羅 路,鄧劍平,羅凌聰,陳婷婷,范毜仔,2,趙偉剛
豆殼基炭材料的響應(yīng)面優(yōu)化設(shè)計(jì)及電化學(xué)特性
羅 路1,鄧劍平1,羅凌聰1,陳婷婷1,范毜仔1,2,趙偉剛1※
(1. 福建農(nóng)林大學(xué)材料工程學(xué)院,福州 350018;2. 英國(guó)布魯內(nèi)爾大學(xué)土木工程學(xué)院,英國(guó)倫敦 UB8 3PH)
為了滿足人們對(duì)新型儲(chǔ)能設(shè)備的需求,以生物質(zhì)尤其是農(nóng)林廢棄物基炭材料作為電極材料的超級(jí)電容器備受關(guān)注。該研究以農(nóng)業(yè)廢棄物材料刀豆殼作為前驅(qū)體,采用KOH活化方法制備高比面積活性炭并作為超級(jí)電容器電極材料。以材料比電容為響應(yīng)值,活化溫度和活化比例為試驗(yàn)因素,采用中心復(fù)合設(shè)計(jì)方法(CCD,Central Composite Design)進(jìn)行響應(yīng)面優(yōu)化研究,并探究在最佳工藝條件下制備的活性炭的電化學(xué)性能。研究結(jié)果表明:活化溫度和活化比例對(duì)刀豆殼活性炭材料的比電容均具有顯著影響。優(yōu)化得到的最優(yōu)工藝參數(shù)為活化溫度694 ℃,活化比例4.17∶1。驗(yàn)證試驗(yàn)得到刀豆殼活性炭材料的平均比電容為254 F/g,與預(yù)測(cè)值基本吻合。同時(shí)對(duì)活性炭進(jìn)行了性能表征,采用掃描電鏡(SEM,Scanning Electron Microscope)和透射電鏡(TEM,Transmission Electron Microscope)觀察活性炭的形貌特征,通過(guò)氮?dú)馕?脫附測(cè)試研究了炭材料的孔隙結(jié)構(gòu),結(jié)果表明:刀豆殼活性炭材料表面分布大量納米孔,最大比表面積可達(dá)3 129 m2/g,總孔容達(dá)1.68 cm3/g,微孔孔容達(dá)0.96 cm3/g,有利于電解液流通和電解質(zhì)離子吸附。
比表面積;活性炭;響應(yīng)面;KOH活化;刀豆殼;超級(jí)電容器
隨著工業(yè)的發(fā)展和人民生活水平的提高,對(duì)能源的需求也越來(lái)越大。近幾十年來(lái)所使用的能源主要來(lái)自儲(chǔ)量有限的傳統(tǒng)化石燃料,不可避免地會(huì)對(duì)環(huán)境造成污染[1]。因此,尋找可再生的綠色能源迫在眉睫。同時(shí),開(kāi)發(fā)可持續(xù)能源存儲(chǔ)設(shè)備也是未來(lái)能源儲(chǔ)備中不可替代的組成部分[2]。
超級(jí)電容器是一種介于傳統(tǒng)電容器與電池之間的新型儲(chǔ)能裝置,因具有充放電速度快、穩(wěn)定性好、功率密度高和使用壽命長(zhǎng)等優(yōu)勢(shì)而受到了廣泛關(guān)注[3-4]。超級(jí)電容器是生物質(zhì)能源材料在儲(chǔ)能材料領(lǐng)域的重要應(yīng)用之一[3]。經(jīng)研究表明,具有大比表面積和孔隙率的活性炭在電解液中吸附離子,可以在炭材料和電解液的界面上形成電雙層[5]。為滿足新時(shí)代對(duì)儲(chǔ)能材料的需求,各種各樣的生物質(zhì)和農(nóng)業(yè)廢棄物被用作制備超級(jí)電容器電極材料的炭前驅(qū)體:豆殼[6]、竹子[7]、杉木樹(shù)皮[8]、稻殼[9]、玉米芯[10]等。同時(shí),雜原子如B[11],N[12],P[13]等可以通過(guò)氧化還原反應(yīng)提供贗電容,在炭材料中引入雜原子是提高炭材料比電容的有效方法。因此,開(kāi)發(fā)具有官能團(tuán)豐富、比表面積大、孔隙率高的功能炭材料作為超級(jí)電容器的優(yōu)良電極材料具有重要意義。
中國(guó)每年產(chǎn)生大量的農(nóng)業(yè)廢棄物,但以刀豆殼作為超級(jí)電容器材料前驅(qū)體的研究還未見(jiàn)報(bào)道。刀豆是豆科植物,生長(zhǎng)較快,由于其固氮能力[14],常被用作綠肥和覆蓋作物。因此,刀豆殼不僅是一種性價(jià)比高、產(chǎn)量大的農(nóng)業(yè)廢棄物,而且富含氮和氧,是制備雜原子自摻雜生物質(zhì)基活性炭的潛在原料。本研究以刀豆殼作為前驅(qū)體,通過(guò)KOH活化,合成了具有高度發(fā)達(dá)的孔隙結(jié)構(gòu)的生物質(zhì)基活性炭材料。采用響應(yīng)面法研究活化溫度和活化比例與比電容值之間的關(guān)系,建立多元二次回歸方程模型來(lái)進(jìn)行擬合分析,并最終獲得最優(yōu)的工藝參數(shù)。
