• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于定向變異遺傳算法的智能組卷算法研究

    2021-09-05 11:43:10胡新源趙當(dāng)麗張向波韓振興
    電子設(shè)計(jì)工程 2021年17期
    關(guān)鍵詞:約束條件適應(yīng)度算子

    胡新源,趙當(dāng)麗,李 輝,張向波,韓振興

    (1.中國(guó)科學(xué)院國(guó)家授時(shí)中心,陜西 西安 710600;2.中國(guó)科學(xué)院大學(xué),北京 100049;3.中國(guó)人民解放軍63768部隊(duì),陜西 西安 710600)

    隨著在線(xiàn)考核在現(xiàn)代教學(xué)方式中占比逐漸增大,實(shí)現(xiàn)準(zhǔn)確、高效的智能組卷算法已成為現(xiàn)代教育研究的一個(gè)熱點(diǎn)。文獻(xiàn)[1-2]對(duì)幾種智能算法應(yīng)用在組卷問(wèn)題上的性能做出了比較,目前解決組卷問(wèn)題主要依賴(lài)遺傳算法[3-4(]Genetic Algorithm,GA),但是由于組卷問(wèn)題數(shù)學(xué)模型較復(fù)雜,導(dǎo)致基于標(biāo)準(zhǔn)遺傳算法(Standard Genetic Algorithm,SGA)的組卷算法存在明顯尋優(yōu)能力弱、易早熟收斂陷入局部最優(yōu)等GA常見(jiàn)問(wèn)題。文獻(xiàn)[5]根據(jù)組卷約束條件人為選取初始種群,提高初始種群的適應(yīng)度。文獻(xiàn)[6-8]提出混合遺傳算法以提升算法性能,文獻(xiàn)[9]提出一種自適應(yīng)遺傳算法(Adaptive Genetic Algorithm,AGA),通過(guò)自適應(yīng)調(diào)整交叉變異概率提升組卷效率。但是以上優(yōu)化對(duì)于遺傳算法的性能提升均有限。文獻(xiàn)[10]提出一種定向變異遺傳算法(Directional Variation Genetic Algorithm,DVGA)的思想,對(duì)算法性能提升取得較好的效果。為進(jìn)一步改善GA的尋優(yōu)能力,該文基于以上研究基礎(chǔ),結(jié)合組卷模型進(jìn)一步加強(qiáng)算法的定向?qū)?yōu)能力,同時(shí)降低了組卷時(shí)間,具有良好的性能。

    1 智能組卷數(shù)學(xué)模型構(gòu)建

    組卷算法的目的在于根據(jù)給出的限制條件,從題庫(kù)中自動(dòng)抽選符合條件的試題組卷,其數(shù)學(xué)本質(zhì)是在多維約束條件下求全局最優(yōu)解問(wèn)題[11],。解決此類(lèi)問(wèn)題需要確定一個(gè)目標(biāo)函數(shù)及多個(gè)約束條件,在組卷問(wèn)題中,約束條件即為題目的各項(xiàng)屬性,因此每道試題可以通過(guò)一維向量Q=(a1,a2,a3,…,an)來(lái)描述,n表示每道試題需要被約束的屬性總數(shù)。包含m道試題的題庫(kù)則構(gòu)成一個(gè)m×n的矩陣D[12],如下所示:

    組卷的過(guò)程即為從題庫(kù)矩陣D中選取一個(gè)滿(mǎn)足各約束條件的子集矩陣的過(guò)程,該組卷模型將以難度、章節(jié)、曝光時(shí)間、題型、分?jǐn)?shù)5個(gè)屬性作為約束條件,各屬性約束和目標(biāo)函數(shù)的選取如下所示。

    1)難度:試卷的難度約束應(yīng)為試卷各試題的平均難度,用于區(qū)分考生水平。

    式(2)中,ai1表示第i題的難度值,d表示預(yù)期的試卷整體難度,n表示該試卷中題目總數(shù)。

    2)章節(jié):章節(jié)用于約束試卷考察知識(shí)范圍,需對(duì)試卷逐題判斷是否屬于目標(biāo)章節(jié)。

    式(3)中,ai2代表第i題的考察章節(jié),S代表指定的章節(jié)范圍。

    3)曝光時(shí)間:曝光時(shí)間表示該題目距離上次被抽取用于組卷的間隔時(shí)長(zhǎng),需逐題判斷,用于避免題目頻繁出現(xiàn)。

    式(4)中,ai3表示第i題的曝光時(shí)間,T代表最低未被組卷使用的間隔次數(shù)。

    4)題型:通常試卷的題型結(jié)構(gòu)是固定且可枚舉的,需逐題判斷整卷的各題型是否符合指定數(shù)量。

    式(5)中,t代表試卷中總題型數(shù),tn代表每個(gè)題型的預(yù)設(shè)數(shù)量,tj為形如f2的函數(shù),用于統(tǒng)計(jì)試卷中各題型數(shù)量,tj中以ai4代表第i題的題型。

