• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    雙臂夾結(jié)構(gòu)的高效抗菌劑及其治療傷口感染研究

    2021-08-31 06:08:38王曉菊李穎周思榮馮麗恒
    山西大學學報(自然科學版) 2021年4期
    關(guān)鍵詞:山西大學化工學院抗菌劑

    王曉菊,李穎,周思榮,馮麗恒*

    (1. 山西大學 分子科學研究所,教育部化學生物學與分子工程實驗室,山西 太原 030006;2. 山西大學 化學化工學院,山西 太原 030006)

    0 Introduction

    Bacterial infections have always threatened the health of people, especially those in developing coun‐tries[1-5]. It is reported that 70%-80% morbidities and mortalities is ascribed to wound infections[6], a most common acquired infection in hospital.Pseudo‐monas aeruginosa(P. aeruginosa) is generally found(about 15%) in hospital acquired wound infection[7].Except for acquired infection,sepsis caused byEsche‐richia coli(E.coli) leads to more than 8 500 deaths according to the health-care system of USA[8]. In ad‐dition,disease such as gastroenteritis triggered bySal‐monellaalso torments people around the world[9]. Al‐though the use of antibiotics has played a great role in killing pathogenic microorganisms,drug resistance re‐sulting from the misuse and overuse of antibiotics be‐come an another big medical issue[10-13]. Therefore, it still needs endeavors to develop more effective bacte‐ricides to eradicate pathogenic microorganisms[14-15].

    Various materials were developed to be antibacte‐rial agents, including inorganic and organic materi‐als[16-26]. Organic small molecules have precise molec‐ular structures and superior properties, and without threaten of long-term biotoxicity of inorganic met‐al[27-30]. Among these organic materials, quaternary ammonium salts(QAS)are considered to be a class of broad-spectrum antimicrobial agent[31-37]. Ionic form makes them water-soluble and beneficial to interact with membrane of microbes. Positive charges facili‐tate QAS to absorb onto negative charged bacteria through electrostatic interactions, then hydrophobic part can penetrates the cell wall of bacteria causing the bacteria to die[38]. QAS not only kill bacteria and inhibit their growth, but also hardly generate resis‐tance by destructing cell membrane[39-40]. Therefore,numerous QAS-based organic materials were devel‐oped to kill bacteria and some of them were market available, such as benzalkonium chloride and cetyl‐pyridinium chloride[41]. It is necessary to develop more potent QAS-based biocides to address the trou‐ble in killing bacteria for the moment.

    We synthesized a novel biocide, termed as BPBDN, based on pyridine QAS for wound infec‐tions treatment. The compound BPBDN was de‐signed to have two pyridine moieties by reacting with 2,2'-bis(4-(bromomethyl)benzyloxy) -1,1'- dinaphtha‐lene. Increased positive charges and electron donat‐ing action endow BPBDN with potent antibacterial ac‐tivity against three common pathogenic bacteria, such asE.coli(ampicillin-resistant),P. aeruginosaand

    Salmonella typhimurium(S. typhimurium). The membrane-disrupted action of BPBDN was shown to be the killing mechanism of bacteria,and lipopolysac‐charide (LPS) is demonstrated to play a role in the killing process. Therefore, BPBDN can effectively kill bacteria,but have little cytotoxicity,which is ben‐eficial for further treatment of wound infection. Final‐ly, BPBDN was successfully applied in the treatment of wound infection of living mice.

    1 Materials and Methods

    1.1 Materials and measurements

    All chemical reagents were obtained from com‐mercial companies and used without further treat‐ments. The ampicillin-resistantE. coliTOP 10 was purchased from Beijing Bio-Med Technology Devel‐opment Co., Ltd.P. aeruginosawas purchased from Beijing Solarbio Science & Technology Co., Ltd.,andS. typhimuriumwas purchased from China Cen‐ter of Industrial Culture Collection.

    UV-vis absorption spectrum was recorded on a UH5300 spectrophotometer and fluorescence emis‐sion spectrum was measured on a Hitachi F-4600 fluo‐rescence spectrophotometer with a Xenon lamp as the excitation source. Zeta potentials were measured by using Malvern ZetaSizer Nano ZS90. The morpholo‐gy ofE.coliwas observed by using scanning elec‐tron microscopy (SEM, JEOL JSM-6510). Stained bacteria were determined by a confocal laser scanning microscopy(Zeiss LSM 880).

    1.2 Synthesis of 2,2'-bis(4-(pyridine-methylene)-benzyloxy)-1,1'-di-naphthalene dibromoides(BPBDN)

    2, 2'-Bis(4- (bromomethyl)benzyloxy) -1, 1'-di‐naphthalene was synthesized according to the previ‐ous literature[42]. The synthetic process of BPBDN was shown in Scheme 1. The specific process was de‐scribed as follows: 2, 2'-dihydroxy-l, l'-dinaphthyl(0.57 g, 2.00 mmol) in 15 mL acetone was heated at 65 °C and stirred vigorously to obtain homogeneous solution. Under nitrogen atmosphere, 1,4-bis(bromo‐methyl) benzene (2.11 g, 8.00 mmol) and K2CO3(0.30 g, 2.20 mmol) were added into the homoge‐neous solution. Then, the mixture was heated and re‐fluxed for 6 h. After filtering at high temperature, the solid was extracted with dichloromethane. The col‐lected organic layer was washed with water and dried over anhydrous Na2SO4. The solvent was removed under vacuum to obtain crude product. Silica gel chromatography was used to purify the crude product with dichloromethane/petroleum ether (V/V=1:3) as the eluent to obtain 2,2'-bis(4-(bromomethyl) benzy‐loxy)-1,1'-dinaphthalene(0.45 g,34.5%).

