• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    2D/2D FeNi-LDH/g-C3N4 Hybrid Photocatalyst for Enhanced CO2 Photoreduction

    2021-09-01 09:28:02HanLiFangLiJiaguoYuShaowenCao
    物理化學(xué)學(xué)報 2021年8期

    Han Li, Fang Li, Jiaguo Yu, Shaowen Cao

    State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.

    Abstract: Photocatalytic reduction of carbon dioxide into chemical fuels is a promising route to generate renewable energy and curtail the greenhouse effect. Therefore, various photocatalysts have been intensively studied for this purpose. Among them, g-C3N4, a 2D metal-free semiconductor, has been a promising photocatalyst because of its unique properties, such as high chemical stability, suitable electronic structure, and facile preparation. However, pristine g-C3N4 suffers from low solar energy conversion efficiency, owing to its small specific surface area and extensive charge recombination. Therefore, designing g-C3N4 (CN) nanosheets with a large specific surface area is an effective strategy for enhancing the CO2 reduction performance. Unfortunately, the performance of CN nanosheets remains moderate due to the aforementioned charge recombination. To counter this issue, loading a cocatalyst (especially a two-dimensional (2D) one) can enable effective electron migration and suppress electron-hole recombination during photo-irradiation. Herein, CN nanosheets with a large specific surface area (97 m2·g?1) were synthesized by a two-step calcination method, using urea as the precursor. Following this, a 2D/2D FeNi-LDH/g-C3N4 hybrid photocatalyst was obtained by loading a FeNi layered double hydroxide (FeNi-LDH) cocatalyst onto CN nanosheets by a simple hydrothermal method. It was found that the production rate of methanol from photocatalytic CO2 reduction over the FeNi-LDH/g-C3N4 composite is significantly higher than that of pristine CN. Following a series of characterization and analysis, it was demonstrated that the FeNi-LDH/g-C3N4 composite photocatalyst exhibited enhanced photo-absorption, which was ascribed to the excellent light absorption ability of FeNi-LDH. The CO2 adsorption capacity of the FeNi-LDH/g-C3N4 hybrid photocatalyst improved, owing to the large specific surface area and alkaline nature of FeNi-LDH. More importantly, the introduction of FeNi-LDH on the CN nanosheet surface led to the formation of a 2D/2D heterojunction with a large contact area at the interface, which could promote the interfacial separation of charge carriers and effectively inhibit the recombination of the photogenerated electrons and holes.This subsequently resulted in the enhancement of the CO2 photo-reduction activity. In addition, by altering the loading amount of FeNi-LDH for photocatalytic performance evaluation, it was found that the optimal loading amount was 4% (w,mass fraction), with a methanol production rate of 1.64 μmol·h?1·g?1 (approximately 6 times that of pure CN). This study provides an effective strategy to improve the photocatalytic CO2 reduction activity of g-C3N4 by employing 2D layered double hydroxide as the cocatalyst. It also proposes a protocol for the successful design of 2D/2D photocatalysts for solar energy conversion.

    Key Words: Photocatalysis; 2D materials; Layered double hydroxide; Solar energy conversion; Charge transfer

    1 Introduction

    Since the industrial revolution, uncontrolled burning of fossil fuels has not only caused serious energy depletion problems, but also brought a lot of environmental pollution problems1,2. The greenhouse effect caused by the sharp increase of carbon dioxide has resulted in a great threat to the sustainable development of humankind. Greenhouse effect can lead to a series of problems,such as increased pests, global warming, sea level rise, land desertification and hypoxia,etc. Thus, reducing the amount of greenhouse gas and exploring the solution of energy problem is urgent3-6. The technology of photocatalytic CO2reduction,using inexhaustible pollution-free solar energy as the source, can convert CO2into small molecular organic compounds such as:methanol, methane, ethanol and so on7-9. In the past decades,scientists have made tremendous efforts to the development of semiconductor photocatalysts, including ZnO, TiO2, CdS, CdSe,InTaO3, BiOV4, NaNbO3, Bi2WO6, g-C3N4, WO3,etc.7,10-12.Among them, g-C3N4has a lot of advantages such as nontoxicity, low cost, high stability, suitable electronic band structure and easy synthesis. However, the deficiencies of small specific surface area and serious recombination of electrons and holes also greatly restrict its development. As such, researchers have proposed a variety of methods to modify g-C3N4, such as heterojunction construction, doping, morphology control and the introduction of cocatalyst13-16.

    Herein, we report the preparation of 2D/2D hybrid photocatalyst by loading layered double hydroxide FeNi-LDH onto g-C3N4nanosheets. This hybrid photocatalyst exhibits enhanced photocatalytic performance of CO2reduction,compared to the pristine g-C3N4, because the 2D/2D interface contact assures efficient charge carriers separation and at the same time, the alkaline sites in between FeNi-LDH layers promote the CO2adsorption.

    2 Experimental section

    2.1 Chemicals

    All reagents were of analytical grade and used without further purification. Ethanol (AR, 99.7%), urea (AR, 99%), trisodium citrate dihydrate (AR, 99%), Fe(NO3)3·9H2O (AR, 98.5%) and NiCl2·6H2O (AR, 98%) were purchased from Sinopharm Chemical Reagent Co., Ltd., China.

    2.2 Photocatalyst preparation

    CN nanosheets were obtained by a two-step calcination process. 20 g urea was calcined at 550 °C for 2 h with a ramping rate of 5 °C·min?1and bulk g-C3N4was obtained. Then, 1 g bulk g-C3N4was heated to 420 °C for 2 h with a heating rate of 5 °C·min?1. After that, the temperature was increased from 420 °C to 600 °C at a heating rate of 3 °C·min?1and kept at 600 °C for 3 h. Finally, the obtained light-yellow powder was g-C3N4nanosheets.