    5)分?jǐn)?shù):分?jǐn)?shù)屬性需要統(tǒng)計(jì)整卷所有試題分?jǐn)?shù)求和,且應(yīng)允許一定的誤差。

    式(6)中,ai5代表第i題分?jǐn)?shù),其中P為預(yù)設(shè)試卷總分?jǐn)?shù),δ為可接受的誤差范圍。

    2 基于遺傳算法的組卷

    GA被廣泛應(yīng)用在組卷問(wèn)題中,具體思路為:針對(duì)組卷問(wèn)題進(jìn)行基因編碼、適應(yīng)度函數(shù)的設(shè)計(jì),選取合適的遺傳算子后即可抽取一定數(shù)量的試卷作為初始種群,進(jìn)行選擇交叉變異,直到種群中最優(yōu)個(gè)體滿(mǎn)足指定條件。種群中最優(yōu)個(gè)體即為滿(mǎn)足約束的目標(biāo)試卷。

    2.1 基因編碼

    GA中種群中的個(gè)體需用基因編碼表示,通常采用二進(jìn)制編碼來(lái)描述個(gè)體[13]。當(dāng)應(yīng)用在組卷問(wèn)題時(shí),個(gè)體的基因編碼即為試卷所包含的試題編號(hào),若采用二進(jìn)制編碼時(shí),題庫(kù)中的每個(gè)題都需要出現(xiàn)在編碼中,極大地浪費(fèi)了編碼效率。其次,在每次交叉變異的過(guò)程中需對(duì)試題題型進(jìn)行判斷,引入了大量計(jì)算。文獻(xiàn)[14]提出一種實(shí)數(shù)分段式編碼,以試題編號(hào)實(shí)數(shù)為基因,按試題題型分段編碼,如下所示。

    式(7)中,Qi表示試卷中的第i種題型,共計(jì)t種題型,每種題型ni道。采用實(shí)數(shù)分段式編碼時(shí),基因編碼長(zhǎng)度僅為試卷試題總數(shù),極大提升了編碼效率,且各題型在試卷染色體中位置固定,因此在交叉操作中可省略對(duì)題型的判斷[15],如圖1所示。

    圖1 采用實(shí)數(shù)分段式編碼的交叉操作

    2.2 適應(yīng)度函數(shù)

    適應(yīng)度函數(shù)用來(lái)評(píng)判個(gè)體的優(yōu)劣性,應(yīng)滿(mǎn)足單值、非負(fù)及合理反映個(gè)體優(yōu)劣程度等要求,根據(jù)已建立的組卷模型可知適應(yīng)度應(yīng)為各項(xiàng)約束條件求加權(quán)和。

    上式中,c用于保證目標(biāo)函數(shù)的非負(fù)性,ωi表示各項(xiàng)約束條件在目標(biāo)函數(shù)中的權(quán)重。其中,。

    2.3 初始種群選取

    根據(jù)已建立的組卷模型可知,組卷約束條件分為難度、題型、分?jǐn)?shù)等需要統(tǒng)計(jì)整卷判斷和章節(jié)、曝光時(shí)間等逐題判斷兩種類(lèi)型。由于目標(biāo)試卷中每道試題必定滿(mǎn)足第二類(lèi)需逐題判斷的約束條件,因此當(dāng)確定約束條件后,可根據(jù)指定的章節(jié)及曝光時(shí)間對(duì)題庫(kù)進(jìn)行篩選形成基因庫(kù)G。結(jié)合編碼結(jié)構(gòu)的題型設(shè)置,從中抽取一定數(shù)量的試卷作為初始種群,可使得初始種群有一個(gè)較高的適應(yīng)度,加速算法收斂。

    2.4 遺傳算子設(shè)計(jì)