    A mixture of 2,2'-bis(4-(bromomethyl)-benzy‐loxy)-1,1'-dinaphthalene (1.96 g, 3.00 mmol) and pyridine (0.48 mL, 6.00 mmol) in 20 mL DMF was stirred at 70 °C for 48 h under nitrogen atmosphere.After cooling to room temperature, 200 mL acetone was added into resulting solution under stirring. Then white precipitate was obtained and collected by filtra‐tion. After washed with DMF, acetone, and ether, re‐spectively, the white product BPBDN (0.92 g,37.8%) was obtained by drying under vacuum.1H NMR (DMSO-d6, 600 MHz)δ9.12 (d, 4H), 8.60 (t,2H), 8.14 (t, 4H), 8.04 (d, 2H), 7.95 (d, 2H), 7.61(d, 2H), 7.35 (t, 2H), 7.30 (d, 4H), 7.24-7.25 (m,2H), 7.02 (d, 4H), 6.97 (d, 2H), 5.75 (s, 4H), 5.15(m, 4H);13C NMR (DMSO-d6, 150 MHz)δ63.01,69.86, 115.23, 120.38, 123.41, 124.51, 127.46,128.35, 132.68, 133.86, 140.23, 145.72, 147.35,149.82, 153.49; HRMS-ESI for C46H38N2O22+(m/z):325.1461.

    1.3 Antibacterial experiments

    BPBDN (5, 10, 15, 20 μmol/L) was respectively incubated withE. coli(OD600= 0.2),P. aeruginosa(OD600= 0.2),S. typhimurium(OD600= 0.2) for 20 min in PBS. Then theE. coliandP. aeruginosasus‐pensions were serially diluted 3×104fold with PBS,respectively. TheS. typhimuriumsuspension was di‐luted 2.5×104fold with PBS. Then a 100 μL portion of the diluted bacteria solution was spread on the sol‐id medium agar plate. ForE. coli, the agar plate was supplemented with 50 μg/mL ampicillin. After incu‐bation at 37 °C for 16 h, the colonies formed and were counted. The bacteria without BPBDN treat‐ment was performed as blank group. The viability rate (VR) was calculated according to the following equation:

    WhereCis the colony forming unite (cfu) of experi‐mental groups andC0is the cfu of blank group with‐out BPBDN treatment.

    1.4 Cytotoxicity assay

    The cytotoxicity of BPBDN against HeLa and HEEC cells was evaluated by a standard methyl thia‐zolyl tetrazolium (MTT) assay. HeLa and HEEC cells were seeded into 96-well plates at a density of 5×103cells/well, respectively. After incubation for 24 h,the cells were further incubated with fresh culture me‐dium containing different concentrations of BPBDN(5, 10, 20, 30 μmol/L) for 12 h. After removed the previous medium, 10 μL of MTT (5 mg/mL) solution was added to each well. After another incubation for 3 h, 100 μL DMSO per well was added to replace the supernatant for dissolve formazan produced by cells.Then the absorbance at 490 nm was measured using iMark microplate absorbance reader (Bio-Rad). All data were conducted in triplicate and presented as mean ± SD compared to the OD values of untreated cells.

    Scheme 1 The Synthesis route of BPBDN

    1.5 Confocal laser scanning microscopy (CLSM)characterization

    E. coli(OD600= 0.2) were incubated with BPBDN (20 μmol/L) for 20 min. Untreated bacteria(without BPBDN) were incubated under exactly the same conditions, which performed as control group.After removal of unbounded BPBDN by centrifuga‐tion (10 000 r/min, 2.0 min), the obtained pellets were suspended in 100 μL PBS. A 30.0 μL portion of mixture of PI and SYTO9 was added to suspension to incubate for 20 min. Another centrifugation(10 000 r/min, 2.0 min) was performed to obtain pellets and then were suspended in 30 μL PBS. A 4.0 μL portion of the suspension was added to a clean glass slice to be observed by CLSM using a 488 nm laser for SY‐TO9 and PI.

    1.6 Zeta potential measurements

    E. coliin PBS (OD600=1.0) was incubated with BPBDN (20 μmol/L) for 20 min. After removal of unbounded BPBDN by centrifugation (10 000 r/min,3 min), the obtained pellets were suspended in 1.0 mL of sterile water for zeta potential measurements.As control,untreated bacteria and BPBDN alone were also measured under exactly the same conditions.

    1.7 Scanning electron microscopy(SEM)character‐ization

    After the antimicrobial experiments, a portion of bacteria samples were dropped onto clean silicon slic‐es and dried in clean bench. After dried,1.0%glutar‐aldehyde was used for fixation overnight. The speci‐mens were washed with sterile water thrice after re‐moval of glutaraldehyde. Ethanol was added in a graded series (40%, 70%, 90%, and 100% for 6 min,respectively) and the specimens were dried naturally in the air. The dried specimens were processed to be observed by SEM.