    A simple hydrothermal method was then used to synthesize FeNi-LDH/g-C3N4hybrid photocatalyst. Typically for CN/LDH4, 0.25 mol·L?1ferric nitrate aqueous solution (0.145 mL), 0.25 mol·L?1nickel chloride aqueous solution (1.45 mL),0.125 mol·L?1urea aqueous solution (5.6 mL) and 0.0025 mol·L?1trisodium citrate aqueous solution (2 mL) were added into 70.8 mL deionized water under magnetic stirring.Afterwards, 1 g g-C3N4nanosheets were added into the above mixture solution and stirred for another hour. After that, the suspension was loaded into a 100 mL Teflon-lined autoclave for hydrothermal reaction at 150 °C for 24 h. Then, the resultant sample was centrifuged and washed with deionized water and ethanol several times and dried in an oven at 80 °C for 12 h. The FeNi-LDH/g-C3N4composite photocatalyst at 2% (w, mass fraction), 4% (w), 8% (w) of FeNi-LDH loading were prepared and named as CN/LDH2, CN/LDH4, and CN/LDH8,respectively. In addition, pure g-C3N4nanosheets and pure FeNi-LDH were named as CN and LDH.

    2.3 Photocatalytic CO2 reduction test

    The photocatalytic performance of the samples was carried out at ambient temperature in a 200 mL double-neck Pyrex reactor with a groove at one neck. 0.05 gas-prepared sample was put onto the bottom of the Pyrex reactor with 10 mL deionized water under sonication, and then the reactor was transferred into the drying oven special for CO2reduction with temperature of 80 °C for 4 h. After that, nitrogen was blown into the reactor for 30 min to remove air and ensure that the reaction system was under anaerobic condition. In order to obtain CO2and H2O,0.084 g NaHCO3was placed in the groove before sealed and 0.3 mL H2SO4(2 mol·L?1) aqueous solution was injected into the groove through an injector after bubbling nitrogen. The reactor was illuminated by a 300 W Xe lamp (Changzhou Siyu Science Co. Ltd., China). At every one hour, a syringe was used to extract 1 mL gas mixture from the reactor, and the gas was detected by a gas chromatograph (GC2014C, Shimadzu, Japan) equipped with a flame ionized detector (FID) and methanizer.

    2.4 Characterization

    The X-ray diffraction (XRD) patterns of the as-obtained photocatalysts were obtained on an X-ray diffractometer(Rigaku, Japan) with CuKαradiation at a scan rate of 2θ= 0.05(°)·s-1. The microstructure of as-prepared samples was characterized using a field emission scanning electron microscope (FESEM, JEOL JSM-7500, Japan) and a transmission electron microscope (TEM, JEOL JEM-2100F,Japan). Ultraviolet-visible diffuse reflectance spectra (UV-Vis DRS) were tested on a UV-2550 UV-Vis spectrophotometer(Shimadzu, Japan) with BaSO4as the reference standard.Photoluminescence (PL) spectra were recorded by a fluorescence spectrophotometer (F-7000, Hitachi, Japan) with an excitation wavelength of 320 nm. The width of excitation and emission slits was both 2.5 nm. N2adsorption-desorption isotherms were obtained on an ASAP 3020 adsorption analyzer(Micromeritics, USA). The specific surface area was calculated by Brunauer-Emmett-Teller (BET) method. The pore size distribution and pore volume of the as-prepared photocatalysts were obtained through the Barrett-Joyner-Halenda method. The CO2adsorption measurements of the samples were performed on the same equipment (ASAP 3020, Micromeritics, USA) at room temperature. Before CO2adsorption experiment, all the photocatalysts were degassed at 150 °C for 4 h. The real loading amount of Fe and Ni were measured using inductively coupled plasma atomic emission spectrometry (ICP-AES) on a Perkin-Elmer Optima 4300DV (USA). The elemental analysis was tested on an elemental analyzer (Vario EL cube, Elementar,Germany). X-ray photoelectron spectroscopic (XPS) analysis was performed on a VG ESCALAB 210 X-ray photoelectron spectrometer (Thermo Fisher, USA) using AlKαas the X-ray source. Energy-dispersive X-ray spectroscopy (EDS) elemental mapping analysis was measured on an Oxford X-MAXn EDS apparatus. The photoelectrochemical experiment was tested on an electrochemical workstation (CHI660C, Chenhua Instrument,China) with a standard three-electrode system.In situFT-IR spectra were obtained on a Nicolet iS50 FTIR spectrometer(Thermo Fisher, USA).

    3 Results and discussion

    3.1 Phase analyses

    Fig. 1 shows the XRD patterns of LDH, CN, CN/LDH2,CN/LDH4, CN/LDH8. Pristine g-C3N4and all the prepared FeNi-LDH/g-C3N4composite materials have three peaks located at 2θ= 11.2°, 21.9° and 27.5°, respectively. The small peak at 2θ=11.2° corresponds to the (100) plane of g-C3N422. This peak can be attributed to the repeating units of the triazine structure in the plane and the distance is ~0.675 nm23. The stronger peak at 2θ=27.5° corresponds to the (002) plane of g-C3N4with the interlayer spacing of 0.326 nm. The peak is a characteristic peak of the interlayer accumulation of the aromatic compounds24-26.These two peaks are consistent with the characteristic diffraction peaks of g-C3N4reported in the previous literature27,28. The peak at 2θ= 21.9° could be attributed to the sample holder for XRD measurement. Because of the low content of FeNi-LDH in the prepared samples, the characteristic diffraction peaks of FeNi-LDH in all FeNi-LDH/g-C3N4composite samples are not observed. The characteristic peaks of pure FeNi-LDH are located at 2θ= 11.7°, 22.2°, 33.3°, 34.3°, 38.6°, 59.6°,corresponding to (003), (006), (101), (012), (015), (110) planes of the nickel hydroxide rhombic hexahedron29.