刀豆殼廢棄物作為炭前驅(qū)體,購(gòu)于湖北省。用自來(lái)水清洗刀豆殼去除雜質(zhì),然后將刀豆殼在50 ℃的鼓風(fēng)烘箱中放置3 d以去除水分,剪碎備用。
氫氧化鉀(KOH,85%)和鹽酸(HCl,36%~38%),購(gòu)自上海阿拉丁生物化學(xué)有限公司;聚偏二氟乙烯(PVDF,Polyvinylidene Fluoride)、泡沫鎳、乙炔黑購(gòu)于賽博電化學(xué)材料網(wǎng);N-甲基吡咯烷酮(NMP,N-methylpyrrolidone)購(gòu)于天津市致遠(yuǎn)化學(xué)試劑有限公司。
將曬干的刀豆殼剪碎裝進(jìn)瓷坩堝中,然后將其置于500 mL/min氮?dú)猸h(huán)境下的馬弗爐,以5 ℃/min的升溫速率從室溫升至450℃,并恒溫1 h。冷卻至室溫后,將刀豆殼炭(Bean shell Charcoal,DC)研磨粉碎均勻。稱取2 g DC置于鎳坩堝中,再按堿炭比(KOH/DC,下文稱活化比例)為2、4、6,稱取一定質(zhì)量的KOH,將KOH和DC混合均勻后置于氮?dú)馑俾蕿?00 mL/min的馬弗爐中,以3 ℃/min的升溫速率從室溫升至600~800 ℃并保持目標(biāo)溫度2 h。冷卻至室溫后,用1 M HCl清洗所制得的樣品以除去鉀離子,用蒸餾水反復(fù)清洗數(shù)次直至中性。將獲得的的刀豆殼基活性炭DAC放入鼓風(fēng)干燥箱中干燥24 h。所有樣品貼上標(biāo)簽DACx-yy,其中x表示堿炭比(活化比例),yy表示活化溫度,例如DAC4-700 表示活化比例為4,活化溫度為700 ℃。
1.3.1 刀豆殼活性炭的孔結(jié)構(gòu)和表面形貌分析
采用全自動(dòng)物理吸附儀(ASAP 2020 HD88,麥克公司,美國(guó))對(duì)樣品孔隙結(jié)構(gòu)進(jìn)行表征,將樣品首先于250 ℃條件下進(jìn)行脫氣20 h,然后進(jìn)行液氮溫度下的氮?dú)馕摳降葴鼐€測(cè)試,根據(jù)BET模型計(jì)算活性炭的比表面積(BET),通過(guò)密度泛函理論(DFT,Density Functional Theory)計(jì)算活性炭的孔徑分布[15-16]。利用掃描電鏡(Scanning Electron Microscope,SEM,S-3400,日立公司,日本)和透射電鏡(Transmission Electron Microscope,TEM,JEM-2100UHR,日本)分析刀豆殼基活性炭的形貌變化。
1.3.2 刀豆殼活性炭的電化學(xué)特性
將制備得到的刀豆殼基活性炭材料與乙炔黑、聚偏二氟乙烯(PVDF,Polyvinylidene Fluoride)按質(zhì)量比8∶1∶1混合,研磨均勻,加入N-甲基吡咯烷酮(NMP,N-methyl Pyrrolidone)分散劑,經(jīng)過(guò)超聲分散10 min得到均勻的漿料,將漿料涂覆在1 cm×2 cm的泡沫鎳上,并置于85 ℃的烘箱干燥6 h,即得到超級(jí)電容器工作電極。以6 mol/L KOH為電解液組成三電極測(cè)試裝置用于分析刀豆殼基活性炭材料的各項(xiàng)電化學(xué)性能。用ENNIUM電化學(xué)工作站完成工作電極在三電極體系下的各項(xiàng)測(cè)試,包括恒電流充放電(GCD,Galvanostatic Charge-Discharge)、循環(huán)伏安曲線(CV,Cyclic Voltammenty)和交流阻抗特性(EIS,Electrochemical Impedance Spectroscopy)。其中恒流充放電電勢(shì)窗口為-1~0 V,電流密度為1~20 A/g;循環(huán)伏安測(cè)試電勢(shì)窗口為-1~0 V,掃描速率為2~100 mV/s;交流阻抗測(cè)試在開(kāi)路電壓5 mV下進(jìn)行,頻率區(qū)間為10 mHz~100 kHz。采用鉑片為對(duì)電極,汞?氧化汞電極為參比電極。材料的比電容通過(guò)恒流放電曲線計(jì)算,計(jì)算公式如下[17]:
=·Δ/(·Δ) (1)
式中是電極的質(zhì)量比電容,F(xiàn)/g;是恒定放電電流,A;Δ是放電時(shí)間,s;是活性物質(zhì)的負(fù)載量,g;Δ是放電電勢(shì)窗口,V。