    1.8 Animal experiments

    All animal procedures were performed in accor‐dance with the relevant laws and guidelines approved by the Animal Care and Use Committee of Shanxi University. Female BALB/c mice (six weeks old)were obtained from Vital River Company in this ex‐periment. To build an infected wound, a surgical pro‐cedure was performed on the back of mouse andE.coli(1.0×108CFU/mL, 10 μL) was dropped on the wound (5.0 mm in diameter). All mice were divided into 2 groups (3/groups): PBS and BPBDN. After in‐fection for 24 h, 20 μL BPBDN solution (60 μmol/L)was dropped on the infected wound in BPBDN group,and 20 μL PBS was added in the same way in PBS group. The wounds of the mice were observed and imaged every two days following the treatment. After 12-day treatment, all mice were executed and major organs (such as heart, liver, lung, kidney and spleen)were dissected from the mice, processed by freezing microtome, and stained with Hematoxylin and Eosin(H&E). The pathologies photographs were obtained by using an optical microscope.

    2 Results and Discussion

    2.1 Synthesis and characterization of BPBDN

    We choose pyridine salts to construct antibacteri‐al QAS. 2,2'-dihydroxy-l,l'-dinaphthyl reacted with 1,4-bis(bromomethyl)benzene under the previously re‐ported method, and the binaphthyl derivative with two reaction sites was added into pyridine in DMF un‐der a nitrogen atmosphere. After stirring at 70 ℃for 48 h, the target compound BPBDN was obtained(37.8% yield). The structure of BPBDN was con‐firmed by1H-NMR,13C-NMR, and MS-ESI, respec‐tively.

    After verified the structure of BPBDN, the solu‐bility and photophysical properties of BPBDN were then evaluated. For absorption spectrum of BPBDN,there are two absorption peaks located at 260 nm and 337 nm,respectively. Excited at 346 nm,BPBDN dis‐plays a maximum fluorescence peak at 422 nm (Fig.1a). As shown in Fig. 1b, BPBDN has good disper‐sion in water with a diameter of 12 nm. In addition,BPBDN was measured to possess a positive potential of (26.3 ± 3.3) mV due to the presence of two pyri‐dine units (Fig. 1c). Good water solubility and posi‐tive charges promote BPBDN to interact with nega‐tively charged bacteria in biological system and fur‐ther disrupt the membrane stability. Moreover, densi‐ty functional theory (DFT) was used to perform theo‐retical calculation of BPBDN,the optimize configura‐tion and electron density distributions of the HOMO and LUMO energy levels of BPBDN were shown as Fig. 1d. The HOMO electron cloud of BPBDN was mainly distributed on binaphthyl moiety, and the LU‐MO electron density was mainly distributed on pyri‐dine moiety. Such electron cloud may affect the anti‐bacterial activity of pyridine QAS.

    Fig. 1 a)Normalized absorption and emission spectra of BPBDN in DMSO;b)Hydrodynamic size distribution of BPBDN(20 μmol/L)in water;c)Zeta potentials of BPBDN in water(20 μmol/L);d)HOMO and LUMO of BPBDN

    2.2 Cytotoxicity and antibacterial activity of BPBDN

    Pyridine,as an active antibacterial site,was intro‐duced to the construction of many QAS-based anti‐bacterials[43-44]. It was reported that electron donating group in the structure of pyridine QAS could increase the antibacterial activity[45]. Hence, we chose modi‐fied 2,2'-dihydroxy-l,l'-dinaphthyl to link two pyri‐dine molecules, resulting in increased positive charge density. To demonstrate the antibacterial activity of synthesized BPBDN,three common pathogenic bacte‐riaE.coli(ampicillin-resistant),P. aeruginosa,S. ty‐phimuriumwere used to perform the antibacterial ex‐periments. As shown in Fig. 2a, BPBDN showed an excellent antibacterial activity toward three kinds of bacteria at a low concentration (20 μmol/L) of BPBDN. The bacterial colonies growth ofE.coli,P.aeruginosaandS. typhimuriumafter treatment of BPBDN were shown in Fig. 2b. These results sug‐gested that BPBDN had a concentration-dependent ef‐fect on the bacterial growth, and could kill bacteria at a treated concentration above 20 μmol/L. For further application of infection treatment, the cytotoxicity of BPBDN was evaluated by using standard MTT assay(Fig. 2c and 2d). Within the evaluated concentration range, BPBDN had a little cytotoxicity toward HeLa and HEEC cells. It provided the possibility for anti‐bacterial experiment of BPBDNin vivo.