    Fig. 1 XRD patterns of LDH, CN, CN/LDH2, CN/LDH4 and CN/LDH8 samples.

    3.2 Microstructure observation

    g-C3N4obtained by one-step calcination shows a large size(Fig. 2a), while the size of g-C3N4obtained through two-step calcination is much smaller (Fig. 2b), with the edges of the nanosheets partially curled. FeNi-LDH is also composed of thin nanosheets (Fig. 2c). The morphology of g-C3N4does not change significantly after loading FeNi-LDH, as confirmed by the FESEM image of CN/LDH4 (Fig. 2d). Moreover, the ultrathin structure of g-C3N4nanosheet was further demonstrated by TEM observation (Fig. 2e), which displays a transparent feature.Fig. 2f is the TEM image of CN/LDH8. It can be seen that FeNi-LDH is successfully loaded on the surface of the CN nanosheet,which was confirmed by the EDS elemental mapping (Fig. 2g)with uniform distribution of C, N, O, Fe and Ni.

    Fig. 2 FESEM images of the samples: (a) bulk CN, (b) CN nanosheets, (c) FeNi-LDH, (d) CN/LDH4; TEM images of the samples: (e) CN nanosheets and (f) CN/LDH8; (g) EDS of CN/LDH8.

    3.3 XPS and elemental analyses

    The chemical state and environment of the elements in the samples are analyzedviaXPS analysis. The XPS survey spectra of CN/LDH4 (Fig. 3a) suggest the existence of C, N, Fe, Ni and O. Fig. 3b displays the high-resolution C 1sspectrum, in which two peaks are located at 284.8 and 288.3 eV, respectively. The peak at 288.3 eV is attributed to thesp2-hybridized carbon14,30,31.While the peak at 284.8 eV is assigned to adventitious carbon on the surface32. The high-resolution spectrum of N 1s(Fig. 3c) can be deconvoluted into four peaks at 398.4, 399.7, 400.7 and 404.3 eV, respectively. The peak at 398.4 eV corresponds to thesp2-hybridized nitrogen atom bonded to two carbon atoms33,34.While the peak at 399.7 eV corresponds to the nitrogen atom connected to three carbon atoms35,36. The weak peak at 400.7 eV assigned to the C=N―H group37,38. The characteristic peak at 404.3 eV can be ascribed to theπexcitation in the conjugated system39,40. The Fe 2pspectrum (Fig. 3d) can be fitted into two peaks at 712.4 and 725.5 eV, respectively, which can be assigned to Fe3+. The former is related to the Fe 2p3/2orbit, and the latter can be ascribed to the Fe 2p1/2orbit41,42. The high-resolution XPS spectrum of Ni 2p(Fig. 3e) displays four peaks at the binding energy of 856.1, 861.9, 873.8 and 880.0 eV. The peaks at 856.1 and 861.9 eV are assigned to the Ni 2p3/2orbit, and the peaks at 873.8 eV and 880.0 eV are assigned to the Ni 2p1/2orbit,in agreement with the feature of divalent Ni43,44. In the highresolution spectrum of O 1s(Fig. 3f), the peak at 531.7 eV can be ascribed to the signal of Fe―OH or Ni―OH. The real loading amount of Fe and Ni measured by ICP-AES were shown in Table 1. The amount of C, N, H in bulk CN and CN nanosheets determined by an elemental analyzer was shown in Table 2.

    Table 1 Physical property of CN/LDH2, CN/LDH4, CN/LDH8.

    Table 2 The elemental analysis of bulk g-C3N4 and g-C3N4 nanosheets.

    Fig. 3 (a) XPS survey spectra, high-resolution XPS spectra of(b) C 1s, (c) N 1s, (d) Fe 2p, (e) Ni 2p and (f) O 1s of the CN/LDH4 photocatalyst.

    3.4 N2 adsorption-desorption isotherms

    N2adsorption-desorption isotherms were conducted to study the specific surface area and pore size distribution of bulk CN,CN nanosheets, LDH and CN/LDH4, as shown in Fig. 4.According to the Brunauer-Deming-Deming-Teller classification, all the samples were classified as type IV isotherms45,46. In addition, all the samples show H3-type hysteresis loops, indicating the formation of slit hole originated from the sheet-like accumulation22,47. The pore size distribution of all samples display a wide range from 2 to 120 nm, confirming the presence of mesopores and macropores. From Table 3, it can be found that the specific surface area of the CN nanosheets (97 m2·g-1) is more than twice that of the bulk CN (42 m2·g-1).Moreover, the pore volume of g-C3N4nanosheets (0.5 cm3·g-1)is much higher than that of bulk g-C3N4(0.2 cm3·g-1), suggesting the presence of smaller pores in g-C3N4nanosheets. Pure FeNi-LDH possesses a specific surface area of 170 m2·g-1and abundant mesopores. Note that with the increasing amount of FeNi-LDH, the specific surface area of the composite samples does not change obviously. Therefore, the change in specific surface area does not contribute much on the improvement of the performance.