    GA中的遺傳算子分為選擇算子、交叉算子、變異算子三部分。

    選擇算子控制著進(jìn)化過(guò)程中的篩選作用,為了符合優(yōu)勝劣汰的規(guī)律同時(shí)又不喪失種群物種多樣性,通常采用輪盤(pán)賭方法。同時(shí)為了避免最優(yōu)個(gè)體在進(jìn)化過(guò)程中丟失,采用精英策略保留當(dāng)代最優(yōu)個(gè)體,使最優(yōu)個(gè)體無(wú)需經(jīng)過(guò)選擇交叉及變異直接進(jìn)入下一代。

    交叉算子用于模擬種群進(jìn)化過(guò)程中的繁衍過(guò)程,通常采用單點(diǎn)交叉的方式,通過(guò)選擇算子選取父母?jìng)€(gè)體以交叉概率Pc進(jìn)行交叉。

    變異算子用來(lái)模擬種群進(jìn)化過(guò)程中個(gè)體產(chǎn)生基因突變的情況,用于維持種群的多樣性,決定了算法的搜索能力,通常采用單點(diǎn)變異,種群中個(gè)體以概率Pm進(jìn)行變異,由于組卷模型存在題型約束,因此變異結(jié)果應(yīng)從同題型試題中抽取。

    2.5 終止條件

    組卷即為求適應(yīng)度函數(shù)最大值的過(guò)程,當(dāng)種群中最優(yōu)個(gè)體達(dá)到指定要求或達(dá)到指定的進(jìn)化次數(shù)后停止進(jìn)化,最優(yōu)個(gè)體即為滿(mǎn)足預(yù)設(shè)目標(biāo)的試卷。

    3 基于定向變異遺傳算法的組卷

    3.1 遺傳算子的改進(jìn)

    GA中交叉概率Pc和變異概率Pm對(duì)于算法尋優(yōu)能力和收斂速度有著重要影響,自AGA被提出以來(lái),眾多優(yōu)秀的改進(jìn)自適應(yīng)遺傳算法陸續(xù)被提出[16],該文采用基于Sigmoid曲線(xiàn)改進(jìn)的自適應(yīng)遺傳算子來(lái)進(jìn)一步提升算法尋優(yōu)能力。

    上式中,A=9.903 438,Pcmax、Pcmin表示交叉概率最大值及最小值,Pmmax、Pmmin表示變異概率最大值及最小值,f′表示進(jìn)行交叉的父母?jìng)€(gè)體中較大的適應(yīng)度,favg表示當(dāng)代種群平均適應(yīng)度,fmax表示當(dāng)代種群最大適應(yīng)度,f表示發(fā)生變異個(gè)體的適應(yīng)度。

    3.2 變異操作的改進(jìn)

    根據(jù)前文實(shí)數(shù)分段式編碼結(jié)構(gòu)及GA流程可知,在一次完整的組卷過(guò)程中,交叉操作只會(huì)改變各試卷的試題組合,而不會(huì)從總題庫(kù)中抽取新的試題,僅在變異操作過(guò)程中會(huì)引入新的試題。因此,從基因庫(kù)G中抽取試題作為變異結(jié)果,可確保由變異操作產(chǎn)生的新試題,在章節(jié)及曝光時(shí)間等需逐題判斷的約束條件下直接滿(mǎn)足目標(biāo)。且由于初始種群也在基因庫(kù)G中選取,因此在一次完整的組卷過(guò)程中,種群個(gè)體的基因即各試題始終滿(mǎn)足章節(jié)及曝光時(shí)間等需逐題判斷的約束條件,適應(yīng)度函數(shù)中關(guān)于章節(jié)及曝光時(shí)間的權(quán)重系數(shù)ω2、ω3可置為0,從而可以使得該組卷模型從五維約束條件簡(jiǎn)化為三維約束條件。

    由于GA基于優(yōu)勝劣汰的法則,當(dāng)種群進(jìn)化到中后期往往存在嚴(yán)重同化現(xiàn)象即陷入局部最優(yōu),此時(shí)由于種群同化嚴(yán)重,交叉操作已幾乎不能產(chǎn)生新試卷個(gè)體,主要依賴(lài)變異產(chǎn)生優(yōu)良試卷個(gè)體跳出局部最優(yōu),而隨機(jī)變異會(huì)使得種群在長(zhǎng)時(shí)間內(nèi)無(wú)法跳出局部最優(yōu)。因此需對(duì)變異方向加以控制,使其只能朝著更優(yōu)定向變異。定向變異是指當(dāng)發(fā)生變異時(shí),計(jì)算發(fā)生變異個(gè)體變異前的適應(yīng)度f(wàn)(x)與變異后的適應(yīng)度f(wàn)′(x),僅當(dāng)f(x)