    Fig. 2 a)Antibacterial activity of BPBDN toward E. coli,S. typhimurium and P. aeruginosa;b)Representative photo‐graphs of E. coli,S. typhimurium and P. aeruginosa on agar plate without and with treatment of BPBDN(20 μmol/L);c)Cytotoxicity of BPBDN against mammalian cells of HeLa;d)Cytotoxicity of BPBDN against Human esophageal epithelium cells of HEEC

    2.3 Antibacterial mechanism of BPBDN

    In order to investigate the antibacterial mecha‐nism of BPBDN,E.coliwas used as model bacteria to conduct further experiment. The good interaction between biocide and bacteria is the precondition of killing bacteria. To demonstrate the interaction be‐tween BPBDN andE.coli, zeta potential measure‐ment was performed. As shown in Fig. 3a,E.colishowed negative potential of(-50.1±0.2)mV. Af‐ter treatment of BPBDN, the zeta potential ofE.colibecame more positive as (-39.5 ± 0.5) mV. It indi‐cated that positive charged BPBDN could interact with bacteria resulting in potential changes. After ver‐ification of the interaction between BPBDN and bac‐teria, we employed BacLight Live/Dead viability kit to evaluate the antibacterial effect of BPBDN under CLSM. As shown in Fig. 3b, after treatment of BPBDN, the fluorescence color fromE.colibecame green to red, indicating the bacteria were killed by

    LPS was used to pretreat BPBDN and then inves‐tigated the changes of antibacterial activity. As shown in Fig. 4a, BPBDN alone could almost kill allE.coli, while after treatment with LPS, BPBDN had nearly no antibacterial activity. The corresponding photographs of bacterial colonies on agar plates were BPBDN and then stained by PI. Moreover, scanning electron microscopy was used to observe the morphol‐ogy of bacteria with treatment of BPBDN (Fig. 3c).Obviously,the surface ofE.colitreated with BPBDN became collapsed and broken compared with that of blank group. It illustrated that BPBDN interacted with bacterial membrane and further damaged it re‐sulting in the death of bacteria. As Gram-negative bacteria,E.colihas an outer membrane covered with negative charge LPS. We suspected that LPS might play a role in the process of killing bacteria by BPBDN.shown as Fig. 4b. It indicated that BPBDN might damage the bacterial membrane by interacting with LPS.

    Fig. 3 a)Zeta potentials of E. coli without and with treatment of BPBDN(20 μmol/L);b)Confocal images of E. coli stained by SYTO 9 and PI without and with treatment of BPBDN;c)Representative SEM images of E. coli without and with treatment of BPBDN(20 μmol/L)

    Fig. 4 a)Antibacterial activity of BPBDN(20 μmol/L)before and after incubation with LPS(100 μg/mL);b)Representative agar plates photographs of E. coli after different treatment

    Fig. 5 a)Representative photographs of E. coli-infected wound after treatment of PBS and BPBDN;b)Histological images of mice organs after treatment of PBS and BPBDN

    2.4 Bactericidal activity of BPBDN in vivo

    Considering that BPBDN has effective antibacte‐rial capability and a little cytotoxicity, we further in‐vestigate the treatment of wound bacterial infection.E. coli-infected wound model was constructed on BALB/c mouse, and divided into the experimental group and the control group. The experimental group was treated with BPBND, while the blank group was treated with the same amount of PBS. After 12-day treatment, the changes of infected wounds were shown as Fig. 5a. Notably, the wounds treated with BPBDN had faster healing speed than those treated with PBS. On day 10, wounds in BPBDN group al‐most healed. The results indicated that BPBDN had antibacterial activityin vivoand facilitated the wound healing. Furthermore,the damage of major organs af‐ter treatment of BPBDN was evaluated by using he‐matoxylin and eosin(H&E). As shown in Fig. 5b,or‐gans including heart, liver, spleen, lung, and kidney had no noticeable damage because no disturbed struc‐tures were found. It demonstrated that BPBDN had good biosafetyin vivo. All above results illustrate BPBDN have promise potential to treat wound bacte‐rial infection.

    3 Conclusions

    In summary, a novel pyridine quaternary ammo‐nium salt BPBDN was designed and synthesized as an effective antibacterial agent for treatment of wound infection. BPBDN is designed to have two pyridine molecules that bridged by a binaphthyl deriv‐ative. The increased positive charge density and elec‐tron donating action make BPBDN have high antibac‐terial activity. For three common pathogenic bacteriaE.coli,P. aeruginosaandS. typhimurium, BPBDN can kill them at a low concentration of 20 μmol/L even theE.coliis ampicillin-resistant. And it is dem‐onstrated that lipopolysaccharide, covered on the out‐er membrane of Gram-negative bacteria, plays an im‐portant role in the membrane-disrupted process. Fur‐thermore, BPBDN can also be used to kill bacteriain vivoand treat the bacteria-infected wound of mice with good biosafety. It not only provides a potential antibacterial agent for treatment of wound infection,but also expended the design of pyridine-based quater‐nary ammonium salt with potent antibacterial activity.