以活化溫度和活化比例為試驗(yàn)因素,質(zhì)量比電容為響應(yīng)值,利用軟件Design-Expert 12進(jìn)行中心復(fù)合設(shè)計(jì)和響應(yīng)面分析設(shè)計(jì),選用2因素3階=13試驗(yàn),中心點(diǎn)重復(fù)次數(shù)為5次(如表1所示)。對(duì)所得模型進(jìn)行方差分析從而確定模型和回歸系數(shù)的顯著性。同時(shí)對(duì)優(yōu)化后的工藝參數(shù)進(jìn)行試驗(yàn)驗(yàn)證。
表1 響應(yīng)面分析的因素水平表
圖1a所示為刀豆殼基多孔炭材料的氮?dú)馕摳角€,在相對(duì)壓力非常低時(shí)(0< 0.05),N2吸附量急劇增加;隨著壓力升高,N2吸附趨勢(shì)趨于平緩,沒(méi)有吸附-脫附滯后回環(huán)。根據(jù)IUPAC分類,刀豆殼基活性炭材料的N2吸附-脫附等溫線為I型,說(shuō)明炭材料中存在大量微孔[18]。眾所周知,不同的前驅(qū)體對(duì)材料最終的孔隙結(jié)構(gòu)具有決定性的影響,同時(shí)也將影響其制備工藝參數(shù)的選擇和優(yōu)化[19-20]。根據(jù)BET模型計(jì)算炭材料的比表面積,最高可達(dá)3 129 m2/g,最大孔容可達(dá)1.68 cm3/g,詳細(xì)的孔隙結(jié)構(gòu)參數(shù)如表2所示。從表2可以看出,炭材料的比表面積隨著活化溫度和活化比例的升高而增大,同時(shí)總孔容也有相似的趨勢(shì)。這是由于增加活化劑并提高活化溫度,可以促進(jìn)造孔和擴(kuò)孔作用,使比表面積,孔容和平均孔徑增大。同時(shí),擴(kuò)孔作用使微孔數(shù)量不斷減小,但所有樣品的微孔比例都保持在50%以上。圖1b顯示了樣品的孔徑分布曲線,不同溫度的炭材料具有相似的孔徑分布曲線。從圖1b可以看出,刀豆殼基活性炭材料的孔徑主要分布在0.5 nm到4 nm之間,同時(shí)存在微孔和孔徑較小的介孔,有利于電解質(zhì)離子的傳輸和吸附[19-20]。
表2 樣品的孔結(jié)構(gòu)參數(shù)
注:DACx-yy,其中x表示堿炭比(活化比例),yy表示活化溫度,下同。
Note:DACx-yy, where x represents alkali-carbon ratio (activation ratio) and yy represents activation temperature, the same below.
利用掃描電鏡觀察刀豆殼基炭材料DAC4-700的表面形貌,如圖2a所示,刀豆殼基炭材料表面上有許多孔,大孔壁上形成小孔,開(kāi)孔率高,孔與孔之間相互連通,這有助于電解質(zhì)離子的傳輸,同時(shí)能使電解質(zhì)離子很好的擴(kuò)散進(jìn)入到內(nèi)部微孔中,提高微孔利用率[21]。為了進(jìn)一步研究刀豆殼基炭材料的形態(tài),使用透射電鏡觀察孔結(jié)構(gòu),如圖2b所示。從圖2b中可以觀察到大量的納米孔,這與SEM與氮?dú)獾奈摳浇Y(jié)果一致。
基于表1的試驗(yàn)設(shè)計(jì),由Design-Expert 12設(shè)計(jì)得到的具體的試驗(yàn)設(shè)計(jì)方案見(jiàn)表3。以活化溫度,活化比例為試驗(yàn)因素,以電流密度1 A/g條件下的質(zhì)量比電容為響應(yīng)值,對(duì)其進(jìn)行擬合并建立二次方程式的回歸模型,其模型為
=-3 148.488 51+160.061 78+8.852 24+0.026 25-
2 1.387 932-0.006 4552(2)
對(duì)其進(jìn)行方差分析,結(jié)果如表4所示。模型值為65.06,概率值小于 0.000 1,表示本試驗(yàn)所選取的模型顯著性極好,說(shuō)明此方法可信度較高,對(duì)真實(shí)的兩因素三水平試驗(yàn)用該模擬方程來(lái)描述是可行的。同時(shí),該二次多項(xiàng)式回歸模型中,2和2的值小于0.000 1,說(shuō)明這2項(xiàng)對(duì)刀豆殼活性炭比電容的響應(yīng)值影響極顯著。模型的校正決定系數(shù)2=97.54%,修正系數(shù)為95.78%,均大于95%,表明線性關(guān)系良好,說(shuō)明使用該模型可以較好的預(yù)測(cè)刀豆殼基活性炭的比電容值,且預(yù)測(cè)值與實(shí)測(cè)值之間的相關(guān)性非常高,試驗(yàn)過(guò)程中的誤差極小[22-23]。需要指出的是,失擬值可以評(píng)估模型的擬合度,對(duì)于刀豆殼基活性炭比電容的回歸方程模型,值為0.075,大于0.05的水平,說(shuō)明模型失擬不顯著,證明該模型與數(shù)據(jù)擬合度良好。
