪啪啪对白视频| 久久av网站| 最近最新中文字幕大全电影3 | 国产1区2区3区精品| 国产午夜精品久久久久久| 国产99久久九九免费精品| 欧美黄色片欧美黄色片| 制服人妻中文乱码| 考比视频在线观看| www.精华液| 国产av一区二区精品久久| 国产精品 欧美亚洲| 欧美黑人精品巨大| 多毛熟女@视频| 成年动漫av网址| 国产亚洲欧美精品永久| av在线播放免费不卡| 国产亚洲欧美精品永久| 男女无遮挡免费网站观看| 久久久国产一区二区| avwww免费| 午夜久久久在线观看| 久久久精品免费免费高清| 午夜成年电影在线免费观看| 午夜福利一区二区在线看| 国产片内射在线| 亚洲精品一二三| 两个人看的免费小视频| 美女高潮喷水抽搐中文字幕| 50天的宝宝边吃奶边哭怎么回事| 欧美黑人欧美精品刺激| 最新美女视频免费是黄的| 久久av网站| 国产成人av激情在线播放| 免费少妇av软件| 99香蕉大伊视频| 亚洲 国产 在线| 欧美成狂野欧美在线观看| 老司机深夜福利视频在线观看| 免费高清在线观看日韩| 大片免费播放器 马上看| 黄色视频,在线免费观看| 久久精品亚洲精品国产色婷小说| 中文字幕另类日韩欧美亚洲嫩草| 成人永久免费在线观看视频 | 欧美国产精品va在线观看不卡| 在线看a的网站| 9热在线视频观看99| 久久精品成人免费网站| 亚洲中文字幕日韩| 免费观看a级毛片全部| 91字幕亚洲| av片东京热男人的天堂| 丝袜喷水一区| 亚洲精品国产一区二区精华液| 国产免费av片在线观看野外av| 久久午夜综合久久蜜桃| 亚洲成av片中文字幕在线观看| 国精品久久久久久国模美| 90打野战视频偷拍视频| 美国免费a级毛片| 亚洲av日韩在线播放| 欧美日韩av久久| 桃红色精品国产亚洲av| 黄色 视频免费看| 亚洲人成伊人成综合网2020| 久久久国产欧美日韩av| 国产亚洲欧美精品永久| 一进一出好大好爽视频| 色视频在线一区二区三区| 国产欧美亚洲国产| 9191精品国产免费久久| 久久人妻熟女aⅴ| 国产精品国产高清国产av | 亚洲人成电影免费在线| 精品亚洲乱码少妇综合久久| 99热网站在线观看| 久久国产精品男人的天堂亚洲| 男女高潮啪啪啪动态图| 精品少妇黑人巨大在线播放| 热re99久久国产66热| 51午夜福利影视在线观看| 欧美日韩精品网址| 中文欧美无线码| 久久久久久久大尺度免费视频| 国产成人av教育| 欧美av亚洲av综合av国产av| √禁漫天堂资源中文www| 高清视频免费观看一区二区| 黄色毛片三级朝国网站| 久久中文字幕一级| 777久久人妻少妇嫩草av网站| 国产黄频视频在线观看| 大型黄色视频在线免费观看| 久久精品国产99精品国产亚洲性色 | 精品福利观看| 两性夫妻黄色片| 人人妻,人人澡人人爽秒播| 自拍欧美九色日韩亚洲蝌蚪91| 国产欧美日韩一区二区三| 精品国内亚洲2022精品成人 | 1024香蕉在线观看| 亚洲色图综合在线观看| 国产精品av久久久久免费| 黄色视频在线播放观看不卡| 欧美成狂野欧美在线观看| 久久精品国产a三级三级三级| 大码成人一级视频| 他把我摸到了高潮在线观看 | 十八禁网站网址无遮挡| 热re99久久国产66热| 男女下面插进去视频免费观看| 国产精品亚洲一级av第二区| 精品国产乱码久久久久久小说| 亚洲国产毛片av蜜桃av| 国产精品一区二区在线不卡| 国产精品.久久久| 亚洲一区中文字幕在线|