    猜你喜歡
    山西大學化工學院抗菌劑
    使固態(tài)化學反應100%完成的方法
    氨基糖苷類抗生素與抗菌劑不同毒性比混合對大腸桿菌的聯(lián)合效應研究
    國家開放大學石油和化工學院學習中心列表
    【鏈接】國家開放大學石油和化工學院學習中心(第四批)名單
    山西大學管理與決策研究中心
    脫靶篇
    捧殺篇
    “取舍”篇
    《化工學報》贊助單位
    化工學報(2016年3期)2016-03-14 08:37:00
    織物抗菌劑有機硅季銨鹽POASC和PFASC的制備及應用
    絲綢(2015年11期)2015-02-28 14:56:49
    人妻系列 视频| 内地一区二区视频在线| 日韩伦理黄色片| 在线观看人妻少妇| 久久97久久精品| 黄片wwwwww| 黄色一级大片看看| 久久女婷五月综合色啪小说 | 麻豆国产97在线/欧美| 免费不卡的大黄色大毛片视频在线观看| 男女下面进入的视频免费午夜| 亚洲真实伦在线观看| 国产乱人视频| 亚洲经典国产精华液单| 欧美激情久久久久久爽电影| 色5月婷婷丁香| 丝袜喷水一区| 亚洲婷婷狠狠爱综合网| 亚洲精品国产色婷婷电影| 各种免费的搞黄视频| 免费电影在线观看免费观看| 22中文网久久字幕| 国产免费福利视频在线观看| 永久网站在线| 夜夜看夜夜爽夜夜摸| 国产有黄有色有爽视频| 欧美日韩综合久久久久久| 日本熟妇午夜| 国产精品99久久久久久久久| 国产精品久久久久久精品电影小说 | 18禁在线播放成人免费| 欧美另类一区| 高清av免费在线| 国产亚洲91精品色在线| 成人国产麻豆网| 99久久九九国产精品国产免费| 国产日韩欧美在线精品| 久久97久久精品| 国产精品福利在线免费观看| 成人欧美大片| 天堂俺去俺来也www色官网| a级毛片免费高清观看在线播放| 日韩av不卡免费在线播放| av天堂中文字幕网| 亚洲在久久综合| 久久亚洲国产成人精品v| 午夜免费观看性视频| 午夜视频国产福利| 看黄色毛片网站| kizo精华| 国产毛片在线视频| 天天一区二区日本电影三级| 国产伦理片在线播放av一区| a级一级毛片免费在线观看| 国产精品久久久久久久久免| 能在线免费看毛片的网站| eeuss影院久久| 国产黄色免费在线视频| 高清视频免费观看一区二区| 极品少妇高潮喷水抽搐| 亚洲精品日本国产第一区| 一区二区三区四区激情视频| 午夜激情久久久久久久| 日韩不卡一区二区三区视频在线| 欧美精品人与动牲交sv欧美| 亚洲av二区三区四区| 亚洲人成网站高清观看| 又爽又黄无遮挡网站| av一本久久久久| 久久久成人免费电影| 久久久久久久久久人人人人人人| 99热这里只有精品一区| 99热全是精品| 国产在视频线精品| 国内精品宾馆在线| 丝袜脚勾引网站| 水蜜桃什么品种好| 麻豆精品久久久久久蜜桃| 亚洲最大成人手机在线| 噜噜噜噜噜久久久久久91| 18禁裸乳无遮挡动漫免费视频 | a级毛片免费高清观看在线播放| 中文欧美无线码| 自拍偷自拍亚洲精品老妇| 国产精品成人在线| 国产精品无大码| 国产精品无大码| 国产亚洲5aaaaa淫片| 少妇被粗大猛烈的视频| av又黄又爽大尺度在线免费看| 一级片'在线观看视频| 激情五月婷婷亚洲| 成人漫画全彩无遮挡| 免费观看性生交大片5| 亚洲欧美日韩卡通动漫| 欧美xxxx黑人xx丫x性爽| 欧美日韩国产mv在线观看视频 | 最近中文字幕高清免费大全6| 亚洲aⅴ乱码一区二区在线播放| 久久影院123| 日韩欧美精品v在线| 99精国产麻豆久久婷婷| 久久鲁丝午夜福利片| 内地一区二区视频在线| 亚洲va在线va天堂va国产| 欧美激情在线99| 黑人高潮一二区| av在线蜜桃| 欧美精品人与动牲交sv欧美| 中文字幕av成人在线电影| 国产精品成人在线| 99久久精品热视频| 五月玫瑰六月丁香| 亚洲精品国产色婷婷电影| 少妇裸体淫交视频免费看高清| 最近中文字幕高清免费大全6| 亚洲aⅴ乱码一区二区在线播放| 国模一区二区三区四区视频| 中文乱码字字幕精品一区二区三区| 亚洲av免费高清在线观看| 毛片一级片免费看久久久久| 精品久久久久久久久av| 国产精品成人在线| 国产爱豆传媒在线观看| 成年女人在线观看亚洲视频 | 色网站视频免费| 欧美人与善性xxx| 成人高潮视频无遮挡免费网站| 日韩电影二区| 精品人妻一区二区三区麻豆| 久久精品久久久久久久性| 啦啦啦啦在线视频资源| 狂野欧美白嫩少妇大欣赏| 国产精品久久久久久精品电影小说 | 国产成人精品福利久久| 