    Table 3 Comparison of the specific surface areas, pore volumes and average pore size.

    3.5 CO2 adsorption

    Fig. 5 shows the CO2adsorption curves of CN, CN/LDH4,bulk CN and LDH. As increasing the relative pressure, the amount of adsorbed carbon dioxide increases in the entire pressure zone. CN shows a larger adsorption capacity than that of the bulk CN, which can be attributed to the larger specificsurface area. Meanwhile, the pure FeNi-LDH has a much higher adsorption capacity, caused by theincreasedspecificsurfaceareaandalkaline nature of iron and nickel. In particular, the CO2adsorption ability of CN/LDH4 is better than that of CN, which can be attributed to the synergy betweenthetwocomponents.Such an enhancement is beneficial to improve the performanceof photocatalytic CO2reduction, as the first step of the photocatalytic reduction of CO2is to adsorb CO2molecules on the surface of the photocatalyst48-51.

    Fig. 4 N2 adsorption-desorption isotherms and the pore-size distribution curves (inset) of bulk CN, CN nanosheets, CN/LDH4 and LDH.

    Fig. 5 CO2 adsorption curves of CN, CN/LDH4, bulk CN and LDH photocatalysts.

    3.6 UV-Vis diffuse reflectance spectra

    Fig. 6 displays the UV-Vis DRS spectra of CN, CN/LDH2,CN/LDH4, CN/LDH8 and LDH. The absorption edge of g-C3N4is around 430 nm, corresponding to visible-light absorption.Compared with pristine g-C3N4, FeNi-LDH/g-C3N4composite photocatalyst shows stronger absorption in the full region. With increasing the amount of the FeNi-LDH, the light absorption of the composite sample increases due to the excellent absorption ability of FeNi-LDH52. In addition, the band gap of FeNi-LDH/g-C3N4composite photocatalysts does not change,revealing that no doping effect occurred.

    Fig. 6 UV-Vis diffuse reflectance spectra of CN, CN/LDH2,CN/LDH4, CN/LDH8 and LDH samples.

    3.7 Photocatalytic CO2 reduction performance

    The photocatalytic performance of the samples was measured under the full-spectrum xenon lamp irradiation. Fig. 7 shows the CO2reduction activity of the samples. Pure g-C3N4shows a low rate of methanol production of 0.25 μmol·h-1·g-1. Importantly,the CO2reduction activity of g-C3N4decorated with FeNi-LDH is significantly improved. In detail, when the amount of FeNi-LDH is 2%, the rate of methanol production was 1.09 μmol·h-1·g-1. The CN/LDH4 exhibits the best performance,which is ~6 times (1.64 μmol·h-1·g-1) than that of the pure g-C3N4.

    3.8 Essence of photocatalytic performance enhancement

    Photoluminescence measurement can be used to roughly evaluate the separation efficiency of photogenerated carriers53,54.A smaller intensity of the luminescent characteristic peaks indicates a better transfer efficiency of the photoinduced charges55,56. Fig. 8 shows that all samples have a main peak at~430 nm, which is caused by the electron transition of theπ-π*orbit in the triazine ring of g-C3N4. After loading FeNi-LDH, the peak intensity is obviously reduced. Particularly, the peak intensity of CN/LDH4 is the weakest, indicating its best charge transfer efficiency57. In other word, the introduction of FeNi-LDH could suppress the recombination of photogenerated charges.

    Fig. 7 CO2 reduction rates of CN, CN/LDH2, CN/LDH4, CN/LDH8 and LDH photocatalysts.

    Fig. 8 PL spectra of CN, CN/LDH2, CN/LDH4 and CN/LDH8 photocatalysts.

    Electrochemical impedance spectra and transient photocurrent responses were performed to further investigate the charge transfer property of CN, CN/LDH4 and LDH. The experiments were tested in 0.5 mol·L-1Na2SO4solution and a standard three-electrode system was used58. Fig. 9 shows the EIS Nyquist plots of CN, CN/LDH4 and LDH. In the analog equivalent circuit,RpandRsrepresent the resistance of the charge transfer in the tested sample and the total resistance in the electrolyte, respectively. And CPE1 represents a double-layer capacitor located at the interface between electrolyte and counter electrode. Normally, the smaller the size of the curve radius, the smaller the impedance and thus the better transfer performance of photoinduced charges59,60. Note that CN/LDH4 has the smallest radius, again demonstrating its best charge transfer property61-63. This could be further confirmed by the much larger photocurrent of CN/LDH4 than that of CN (Fig. 10).

    Fig. 9 EIS plots of CN, CN/LDH4 and FeNi-LDH photocatalysts in 0.5 mol·L?1 Na2SO4 solution.

    Fig. 10 Transient photocurrent curves of CN and CN/LDH4 photocatalysts

    Fig. 11 The in situ FTIR spectra of the CN/LDH4 sample.

    3.9 in situ FTIR spectra

    Thein situFTIR spectra of CN/LDH4 were carried out to study the intermediate products of photocatalytic CO2reduction.As displayed in Fig. 11, the peaks at 1670, 1390, 1326 and 1291 cm?1belong to formate64-68. The peaks at 1625, 1589, 1543,1507, 1365 and 1262 cm?1are ascribed to the carbonate species69-74. The peaks at 1652, 1485, 1451 and 1424 cm?1are ascribed to methanal70,75. Besides, the peak at 1158 cm?1is assigned to methanol66,76. These results reveal that the photocatalytic CO2reduction is a complicated multi-step reaction, forming several intermediate products, such as formic acid and formaldehyde. As a result, the final product is CH3OH.