    基于以上約束目標(biāo)屬性及適應(yīng)度的DVGA的組卷算法,不僅縮小了組卷過(guò)程尋優(yōu)的搜索空間,同時(shí)還限定了變異方向,使得個(gè)體只能朝著全局最優(yōu)發(fā)生變異,種群更易跳出局部最優(yōu),極大地提升了算法的尋優(yōu)能力,同時(shí)簡(jiǎn)化了組卷過(guò)程的計(jì)算量,從而提升了組卷效率。

    3.3 改進(jìn)遺傳算法

    基于上述對(duì)遺傳算子和變異操作過(guò)程的改進(jìn),可得到基于DVGA的組卷算法流程如圖2所示。

    圖2 基于DVGA的組卷算法流程

    4 仿真驗(yàn)證

    為了驗(yàn)證文中提出的基于DVGA的組卷算法對(duì)組卷性能的提升,進(jìn)行如下實(shí)驗(yàn),設(shè)置參數(shù)如表1所示。

    表1 參數(shù)設(shè)置

    結(jié)合上述流程圖進(jìn)行編程仿真,可以得到在相同條件下,各算法最大適應(yīng)度如圖3所示。

    圖3 3種算法種群最大適應(yīng)度比較

    同時(shí),以表1條件進(jìn)行20次試驗(yàn),分別對(duì)SGA、AGA、DVGA平均組卷準(zhǔn)確率、收斂代數(shù)及運(yùn)行時(shí)間進(jìn)行比較,可得到表2及圖4結(jié)果。

    表2 3種算法組卷準(zhǔn)確率比較

    圖4 3種算法收斂代數(shù)及算法耗時(shí)

    從圖3可以看出,該文提出的DVGA相比于A(yíng)GA及SGA,具有更強(qiáng)的尋優(yōu)及跳出局部最優(yōu)的能力。表2及圖4表明,該文提出的DVGA準(zhǔn)確率及組卷效率相較于SGA及AGA均取得較大的提升。

    5 結(jié)束語(yǔ)

    智能組卷問(wèn)題本質(zhì)是對(duì)多約束多目標(biāo)的問(wèn)題尋求最優(yōu)解。該文充分利用組卷模型中約束條件的特性,優(yōu)先篩選出帶有部分最優(yōu)特性的優(yōu)良基因庫(kù),使變異從中產(chǎn)生且定向只可朝著最優(yōu)變異,極大地縮短了組卷時(shí)間,提高了組卷效率。

    猜你喜歡
    約束條件適應(yīng)度算子
    改進(jìn)的自適應(yīng)復(fù)制、交叉和突變遺傳算法
    基于一種改進(jìn)AZSVPWM的滿(mǎn)調(diào)制度死區(qū)約束條件分析
    擬微分算子在Hp(ω)上的有界性
    各向異性次Laplace算子和擬p-次Laplace算子的Picone恒等式及其應(yīng)用
    一類(lèi)Markov模算子半群與相應(yīng)的算子值Dirichlet型刻畫(huà)
    A literature review of research exploring the experiences of overseas nurses in the United Kingdom (2002–2017)
    Roper-Suffridge延拓算子與Loewner鏈
    線(xiàn)性規(guī)劃的八大妙用
    基于空調(diào)導(dǎo)風(fēng)板成型工藝的Kriging模型適應(yīng)度研究
    少數(shù)民族大學(xué)生文化適應(yīng)度調(diào)查
    唐山市| 黑山县| 集贤县| 马龙县| 右玉县| 临泉县| 东兴市| 涪陵区| 长顺县| 利辛县| 鸡泽县| 高密市| 海门市| 平阳县| 黄石市| 于田县| 恩施市| 南川市| 平南县| 双牌县| 屯门区| 惠安县| 永靖县| 墨玉县| 塔河县| 长垣县| 张家港市| 海晏县| 余姚市| 南漳县| 二连浩特市| 卫辉市| 华蓥市| 府谷县| 鸡泽县| 宣城市| 潞西市| 阿克陶县| 东乡| 平谷区| 紫云|