亚洲欧美精品自产自拍| 亚洲精品日韩av片在线观看| 一级毛片 在线播放| 久久影院123| 大片免费播放器 马上看| 色婷婷久久久亚洲欧美| 91久久精品国产一区二区成人| av免费在线看不卡| 亚洲av成人精品一二三区| 在线观看三级黄色| 亚洲最大成人av| av一本久久久久| 高清av免费在线| 成人漫画全彩无遮挡| videossex国产| 水蜜桃什么品种好| 久热久热在线精品观看| 成人综合一区亚洲| 日韩成人伦理影院| 国产老妇女一区| 汤姆久久久久久久影院中文字幕| 国内揄拍国产精品人妻在线| 亚洲精品视频女| 国产欧美亚洲国产| 午夜免费观看性视频| 久久人人爽av亚洲精品天堂 | 69av精品久久久久久| 你懂的网址亚洲精品在线观看| 欧美极品一区二区三区四区| 国内揄拍国产精品人妻在线| 国产日韩欧美在线精品| 大香蕉97超碰在线| 亚洲精品视频女| 99久久精品一区二区三区| 亚洲精品成人av观看孕妇| 国产免费一区二区三区四区乱码| 在线观看国产h片| 久久ye,这里只有精品| www.色视频.com| 国产亚洲午夜精品一区二区久久 | 久热这里只有精品99| 搞女人的毛片| 寂寞人妻少妇视频99o| 欧美日韩精品成人综合77777| 国产一区亚洲一区在线观看| 嫩草影院新地址| 国产免费一区二区三区四区乱码| 高清欧美精品videossex| 精品久久久久久久末码| 91久久精品国产一区二区成人| 大片免费播放器 马上看| 美女cb高潮喷水在线观看| 性色avwww在线观看| 日本一二三区视频观看| 性色avwww在线观看| 中文乱码字字幕精品一区二区三区| 久久精品夜色国产| 一级av片app| 欧美极品一区二区三区四区| av黄色大香蕉| 成年女人在线观看亚洲视频 | 亚洲av.av天堂| 国产一区二区亚洲精品在线观看| 我要看日韩黄色一级片| 一个人观看的视频www高清免费观看| 午夜福利视频1000在线观看| 97热精品久久久久久| 亚洲欧美清纯卡通| 成人二区视频| 国产综合懂色| 国产黄片美女视频| 国产黄频视频在线观看| 欧美精品国产亚洲| 嫩草影院新地址| 男人爽女人下面视频在线观看| 国产v大片淫在线免费观看| 国产成人精品一,二区| 国产伦在线观看视频一区| 国产毛片a区久久久久| 国产高清不卡午夜福利| 欧美人与善性xxx| 亚洲第一区二区三区不卡| 日韩中字成人| 丰满乱子伦码专区| 最近手机中文字幕大全| 99热全是精品| 丝袜喷水一区| 高清视频免费观看一区二区| 国产精品一区二区性色av| 在线观看一区二区三区| 久久久精品94久久精品| 能在线免费看毛片的网站| 美女高潮的动态| 天堂网av新在线| 五月开心婷婷网| 亚洲精品,欧美精品| 久久人人爽人人爽人人片va| 王馨瑶露胸无遮挡在线观看| 美女高潮的动态| 久热这里只有精品99| 99久久人妻综合| 男女无遮挡免费网站观看| 观看免费一级毛片| videos熟女内射| 新久久久久国产一级毛片| 成人亚洲精品av一区二区| 一级爰片在线观看| 高清在线视频一区二区三区| 九九爱精品视频在线观看| 人妻 亚洲 视频| 一个人看的www免费观看视频| 亚洲av欧美aⅴ国产| 爱豆传媒免费全集在线观看| 18禁在线无遮挡免费观看视频| 又爽又黄无遮挡网站| 搞女人的毛片| 自拍偷自拍亚洲精品老妇| 黑人高潮一二区| 欧美成人一区二区免费高清观看| 国产一级毛片在线| 国产午夜精品一二区理论片| 亚洲第一区二区三区不卡| 草草在线视频免费看| 一级二级三级毛片免费看| 免费黄色在线免费观看| 老女人水多毛片| 麻豆成人av视频| 国产有黄有色有爽视频| 夫妻性生交免费视频一级片| 国产在线男女| 国产精品.久久久| 亚洲真实伦在线观看| 亚洲电影在线观看av| 黄色日韩在线| 久久久欧美国产精品| 国产精品.久久久| 亚洲精品视频女| 一级毛片 在线播放| 久久人人爽av亚洲精品天堂 | 九九久久精品国产亚洲av麻豆| 国产视频首页在线观看| 一级毛片我不卡| 韩国高清视频一区二区三区| 中国美白少妇内射xxxbb| 亚洲欧美日韩另类电影网站 | 一区二区三区精品91| 欧美国产精品一级二级三级 | 精品酒店卫生间| 欧美日韩在线观看h| 亚洲av电影在线观看一区二区三区 | 国产中年淑女户外野战色| 别揉我奶头 嗯啊视频| 黄色一级大片看看| 哪个播放器可以免费观看大片| 一级片'在线观看视频| 亚洲av二区三区四区| 一个人看的www免费观看视频| 大又大粗又爽又黄少妇毛片口| 黄色欧美视频在线观看| 小蜜桃在线观看免费完整版高清| 另类亚洲欧美激情| 欧美老熟妇乱子伦牲交| 