    4 Conclusions

    In summary, CN nanosheets with a large specific surface area of 97 m2·g-1is obtained by a simple two-step calcining method.Then the 2D/2D FeNi-LDH/CN heterojunction was constructed by a hydrothermal method. The FeNi-LDH/CN composite photocatalysts showed a greatly improved photocatalytic CO2reduction activity compared with pristine CN. The optimum loading amount of FeNi-LDH cocatalyst is 4% (w), and the rate of producing methanol reaches 1.64 μmol·h-1·g-1, which is ~6 times than that of the pristine CN. A series of characterization and analysis demonstrate that the introduction of FeNi-LDH can improve the ability of adsorbing CO2and light absorption, and effectively facilitate the separation of photogenerated charge carriers.

    91国产中文字幕| 国产激情久久老熟女| 国产成人精品久久二区二区91 | 久久人人爽av亚洲精品天堂| 欧美人与性动交α欧美精品济南到| 最近2019中文字幕mv第一页| 欧美精品一区二区大全| 欧美日韩国产mv在线观看视频| 看非洲黑人一级黄片| 免费观看a级毛片全部| 亚洲美女视频黄频| 一区二区av电影网| 一区二区三区激情视频| 91老司机精品| 99热国产这里只有精品6| 国产黄频视频在线观看| av.在线天堂| 国产毛片在线视频| 国产精品久久久久久精品古装| 国产爽快片一区二区三区| 热re99久久精品国产66热6| 久久久国产一区二区| 免费人妻精品一区二区三区视频| 亚洲国产毛片av蜜桃av| 免费高清在线观看日韩| 一边摸一边做爽爽视频免费| 国产亚洲午夜精品一区二区久久| 老熟女久久久| 精品少妇内射三级| av天堂久久9| 最黄视频免费看| 高清欧美精品videossex| 中文字幕av电影在线播放| 久久99热这里只频精品6学生| 久久午夜综合久久蜜桃| 99久久精品国产亚洲精品| 午夜老司机福利片| 人成视频在线观看免费观看| 精品视频人人做人人爽| av在线app专区| 人人妻,人人澡人人爽秒播 | 国产精品国产三级专区第一集| 夫妻性生交免费视频一级片| 久久人人爽人人片av| 亚洲一区中文字幕在线| 久久精品国产综合久久久| 我的亚洲天堂| 午夜福利视频精品| 亚洲三区欧美一区| 国产精品麻豆人妻色哟哟久久| 日韩 欧美 亚洲 中文字幕| 捣出白浆h1v1| 人成视频在线观看免费观看| 日韩制服骚丝袜av| 黄色怎么调成土黄色| 亚洲国产精品成人久久小说| 久久人人97超碰香蕉20202| 亚洲成人国产一区在线观看 | 天天躁夜夜躁狠狠久久av| 日本wwww免费看| av片东京热男人的天堂| 亚洲精品国产色婷婷电影| 久久97久久精品| 老司机在亚洲福利影院| 麻豆精品久久久久久蜜桃| 高清在线视频一区二区三区| av视频免费观看在线观看| 人人妻人人爽人人添夜夜欢视频| 精品国产露脸久久av麻豆| 又大又爽又粗| 成人国产麻豆网| 日本猛色少妇xxxxx猛交久久| 少妇猛男粗大的猛烈进出视频| 久久久久精品性色| 天天躁夜夜躁狠狠躁躁| 久久久国产欧美日韩av| 国产午夜精品一二区理论片| 午夜福利免费观看在线| 最近最新中文字幕大全免费视频 | 成年女人毛片免费观看观看9 | 黄频高清免费视频| 久久精品亚洲av国产电影网| 亚洲精品乱久久久久久| 午夜免费鲁丝| 日韩欧美精品免费久久| 最近2019中文字幕mv第一页| 亚洲伊人色综图| 国产伦理片在线播放av一区| 你懂的网址亚洲精品在线观看| 十八禁人妻一区二区| 女人精品久久久久毛片| 成人漫画全彩无遮挡| 婷婷色综合www| 国产精品久久久久久久久免| 国产一区有黄有色的免费视频| 亚洲精品一二三| 夫妻性生交免费视频一级片| 免费人妻精品一区二区三区视频| 亚洲av男天堂| 日日摸夜夜添夜夜爱| 国产精品一二三区在线看| 精品亚洲成a人片在线观看| 久久久欧美国产精品| 亚洲成色77777| 久久精品亚洲av国产电影网| 多毛熟女@视频| 久久韩国三级中文字幕| 秋霞在线观看毛片| 