表3 CCD試驗(yàn)設(shè)計(jì)及結(jié)果
活化比例與活化溫度對(duì)比電容的響應(yīng)面結(jié)果如圖3所示,刀豆殼基活性炭的比電容隨著活化比例和活化溫度的升高而增加。當(dāng)活化比例固定時(shí),比電容隨著活化溫度的升高先上升后下降,在700℃左右達(dá)到峰值,隨著活化溫度的進(jìn)一步升高,比電容呈現(xiàn)下降的趨勢(shì)。這是因?yàn)樵诟邷貤l件下KOH能有效地與刀豆殼中的碳進(jìn)行反應(yīng),使物料內(nèi)部不斷發(fā)生開(kāi)孔和擴(kuò)孔,最終形成具有發(fā)達(dá)孔隙結(jié)構(gòu)的活性炭[24-25]。但是當(dāng)活化溫度過(guò)高時(shí),碳骨架遭到過(guò)渡刻蝕,微孔不斷向中孔和大孔轉(zhuǎn)變,同時(shí)會(huì)導(dǎo)致部分孔隙坍塌破壞,不利于電解液離子的吸附,從而導(dǎo)致比電容的降低[26]。當(dāng)反應(yīng)溫度固定時(shí),比電容隨著活化比例的增大先增大后趨于緩和。在活化比例為4時(shí),比電容達(dá)到最大值。當(dāng)活化比例進(jìn)一步增大,活性炭燒失率也隨之增大,樣品得率下降明顯,同時(shí)炭骨架內(nèi)部孔隙結(jié)構(gòu)發(fā)展到一定程度后,由原來(lái)孔的加深變?yōu)榭椎耐貙?,使一部分微孔轉(zhuǎn)化成中孔和大孔,從而降低了炭材料的比表面積,同時(shí)減少了炭材料對(duì)電解液離子的吸附位點(diǎn)數(shù)量,導(dǎo)致比電容降低[12]。
表4 活性炭比電容的回歸方程方差分析
注:顯著性檢驗(yàn)采用最小顯著差法:*差異顯著,<0.05,**差異高度顯著,<0.01,***差異極顯著,<0.001。
Note: The significance test was performed using the minimum significant difference method: * significant difference,< 0.05, ** highly significant difference,< 0.01, *** very significant difference,< 0.001.
將表2中材料的孔隙結(jié)構(gòu)和表3中材料比電容的數(shù)據(jù)進(jìn)行分析可知,材料的比電容雖然會(huì)受孔隙結(jié)構(gòu)的影響,但是二者之間卻沒(méi)有明顯的線性關(guān)系,是受比表面積、孔容大小和孔徑分布等多因素的共同影響和作用[8]。Hao等人報(bào)道指出,多孔材料中,只有尺寸接近電解質(zhì)離子的尺寸的孔徑能發(fā)揮出材料的最佳性能[27]。同時(shí)還需要指出的是,刀豆殼作為活性炭材料制備的前驅(qū)體,其含有較為豐富的氮、氧等雜原子,所以經(jīng)過(guò)不同的活化溫度和活化比例處理后,材料最終的雜原子含量也會(huì)影響材料最終的比電容大小,所以關(guān)于材料的電化學(xué)特性與孔隙結(jié)構(gòu)以及雜原子含量之間的定量的研究還需進(jìn)一步的探究,這也將是炭材料作為超級(jí)電容器電極材料研究的重點(diǎn)。
通過(guò)上述方程對(duì)刀豆殼基活性炭的比電容值進(jìn)行預(yù)測(cè),優(yōu)化得到的最佳活性炭制備條件為:活化溫度694 ℃,活化比例4.17。在此制備條件下,預(yù)測(cè)的比電容值為261 F/g。為了驗(yàn)證模型和響應(yīng)面分析試驗(yàn)數(shù)據(jù)的準(zhǔn)確性和可靠性,采用優(yōu)化的制備工藝進(jìn)行試驗(yàn),其實(shí)際的比電容值見(jiàn)表5。進(jìn)行3次平行試驗(yàn)取平均值,得到刀豆殼活性炭的比電容為254 F/g,與預(yù)測(cè)值相差僅2.68 %,可知試驗(yàn)結(jié)果與預(yù)測(cè)值相符,該模型預(yù)測(cè)結(jié)果可靠。表5優(yōu)化工藝條件下制備的刀豆殼基活性炭的循環(huán)伏安曲線(CV),恒流充放電曲線(GCD)和交流阻抗曲線(Electrochemical Impedance Spectroscopy,EIS)分別如圖 4a、4b和4c所示,同時(shí)為了便于比較,分別加入了不同的活化溫度和活化比例的刀豆殼基活性炭作為比較。