美女脱内裤让男人舔精品视频| 高清午夜精品一区二区三区| 国产精品久久久久久精品电影| 中国国产av一级| 亚洲人与动物交配视频| 欧美潮喷喷水| 午夜福利网站1000一区二区三区| 黑人高潮一二区| 国内精品宾馆在线| 欧美变态另类bdsm刘玥| 欧美精品人与动牲交sv欧美| 有码 亚洲区| 久久久久国产精品人妻一区二区| 成人一区二区视频在线观看| 免费观看av网站的网址| 黑人高潮一二区| 亚洲va在线va天堂va国产| 国产大屁股一区二区在线视频| 国产免费福利视频在线观看| 国产亚洲午夜精品一区二区久久 | 国产毛片在线视频| 亚洲精品,欧美精品| 777米奇影视久久| 欧美+日韩+精品| 亚洲一级一片aⅴ在线观看| 国产男女内射视频| 嫩草影院入口| 亚洲国产成人一精品久久久| 亚洲国产精品999| 国产黄频视频在线观看| 丝袜美腿在线中文| 又黄又爽又刺激的免费视频.| 国产有黄有色有爽视频| 岛国毛片在线播放| 一区二区三区精品91| 男人和女人高潮做爰伦理| 伦精品一区二区三区| 亚洲国产欧美在线一区| 中文字幕制服av| 国产女主播在线喷水免费视频网站| 日本av手机在线免费观看| 免费人成在线观看视频色| 汤姆久久久久久久影院中文字幕| 毛片一级片免费看久久久久| 成人午夜精彩视频在线观看| 2022亚洲国产成人精品| 一级二级三级毛片免费看| 国产色爽女视频免费观看| 国产精品无大码| 中文乱码字字幕精品一区二区三区| 久久久欧美国产精品| av在线观看视频网站免费| 毛片一级片免费看久久久久| 午夜精品国产一区二区电影 | 亚洲av欧美aⅴ国产| 一级片'在线观看视频| 内地一区二区视频在线| av网站免费在线观看视频| 欧美成人一区二区免费高清观看| 赤兔流量卡办理| 亚洲国产av新网站| 超碰97精品在线观看| 三级国产精品欧美在线观看| 久久6这里有精品| 久久久欧美国产精品| 爱豆传媒免费全集在线观看| 晚上一个人看的免费电影| 三级经典国产精品| 亚洲精品成人久久久久久| 春色校园在线视频观看| 91精品一卡2卡3卡4卡| 爱豆传媒免费全集在线观看| 亚洲久久久久久中文字幕| 汤姆久久久久久久影院中文字幕| 最近手机中文字幕大全| 欧美老熟妇乱子伦牲交| 少妇的逼好多水| 亚洲天堂国产精品一区在线| 亚洲精品亚洲一区二区| 一本久久精品| 亚洲最大成人中文| 久久久久久国产a免费观看| 涩涩av久久男人的天堂| 国产黄色免费在线视频| 春色校园在线视频观看| 日本熟妇午夜| 综合色av麻豆| 观看免费一级毛片| 成人黄色视频免费在线看| www.色视频.com| 亚洲,一卡二卡三卡| 国产av不卡久久| 亚洲国产色片| 在线免费十八禁| 精品99又大又爽又粗少妇毛片| 乱系列少妇在线播放| 久热久热在线精品观看| 欧美一级a爱片免费观看看| 三级国产精品欧美在线观看| 天天躁夜夜躁狠狠久久av| 自拍欧美九色日韩亚洲蝌蚪91 | 久久精品熟女亚洲av麻豆精品| 久久精品熟女亚洲av麻豆精品| 特级一级黄色大片| 一级毛片aaaaaa免费看小| 男女无遮挡免费网站观看| 亚洲av日韩在线播放| 国产 一区精品| 色哟哟·www| 国产片特级美女逼逼视频| 日韩电影二区| 在线观看av片永久免费下载| 少妇人妻一区二区三区视频| 深爱激情五月婷婷| 精品酒店卫生间| 3wmmmm亚洲av在线观看| 国国产精品蜜臀av免费| 免费黄色在线免费观看| 美女被艹到高潮喷水动态| 日韩av不卡免费在线播放| 一级a做视频免费观看| 在线免费观看不下载黄p国产| 秋霞伦理黄片| 欧美精品一区二区大全| 国产成人精品婷婷| 丝袜美腿在线中文| 女的被弄到高潮叫床怎么办| a级一级毛片免费在线观看| 九草在线视频观看| 亚洲国产av新网站| 亚洲精品影视一区二区三区av| 中文字幕制服av| 国产探花极品一区二区| 亚洲av中文av极速乱| 搡老乐熟女国产| 国产69精品久久久久777片| 久久久久久久久久成人| 日韩欧美精品v在线| 免费观看性生交大片5| 中文字幕制服av| 欧美区成人在线视频| 色吧在线观看| 好男人在线观看高清免费视频| 亚洲丝袜综合中文字幕| 亚洲精品乱码久久久久久按摩| 欧美少妇被猛烈插入视频| 亚洲欧美日韩另类电影网站 | 国产精品国产三级国产av玫瑰| 午夜亚洲福利在线播放| 国产成人aa在线观看| 久久精品熟女亚洲av麻豆精品| 九九在线视频观看精品| freevideosex欧美| 亚洲欧美成人综合另类久久久| 精品少妇久久久久久888优播| 2021少妇久久久久久久久久久| 亚洲精品乱码久久久v下载方式| 男女边摸边吃奶| 