一个人免费看片子| 国产一区二区激情短视频 | 精品国产一区二区三区四区第35| 日本黄色日本黄色录像| 国产高清不卡午夜福利| 久久天躁狠狠躁夜夜2o2o | 成人三级做爰电影| 亚洲精品国产色婷婷电影| 日韩欧美精品免费久久| 亚洲欧美精品综合一区二区三区| 黄色 视频免费看| 97在线人人人人妻| 中文字幕人妻丝袜一区二区 | av国产精品久久久久影院| 99香蕉大伊视频| 美女视频免费永久观看网站| 大片电影免费在线观看免费| 亚洲伊人久久精品综合| 日韩一卡2卡3卡4卡2021年| 十分钟在线观看高清视频www| 亚洲欧美成人综合另类久久久| 国产国语露脸激情在线看| 伦理电影大哥的女人| 国产伦理片在线播放av一区| 久热这里只有精品99| 国产一卡二卡三卡精品 | 黄片播放在线免费| 成人黄色视频免费在线看| 久久毛片免费看一区二区三区| 亚洲图色成人| 亚洲欧美精品综合一区二区三区| 亚洲色图综合在线观看| xxx大片免费视频| 99香蕉大伊视频| 黄频高清免费视频| 女人久久www免费人成看片| 热99久久久久精品小说推荐| 亚洲在久久综合| 日日啪夜夜爽| 最近的中文字幕免费完整| 丝袜美足系列| 国产精品三级大全| 少妇人妻久久综合中文| 香蕉丝袜av| 国产男女超爽视频在线观看| 国产又色又爽无遮挡免| 国产精品香港三级国产av潘金莲 | 久久午夜综合久久蜜桃| 欧美精品av麻豆av| 一级片'在线观看视频| 国产精品一国产av| 精品酒店卫生间| 三上悠亚av全集在线观看| 曰老女人黄片| 欧美日韩精品网址| 观看美女的网站| 欧美国产精品一级二级三级| 免费久久久久久久精品成人欧美视频| 国产男人的电影天堂91| 亚洲精品国产一区二区精华液| 又粗又硬又长又爽又黄的视频| 国产日韩欧美亚洲二区| 久久鲁丝午夜福利片| 三上悠亚av全集在线观看| 久久精品久久久久久久性| 校园人妻丝袜中文字幕| 亚洲婷婷狠狠爱综合网| 色播在线永久视频| 欧美日韩国产mv在线观看视频| 免费在线观看视频国产中文字幕亚洲 | 中文字幕高清在线视频| 嫩草影院入口| netflix在线观看网站| 一区二区日韩欧美中文字幕| 日韩视频在线欧美| 精品人妻在线不人妻| 少妇精品久久久久久久| 国产亚洲av片在线观看秒播厂| 久久久国产欧美日韩av| 精品人妻在线不人妻| 宅男免费午夜| 欧美精品人与动牲交sv欧美| 国产淫语在线视频| 一级毛片我不卡| 搡老乐熟女国产| 亚洲欧美一区二区三区久久| 亚洲欧美精品综合一区二区三区| 熟妇人妻不卡中文字幕| 免费少妇av软件| 国产伦理片在线播放av一区| 人人妻,人人澡人人爽秒播 | 成年动漫av网址| 欧美 日韩 精品 国产| 国产精品国产三级国产专区5o| 悠悠久久av| 亚洲精品中文字幕在线视频| 日韩免费高清中文字幕av| 高清欧美精品videossex| 亚洲四区av| 欧美中文综合在线视频| 青春草亚洲视频在线观看| 好男人视频免费观看在线| 国产亚洲一区二区精品| 久久久久久久大尺度免费视频| 亚洲欧美色中文字幕在线| 亚洲图色成人| 免费在线观看完整版高清| 在线观看免费视频网站a站| 狠狠精品人妻久久久久久综合| 在线 av 中文字幕| 婷婷色综合www| 国产成人免费无遮挡视频| 免费久久久久久久精品成人欧美视频| www.精华液| 色婷婷av一区二区三区视频| 日本猛色少妇xxxxx猛交久久| 极品人妻少妇av视频| 中文欧美无线码| 亚洲免费av在线视频| 国产一区二区 视频在线| av电影中文网址| 激情视频va一区二区三区| 波多野结衣av一区二区av| 亚洲久久久国产精品| 国产熟女欧美一区二区| 汤姆久久久久久久影院中文字幕| 亚洲精品乱久久久久久| 9色porny在线观看| 天天躁日日躁夜夜躁夜夜| 欧美日韩av久久| 国产深夜福利视频在线观看| 国产精品国产av在线观看| 十八禁网站网址无遮挡| 亚洲中文av在线| 天天添夜夜摸| 国产毛片在线视频| 免费高清在线观看日韩| 中文天堂在线官网| 久久精品亚洲av国产电影网| 又大又黄又爽视频免费| 可以免费在线观看a视频的电影网站 | 国产成人免费观看mmmm| 欧美另类一区| 一二三四中文在线观看免费高清| 下体分泌物呈黄色| 18禁观看日本| 国产精品久久久av美女十八| 午夜福利,免费看| 大陆偷拍与自拍| 一级片免费观看大全| 99热国产这里只有精品6| 久久精品久久久久久噜噜老黄| 哪个播放器可以免费观看大片| 日韩一卡2卡3卡4卡2021年| 日本vs欧美在线观看视频| www.精华液| 亚洲自偷自拍图片 自拍| 老熟女久久久| 男女床上黄色一级片免费看| 国产淫语在线视频| 国产精品久久久久久精品古装| 精品国产超薄肉色丝袜足j| 熟女少妇亚洲综合色aaa.