從圖4a和4b可以觀察到,不同條件下制備的刀豆殼基活性炭和優(yōu)化后的活性炭的CV和GCD曲線形狀相似且分別呈現(xiàn)出準(zhǔn)矩形和偏離線性的近三角形形狀,均表現(xiàn)出良好的電容性能。圖4c顯示了不同樣品的交流阻抗曲線圖,在低頻區(qū)近似垂直的斜線表明電極/電解液界面良好的離子擴(kuò)散能力[28-29]。從圖中可以看出,不同樣品的斜率相近,表明樣品都具有較好的離子擴(kuò)散能力。高頻區(qū)軸截距與電極材料的內(nèi)阻(Rs)有關(guān),從圖中可以看出,所有樣品的內(nèi)阻都很低(<1 Ω),說(shuō)明不同的制備工藝條件下制得的樣品均具有良好的電子導(dǎo)電性[30]。圖 4d顯示了優(yōu)化的活性炭在不同掃描速率下的CV曲線,從圖中可以看出,CV曲線擁有良好的對(duì)稱性并呈類矩形,表明樣品具有良好的雙電層電容特性;當(dāng)掃描速率從2 mV/s增大到100 mV/s時(shí),CV曲線仍能保持良好的對(duì)稱性和類矩形形狀,表明其具有快速的離子響應(yīng)速率以及良好的倍率性能。圖4e顯示了優(yōu)化的刀豆殼基活性炭在不同電流密度下的GCD曲線,從圖中可以看出,GCD曲線不存在明顯電壓降,表明炭材料具有較小的內(nèi)部電阻。同時(shí),不同的電流密度下的GCD曲線均呈現(xiàn)良好的對(duì)稱性和線性,表明刀豆殼基活性炭具有良好的電化學(xué)可逆性[31]。圖4f所示為優(yōu)化的活性炭在不同電流密度下的質(zhì)量比電容值,在1 A/g時(shí)的最大比電容為254 F/g,當(dāng)電流密度增大到20 A/g時(shí),其比電容保持率高達(dá)70.8%,倍率性能優(yōu)異。將此優(yōu)化的活性炭的比電容結(jié)果與公開(kāi)發(fā)表的文獻(xiàn)進(jìn)行比較,見(jiàn)表6,可以發(fā)現(xiàn),刀豆殼基活性炭表現(xiàn)出了非常優(yōu)異的電化學(xué)性能,其質(zhì)量比電容明顯較高。同時(shí)對(duì)比也可發(fā)現(xiàn),納米炭材料作為超級(jí)電容器的電極材料,其比電容值的大小并未隨著比表面積的增大而增大,二者之間沒(méi)有必然的線型關(guān)系。刀豆殼基活性炭良好的電化學(xué)性能不僅來(lái)自于其較大的比表面積和孔容大小,更與其孔徑大小和分布等密切相關(guān)[6-7]。
表5 刀豆殼活性炭的工藝參數(shù)優(yōu)化和試驗(yàn)驗(yàn)證結(jié)果
1)以農(nóng)業(yè)廢棄物刀豆殼為前驅(qū)體,采用低溫炭化和KOH高溫活化兩步法,成功制備了具有高比表面積和孔容的活性炭并應(yīng)用于超級(jí)電容器電極材料。
2)通過(guò)SEM和TEM分析刀豆殼基活性炭的微觀形貌,發(fā)現(xiàn)活性炭表面分布著大量相互連通的孔隙結(jié)構(gòu),開(kāi)孔率高。通過(guò)氮?dú)馕?脫附測(cè)試活性炭的孔隙結(jié)構(gòu),結(jié)果表明其最大比表面積可達(dá)3 129 m2/g,總孔容達(dá)1.68 cm3/g,微孔孔容可達(dá)0.96 cm3/g,有利于電解質(zhì)離子的傳輸和吸附。
3)通過(guò)響應(yīng)面分析活化溫度和活化比例對(duì)電極材料比電容的影響。由分析結(jié)果可知:活性化溫度和活化時(shí)間對(duì)電極材料比電容均具有顯著影響。通過(guò)對(duì)模型進(jìn)行擬合建立二元回歸方程,進(jìn)而優(yōu)化得到最佳活性炭制備條件,即在活化溫度694 ℃,活化比例4.17∶1條件下制備的刀豆殼基活性炭材料理論比電容可達(dá)到261 F/g。驗(yàn)證試驗(yàn)得到的平均比電容為254 F/g,與預(yù)測(cè)值基本吻合。
4)以刀豆殼作為超級(jí)電容器電極材料,其電化學(xué)性能接近于甚至高于大部分的多孔炭材料。本研究也同時(shí)發(fā)現(xiàn),炭材料的電化學(xué)性能雖然與材料的孔隙結(jié)構(gòu)密切相關(guān),但是并沒(méi)有必然的線性關(guān)系,關(guān)于炭材料的微觀結(jié)構(gòu)與電容特性的定量關(guān)系還有待進(jìn)一步探究。
[1] Chee W K, Lim H N, Zainal Z, et al. Flexible graphene-based supercapacitors: A review[J]. Journal of Physical Chemistry C, 2016, 120: 4153-4172.