少妇的逼好多水| 啦啦啦啦在线视频资源| 在线天堂最新版资源| 自拍欧美九色日韩亚洲蝌蚪91 | 国产综合懂色| 日本色播在线视频| 国产老妇伦熟女老妇高清| 国产探花极品一区二区| 久久久久久国产a免费观看| 丰满乱子伦码专区| 免费观看的影片在线观看| 日日啪夜夜爽| 久久99精品国语久久久| 国产免费一区二区三区四区乱码| 亚洲欧美日韩另类电影网站 | 亚洲精品久久午夜乱码| 日本一本二区三区精品| 深夜a级毛片| 亚洲精品国产av成人精品| 国产精品人妻久久久久久| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产精品成人久久小说| 国产白丝娇喘喷水9色精品| 有码 亚洲区| 尤物成人国产欧美一区二区三区| 91久久精品电影网| av一本久久久久| 观看免费一级毛片| av在线观看视频网站免费| 插阴视频在线观看视频| 日韩在线高清观看一区二区三区| 亚洲精品乱久久久久久| 免费看日本二区| 日本黄大片高清| 六月丁香七月| 亚洲精品一二三| 自拍欧美九色日韩亚洲蝌蚪91 | 黄色日韩在线| 色哟哟·www| 亚洲精品国产av蜜桃| 高清午夜精品一区二区三区| 搡老乐熟女国产| 亚洲av中文字字幕乱码综合| 少妇人妻一区二区三区视频| 午夜福利视频1000在线观看| 人妻一区二区av| 国产欧美另类精品又又久久亚洲欧美| 久久久久久久大尺度免费视频| av.在线天堂| 综合色丁香网| 中文字幕久久专区| 国产精品久久久久久精品电影| 色视频www国产| 人妻夜夜爽99麻豆av| 日日摸夜夜添夜夜爱| 亚洲精品乱码久久久v下载方式| 日韩欧美精品v在线| 国产精品久久久久久精品电影小说 | 中国三级夫妇交换| 99热这里只有精品一区| 国产黄频视频在线观看| 毛片女人毛片| 欧美激情国产日韩精品一区| 少妇的逼好多水| 国产乱人偷精品视频| 精华霜和精华液先用哪个| 国产精品国产三级国产专区5o| 国内少妇人妻偷人精品xxx网站| 一区二区三区免费毛片| 国产精品99久久久久久久久| 有码 亚洲区| 成人欧美大片| 色吧在线观看| 亚洲人成网站在线播| 91午夜精品亚洲一区二区三区| 日本一二三区视频观看| 夜夜看夜夜爽夜夜摸| 欧美一区二区亚洲| 午夜免费观看性视频| 亚洲怡红院男人天堂| 午夜激情福利司机影院| 我的老师免费观看完整版| 插阴视频在线观看视频| 国产欧美亚洲国产| 国产综合精华液| 国产伦理片在线播放av一区| 欧美另类一区| 国产免费又黄又爽又色| 亚洲欧美成人综合另类久久久| 韩国高清视频一区二区三区| 国内少妇人妻偷人精品xxx网站| 日本欧美国产在线视频| 亚洲经典国产精华液单| 色播亚洲综合网| 岛国毛片在线播放| 黄色怎么调成土黄色| 久久久久久久久久成人| 中国国产av一级| 欧美潮喷喷水| 777米奇影视久久| 丝袜喷水一区| 日韩大片免费观看网站| 久久精品国产a三级三级三级| 日韩不卡一区二区三区视频在线| 国产精品一二三区在线看| 亚洲精品视频女| 国产精品99久久99久久久不卡 | 毛片一级片免费看久久久久| 特级一级黄色大片| 嫩草影院精品99| 精品久久久噜噜| 国产欧美另类精品又又久久亚洲欧美| 国产一区有黄有色的免费视频| 亚洲天堂av无毛| 天堂俺去俺来也www色官网| 久久热精品热| 在线 av 中文字幕| 国产成人精品久久久久久| 欧美xxxx黑人xx丫x性爽| .国产精品久久| 大片免费播放器 马上看| 大香蕉久久网| 久久久久久久精品精品| 日日摸夜夜添夜夜添av毛片| 国产精品爽爽va在线观看网站| 久热这里只有精品99| 日韩av免费高清视频| 日本一本二区三区精品| 日韩三级伦理在线观看| 久久精品国产a三级三级三级| 亚洲伊人久久精品综合| 直男gayav资源| 在线观看免费高清a一片| 亚洲三级黄色毛片| 精品久久久久久久久av| 国产色爽女视频免费观看| 久久久久久伊人网av| 91精品国产九色| 亚洲真实伦在线观看| 国产精品99久久99久久久不卡 | 制服丝袜香蕉在线| 亚洲四区av| 天堂中文最新版在线下载 | 涩涩av久久男人的天堂| 亚洲一级一片aⅴ在线观看| 国产高清三级在线| 国产国拍精品亚洲av在线观看| 中文字幕久久专区| 久久久久久国产a免费观看| 久久久精品免费免费高清| 亚洲av电影在线观看一区二区三区 | 国产精品不卡视频一区二区| 狂野欧美激情性xxxx在线观看| 国产毛片在线视频| 最近中文字幕高清免费大全6| 亚洲在久久综合| 一级二级三级毛片免费看| 国产伦在线观看视频一区| 午夜免费鲁丝| 亚洲经典国产精华液单|