| 高清av免费在线| 黑人欧美特级aaaaaa片| 亚洲精品国产色婷婷电影| 国产精品久久久久成人av| 九九爱精品视频在线观看| 国产成人午夜福利电影在线观看| 免费观看av网站的网址| 国产日韩欧美视频二区| 搡老乐熟女国产| 国产亚洲午夜精品一区二区久久| a级毛片黄视频| 国产亚洲av片在线观看秒播厂| 国产亚洲最大av| 国产欧美日韩综合在线一区二区| 欧美最新免费一区二区三区| 国产又爽黄色视频| 99久久99久久久精品蜜桃| 免费黄频网站在线观看国产| 国产亚洲精品第一综合不卡| 搡老岳熟女国产| 欧美激情 高清一区二区三区| 国产成人一区二区在线| 中文字幕最新亚洲高清| 黑人猛操日本美女一级片| 日韩伦理黄色片| 如日韩欧美国产精品一区二区三区| av.在线天堂| 男女下面插进去视频免费观看| 高清黄色对白视频在线免费看| 男人操女人黄网站| 亚洲综合色网址| 99九九在线精品视频| 嫩草影视91久久| 美女高潮到喷水免费观看| 亚洲色图 男人天堂 中文字幕| 少妇的丰满在线观看| 又黄又粗又硬又大视频| 中文字幕制服av| 国产精品二区激情视频| 国产亚洲av片在线观看秒播厂| 午夜免费男女啪啪视频观看| 国产伦人伦偷精品视频| 爱豆传媒免费全集在线观看| 一本大道久久a久久精品| 无遮挡黄片免费观看| 99国产精品免费福利视频| 免费人妻精品一区二区三区视频| 国产精品 欧美亚洲| 最近2019中文字幕mv第一页| 精品一品国产午夜福利视频| 精品福利永久在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 午夜91福利影院| 精品人妻一区二区三区麻豆| 亚洲成色77777| 日韩不卡一区二区三区视频在线| 日韩成人av中文字幕在线观看| 性色av一级| 精品人妻熟女毛片av久久网站| 在线观看免费午夜福利视频| 久久精品久久精品一区二区三区| 高清不卡的av网站| 久久人人爽人人片av| 国产日韩欧美视频二区| 亚洲专区中文字幕在线 | 国产精品蜜桃在线观看| 国产精品99久久99久久久不卡 | 日本av免费视频播放| 制服人妻中文乱码| a 毛片基地| 日本欧美视频一区| 国产探花极品一区二区| 国产 一区精品| 操美女的视频在线观看| 制服人妻中文乱码| 丰满少妇做爰视频| 国产精品99久久99久久久不卡 | 亚洲精品一二三| 黑丝袜美女国产一区| 欧美日韩亚洲高清精品| 国产精品国产三级国产专区5o| 老汉色∧v一级毛片| 欧美精品亚洲一区二区| 中文字幕亚洲精品专区| 极品少妇高潮喷水抽搐| 久久久国产欧美日韩av| 日本91视频免费播放| 国产精品国产av在线观看| 午夜福利网站1000一区二区三区| 女性生殖器流出的白浆| 永久免费av网站大全| 99香蕉大伊视频| 老鸭窝网址在线观看| 制服诱惑二区| 亚洲精品乱久久久久久| 欧美国产精品一级二级三级| 久久综合国产亚洲精品| www日本在线高清视频| 久久久久久久国产电影| 18禁动态无遮挡网站| 在线观看免费视频网站a站| 精品酒店卫生间| 亚洲第一区二区三区不卡| 国产熟女午夜一区二区三区| 一本—道久久a久久精品蜜桃钙片| 多毛熟女@视频| 日韩成人av中文字幕在线观看| 黄片播放在线免费| 我要看黄色一级片免费的| 亚洲精品中文字幕在线视频| 97在线人人人人妻| 人人妻人人爽人人添夜夜欢视频| 成人亚洲精品一区在线观看| 在线看a的网站| 亚洲av电影在线进入| 久久免费观看电影| 少妇人妻久久综合中文| 婷婷色综合大香蕉| 美女脱内裤让男人舔精品视频| 叶爱在线成人免费视频播放| 咕卡用的链子| 人人妻人人添人人爽欧美一区卜| 人人澡人人妻人| 亚洲综合精品二区| 精品国产国语对白av| 男女边吃奶边做爰视频| 美国免费a级毛片| 最近2019中文字幕mv第一页| 纯流量卡能插随身wifi吗| 国产亚洲精品第一综合不卡| 丝袜喷水一区| 丝袜在线中文字幕| 在线亚洲精品国产二区图片欧美| av在线老鸭窝| 日韩欧美一区视频在线观看| 99精国产麻豆久久婷婷| 91国产中文字幕| 成人18禁高潮啪啪吃奶动态图| 香蕉丝袜av| 波多野结衣一区麻豆| 国产xxxxx性猛交| 两个人免费观看高清视频| 看十八女毛片水多多多| 超色免费av| 久久ye,这里只有精品| 9热在线视频观看99| 男男h啪啪无遮挡| 老司机深夜福利视频在线观看 | 亚洲激情五月婷婷啪啪| 精品午夜福利在线看| 欧美乱码精品一区二区三区| 成年av动漫网址| 岛国毛片在线播放| 香蕉国产在线看| 在线观看三级黄色| 亚洲激情五月婷婷啪啪| 国产成人啪精品午夜网站| 免费人妻精品一区二区三区视频| 国产97色在线日韩免费| 日韩免费高清中文字幕av| 亚洲少妇的诱惑av| 一级毛片黄色毛片免费观看视频| 成人国产麻豆网| 亚洲精品久久午夜乱码| 亚洲精品国产区一区二| 国产精品国产av在线观看| 国产精品 国内视频| 一边亲一边摸免费视频| 丁香六月欧美| 中国国产av一级| 一区二区三区乱码不卡18| 国产日韩欧美视频二区| 欧美av亚洲av综合av国产av | 欧美日韩福利视频一区二区| 亚洲欧洲精品一区二区精品久久久 | xxxhd国产人妻xxx| 丰满饥渴人妻一区二区三| 波多野结衣av一区二区av| 天天添夜夜摸| 桃花免费在线播放| 午夜福利视频精品| 丝袜喷水一区| 国产亚洲一区二区精品| 亚洲第一青青草原| 深夜精品福利| 国产福利在线免费观看视频| 十分钟在线观看高清视频www| 中文字幕高清在线视频| 免费黄色在线免费观看| 亚洲国产精品999| 欧美黑人精品巨大| 亚洲成人av在线免费| 日本vs欧美在线观看视频| 欧美久久黑人一区二区| 中文字幕精品免费在线观看视频| 国产在线一区二区三区精| 老汉色av国产亚洲站长工具| 日韩av不卡免费在线播放| 一级毛片电影观看| 欧美日韩国产mv在线观看视频| 国产精品蜜桃在线观看| 国产在线视频一区二区| 精品国产乱码久久久久久小说| 精品国产超薄肉色丝袜足j| 又大又爽又粗| 夜夜骑夜夜射夜夜干| 国产精品一区二区在线观看99| 久久影院123| 亚洲成人免费av在线播放| 亚洲av成人精品一二三区| 亚洲精品中文字幕在线视频| 看十八女毛片水多多多| 又粗又硬又长又爽又黄的视频| 国产在线一区二区三区精| 观看av在线不卡| 美女视频免费永久观看网站| 亚洲人成电影观看| 热99国产精品久久久久久7| 99精国产麻豆久久婷婷| 咕卡用的链子| 99精国产麻豆久久婷婷| 亚洲国产欧美网| 美女高潮到喷水免费观看| 青春草亚洲视频在线观看| 国产午夜精品一二区理论片| 日本猛色少妇xxxxx猛交久久| 中文字幕亚洲精品专区| 国产又色又爽无遮挡免| 永久免费av网站大全| 青青草视频在线视频观看| 麻豆精品久久久久久蜜桃| 不卡视频在线观看欧美| 在线观看免费午夜福利视频| 亚洲av电影在线观看一区二区三区| 97精品久久久久久久久久精品| 一级片'在线观看视频| 日日撸夜夜添| 精品亚洲乱码少妇综合久久| 国产免费又黄又爽又色| 免费在线观看视频国产中文字幕亚洲 | videos熟女内射| 国产精品av久久久久免费| 亚洲av成人精品一二三区| 免费日韩欧美在线观看| 国产精品香港三级国产av潘金莲 | 成人亚洲欧美一区二区av| 日韩不卡一区二区三区视频在线| 中文字幕色久视频| 亚洲国产最新在线播放| 精品久久久精品久久久| 一区福利在线观看| 在线观看免费日韩欧美大片| 久久影院123| 五月天丁香电影| 午夜免费男女啪啪视频观看| 精品国产一区二区三区久久久樱花| 日韩大片免费观看网站| 又黄又粗又硬又大视频| 国产在线一区二区三区精| 久久久久精品人妻al黑| 亚洲美女黄色视频免费看| 免费观看性生交大片5| 黄色 视频免费看| 精品人妻熟女毛片av久久网站| 亚洲色图 男人天堂 中文字幕| 久久久精品94久久精品| 久久青草综合色| 欧美日韩精品网址| av在线老鸭窝| 欧美激情高清一区二区三区 | 亚洲精品日韩在线中文字幕| 久久久精品国产亚洲av高清涩受| 亚洲色图综合在线观看| 99久久综合免费| 亚洲美女搞黄在线观看| 欧美变态另类bdsm刘玥| 亚洲精品日韩在线中文字幕| 国产免费一区二区三区四区乱码| 日日摸夜夜添夜夜爱| 少妇精品久久久久久久| 十八禁人妻一区二区| 国产亚洲最大av| 精品国产超薄肉色丝袜足j| 国产伦理片在线播放av一区| 黑人欧美特级aaaaaa片| 99国产精品免费福利视频| 亚洲美女视频黄频| 中文字幕高清在线视频| 午夜影院在线不卡| 一级,二级,三级黄色视频| 亚洲婷婷狠狠爱综合网| 久久久久久久国产电影| 国产免费福利视频在线观看| √禁漫天堂资源中文www| 99久久综合免费| 另类亚洲欧美激情| 日韩av不卡免费在线播放| 日本爱情动作片www.在线观看| 日日啪夜夜爽| 最黄视频免费看| 亚洲图色成人| 一本—道久久a久久精品蜜桃钙片| 日韩精品免费视频一区二区三区| 午夜久久久在线观看| 日韩一区二区视频免费看| 黑人猛操日本美女一级片| 日韩精品免费视频一区二区三区| 欧美精品av麻豆av| 国产成人一区二区在线| 卡戴珊不雅视频在线播放| 欧美日韩综合久久久久久| 免费日韩欧美在线观看| 亚洲激情五月婷婷啪啪| 飞空精品影院首页| 99久久精品国产亚洲精品| 国产色婷婷99| 多毛熟女@视频| 国产伦理片在线播放av一区| 啦啦啦中文免费视频观看日本| 久久久久久久久久久免费av| 老司机深夜福利视频在线观看 | 久久 成人 亚洲| 看十八女毛片水多多多| 不卡av一区二区三区| 国产精品 国内视频| 黄网站色视频无遮挡免费观看| 最黄视频免费看| 在线观看人妻少妇| 狂野欧美激情性xxxx| 考比视频在线观看| 国产av国产精品国产| 欧美最新免费一区二区三区| www日本在线高清视频| 日韩一本色道免费dvd| 国产乱来视频区| 69精品国产乱码久久久| av线在线观看网站| 亚洲欧洲日产国产| 国产成人午夜福利电影在线观看| 久久久久久久精品精品| 啦啦啦 在线观看视频| 自拍欧美九色日韩亚洲蝌蚪91| 欧美激情 高清一区二区三区| 黄色毛片三级朝国网站|