[2] Chu M, Zhai Y, Shang N, et al. N-doped carbon derived from the monomer of chitin for high-performance supercapacitor[J]. Applied Surface Science, 2020, 517: 146140.
[3] 韓尊強(qiáng),鐘偉婷,王堃. 氮摻雜竹炭基超級(jí)電容器電極材料制備與表征[J]. 林業(yè)工程學(xué)報(bào),2020,5(5):76-83.
Han Zunqiang, Zhong Weiting, Wang Kun. Preparation and characterization of nitrogen-doped bamboo charcoal supercapacitor electrode materials[J]. Journal of Forestry Engineering, 2020, 5(5): 76-83. (in Chinese with English abstract)
[4] 左宋林,王永芳,張秋紅. 活性炭作為電能儲(chǔ)存和能源轉(zhuǎn)化材料的研究進(jìn)展[J]. 林業(yè)工程學(xué)報(bào),2018,3(4):1-11.
Zuo Songlin, Wang Yongfang, Zhang Qiuhong. Activated carbon for the ecletrochemical storage of energy and electrochemical catalytic conversion of fuels: A review[J]. Journal of Forestry Engineering, 2018, 3(4): 1-11. (in Chinese with English abstract)
[5] Wang L, Gao Z, Chang J, et al. Nitrogen-doped porous carbons as electrode materials for high-performance supercapacitor and dyesensitized solar cell[J]. ACS Applied Materials & Interfaces, 2015, 7: 20234-20244.
[6] Chen T, Luo L, Li Z, et al. Preparation and characterization of nitrogen and oxygen heteroatom codoped activated biocarbons from edamame shell[J]. BioResources, 2018, 13(2): 3932-3948.
[7] Chen T, Zhou Y, Luo L, et al. Preparation and characterization of heteroatom self-doped activated biocarbons as hydrogen storage and supercapacitor electrode materials[J]. Electrochimica Acta, 2019, 325: 134941.
[8] Luo L, Zhou Y, Yan W, et al. Two-step synthesis of B and N co-doped porous carbon composites by microwave-assisted hydrothermal and pyrolysis process forsupercapacitor application[J]. Electrochimica Acta, 2020, 360: 137010.
[9] 肖程元,張文禮,林海波,等. 稻殼基活性炭的熱處理改性及其電化學(xué)性能[J]. 新型炭材料,2019,34(4):341-348.
Xiao Chengyuan, Zhang Wenli, Lin Haibo, et al. Modification of a rice husk-based activated carbon by thermal treatment and its effect on its electrochemical performance as a supercapacitor electrode[J]. New Carbon Material, 2019, 34(4): 341-348. (in Chinese with English abstract)
[10] 邢寶林,陳麗薇,張傳祥,等. 玉米芯活性炭的制備及其電化學(xué)性能研究[J]. 材料導(dǎo)報(bào),2015,29(3):45-48.
Xing Baolin, Chen Wei, Zhang Chanxiang, et al. Preparation and electrochemical performance of corncob-based activated carbon[J]. Materials Reports, 2015, 29(3): 45-48. (in Chinese with English abstract)
[11] Ling Z, Wang Z, Zhang M, et al. Sustainable synthesis and assembly of biomass-derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors[J]. Advanced Functional Materials, 2016, 26: 111-119.
[12] Niu Q, Zhao S, Gao K, et al. Natural nanofibers stacked porous nitrogen-doped carbon nanosheets with promising capacitive performance[J]. Cellulose, 2019, 26: 5395-5407.
[13] Zhang H, Zhang C, Zhang Y, et al. P/N codoped carbon derived from cellulose: A metal-free photothermal catalyst for transfer hydrogenation of nitroarenes[J]. Applied Surface Science, 2019, 487: 616-624.
[14] Adebowale K O, Afolabi T A, Olu-owolabi B I. Functional, physicochemical and retrogradation properties of sword bean () acetylated and oxidized starches[J]. Carbohydrate Polymers, 2006, 65: 93-101.
[15] Brunauer S, Emmet P H, Teller E. Adsorption of gases in multimolecular layers[J]. Journal of the American Chemical Society, 1938, 60(2): 309-319.
[16] Tarazona P. Solid-fluid transition and interfaces with density functional approaches[J]. Surface Science, 1995, 331: 989-994.
[17] Zhao Z C, Xie Y B. Electrochemical supercapacitor performance of boron and nitrogen co-doped porous carbon nanowires[J]. Journal of Power Sources, 2018, 400: 264-276.
[18] Lia J, Xie L, Xiong D, et al. Enhanced capacitance of boron-doped graphene aerogels for aqueous symmetric supercapacitors[J]. Applied Surface Science, 2019, 475: 285-293.
[19] 李大偉,田原宇,郝俊輝,等. 炭活化一步法制備豆渣基極微孔活性炭[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(19):309-314.
Li Dawei, Tian Yuanyu, Hao Junhui, et al. Preparation of N-doped ultramicropore-containing active carbons from waste soybean dreg by one-step carbonization/activation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(19): 309-314. (in Chinese with English abstract)
[20] 牛文娟,馮雨欣,鐘菲,等. 秸稈微波水熱炭和活性炭理化及電化學(xué)特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(17):202-212.
Niu Wenjuan, Feng Yuxin, Zhong Fei, et al. Physicochemical and electrochemical properties of microwave-assisted hydrochars and activated carbons from straws[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(17): 202-212. (in Chinese with English abstract)
[21] Li Y, Wang G, Wei T, et al. Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors[J]. Nano Energy, 2016, 19: 165-175.
[22] 陳俊英,馮向應(yīng),史召霞,等. 響應(yīng)面法優(yōu)化混合活化劑制備脫硅稻殼基活性炭[J]. 鄭州大學(xué)學(xué)報(bào),2015,36(2):120-124.
Chen Junying, Feng Xiangying, Shi Zhaoxia, et al. Optimization of activated carbon preparation from desilicon rice husk via compound agents by response surface methodology[J]. Journal of Zhengzhou University, 2015, 36(2): 120-124. (in Chinese with English abstract)
[23] Huang Y P, Hou C H, Shi H C, et al. Optimization of highly microporous activated carbon preparation from Moso bamboo using central composite design approach[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 50: 266-275.
[24] Zhao W, Fierro V, Zlotea C, et al. Optimization of activated carbons for hydrogen storage[J]. International Journal of Hydrogen Energy, 2011, 36(18): 11746-11751.
[25] Zhao W, Fan M, Gao H, et al. Central composite design approach towards optimization of super activated carbons from bamboo for hydrogen storage[J]. RSC Advance, 2016, 6(52): 46977-46983.
[26] Raj C J, Rajesh M, Manikanan R, et al. High electrochemical capacitor performance of oxygen and nitrogen enriched activated carbon derived from the pyrolysis and activation of squid gladius chitin[J]. Journal of Power Sources, 2018, 386: 66-76.
[27] Hao L, Li X, Zhi L. Carbonaceous electrode materials for supercapacitors[J]. Advanced Materials, 2013, 25(28): 3899-3904.
[28] Wan L, Xiao R, Liu J, et al. A novel strategy to prepare N, S-codoped porous carbons derived from barley with high surface area for supercapacitors[J]. Applied Surface Science, 2020, 518: 146265.
[29] Shi C, Hua L, Hou J, et al. Alkali metal boosted atom rearrangement in amorphous carbon towards crystalline graphitic belt skeleton for high performance supercapacitors[J]. Energy Storage Materials, 2018, 15: 82-90.
[30] Ma Y, Zhang X, Liang Z, et al. B/P/N/O co-doped hierarchical porous carbon nanofiber self-standing film with high volumetric and gravimetric capacitance performances for aqueous supercapacitors[J]. Electrochimica Acta, 2020, 337: 135800.
[31] Chu M, Zhai Y, Shang N, N-doped carbon derived from the monomer of chitin for high-performance supercapacitor[J]. Applied Surface Science, 2020, 517: 146140.
[32] Zhou Y, Yan W, Yu X, et al. Boron and nitrogen co-doped porous carbon for supercapacitors: A comparison between a microwave-assisted and a conventional hydrothermal process[J]. Journal of Energy Storage, 2020, 32: 101706.
[33] Zhang W, Lin N, Liu D, et al. Direct carbonization of rice husk to prepare porous carbon for supercapacitor applications[J]. Energy, 2017, 128: 618-625.
[34] Zhang Y, Shen Z, Yu Y, et al. Porous carbon derived from waste polystyrene foam for supercapacitor[J]. Journal of Materials Science, 2018, 53: 12115-12122.
[35] Sun W, Lipka S, Swartz C, Hemp-derived activated carbons for supercapacitors[J]. Carbon, 2016, 103: 181-192.
[36] Lu Q, Xu Y, Mu S, The effect of nitrogen and/or boron doping on the electrochemical performance of non-caking coal-derived activated carbons for use as supercapacitor electrodes[J]. New Carbon Materials, 2017, 32: 442-450.
[37] Yu M, Han Y, Li J, et al. CO2-activated porous carbon derived from cattail biomass for removal of malachite green dye and application as supercapacitors[J]. Chemical Engineering Journal, 2017, 317: 493-502.
Response surface optimization design and electrochemical performance of sword shell-based carbon
Luo Lu1, Deng Jianping1, Luo Lingcong1, Chen Tingting1, Fan Mizi1,2, Zhao Weigang1※
(1.,,350018,,; 2.,,,UB8 3PH,,)
With the attention to the world ecology and economy, people are observing the abundant, low-cost, and clean renewable energy from sun and wind. However, most of the renewable energy sources are intermittent and cannot meet the needs for applications, except for converting to electricity. In order to satisfy the demand of people for new energy storage equipment, supercapacitors using biomass-based carbon materials as electrode materials have attracted much attention, because the multi-level structure of the natural biomass material is conducive to ion transmission. The fine structure of natural biomass cannot be synthesized artificially. The preservation of natural multi-scale structure can provide better electrochemical performance of the biomass-based carbon material. The biomass waste of sword beans shell with the characteristics of fast growth, a large amount of sword bean shells can be continuously produced as raw materials every year, but are often discarded or burned, which contributes to the environmental pollution. It is a promising precursor for obtaining hierarchically porous carbon-based material used as active component of high-storage capacity supercapacitors. The activated carbon with high surface area derived from sword shell by using KOH activation method and used as supercapacitor electrode materials. Taking the specific capacitance value of electrode material as the response value, the activation temperature and the activation ratio as the experimental factors, the Central Composite Design (CCD) method was employed to carry out the response surface optimization study, and the electrochemical performance of the activated carbon prepared under the optimal process conditions was explored. The research results show that the activation temperature and activation ratio have significant effects on the specific capacitance of activate carbon material. The coefficient2of the model is 97.54%, and the correction coefficient Adj2is 95.78%, indicating that the model can better predict the specific capacitance value of sword shell-based activated carbon with high reliability. The specific capacitance can reach a peak value under the condition of activation temperature 700 ℃ and the activation ratio 4∶1. The optimized process parameters determined by center composite design approach were the activation temperature of 694 ℃ and the activation ratio of 4.17∶1. The verification experiment shows that the average specific capacitance of the sword shell activated carbon material is 254 F/g, which is basically consistent with the predicted value. Furthermore, the Cyclic Voltammetry (CV) curves and Galvanostatic Charge-discharge (GCD) curves of different carbon materials were compared. A quasi-rectangular shape with wide hump peaks can be observed in CV curves, which can be attributed to the synergy between the Electric Double-layer Capacitance (EDLC) and the pseudocapacitance. The nitrogen fixation of legumes can provide carbon materials with nitrogen to produce redox reactions and provide pseudocapacitance. The GCD curves show nearly triangular shapes with a small deviation from linearity, which indicated excellent capacitive behavior of the electrode materials. The Nyquist plots from the Electrochemical Impedance Spectroscopy (EIS) analysis reveal that sword shell-based activated carbon has good electronic conductivity. Additionally, the physical properties of activated carbon was characterized. The apparent morphology of activated carbon was observed by Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM). The nitrogen adsorption-desorption was conducted to investigate the pore structure of the carbon material. The results showed that: sword shell-based activated carbons possess a large number of nanopores, which distributed on the surface of the material, and the maximum specific surface area, total pore volume and micropore volume can up to 3 129 m2/g, 1.68 cm3/g and 0.96 cm3/g, which is conducive to electrolyte circulation and electrolyte ion adsorption.
specific surface area; activated carbon; response surface; KOH activation; sword shells; supercapacitors
10.11975/j.issn.1002-6819.2021.10.033
TQ35
A
1002-6819(2021)-10-0277-07
羅路,鄧劍平,羅凌聰,等. 豆殼基炭材料的響應(yīng)面優(yōu)化設(shè)計(jì)及電化學(xué)特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(10):277-283.doi:10.11975/j.issn.1002-6819.2021.10.033 http://www.tcsae.org
Luo Lu, Deng Jianping, Luo Lingcong, et al. Response surface optimization design and electrochemical performance of sword shell-based carbon[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(10): 277-283. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.10.033 http://www.tcsae.org
2021-01-05
2021-04-01
國(guó)家自然科學(xué)基金資助項(xiàng)目(31971593);福建省自然科學(xué)基金項(xiàng)目(高校聯(lián)合資金)(2019J01386);福建農(nóng)林大學(xué)科技創(chuàng)新專項(xiàng)基金項(xiàng)目(CXZX2019103)
羅路,博士,主要從事生物質(zhì)能源與材料的研究工作。Email:75873630 @qq.com
趙偉剛,博士,副教授,研究領(lǐng)域?yàn)樯镔|(zhì)基復(fù)合材料與多孔炭材料。Email:weigang-zhao@fafu.edu.cn