• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of thermal fluctuations on the Kerr–Newman–NUT–AdS black hole

    2021-08-18 02:52:22SharifandQanitahAmaTulMughani
    Communications in Theoretical Physics 2021年8期

    M Sharifand Qanitah Ama-Tul-Mughani

    Department of Mathematics,University of the Punjab,Quaid-e-Azam Campus,Lahore-54590,Pakistan

    Abstract This paper is devoted to studying the impact of thermal fluctuations on thermodynamics of rotating as well as charged anti-de Sitter black holes with the Newman–Unti–Tamburino(NUT)parameter.To this end,we derive the analytic expression of thermodynamic variables,namely the Hawking temperature,volume,angular velocity,and entropy within the limits of extended phase space.These variables meet the first law of thermodynamics as well as the Smarr relation in the presence of new NUT charge.To analyze the effects of quantum fluctuations,we derive the exact expression of corrected entropy,which yields modification in other thermodynamical equations of state.The local stability and phase transition of the considered black hole are also examined through specific heat.It is found that the NUT parameter increases the stability of small black holes,while the logarithmic corrections induce instability in the system.

    Keywords:black hole,thermal fluctuations,thermodynamics,NUT parameter

    1.Introduction

    Black hole(BH)thermodynamics,with finite temperature and entropy,not only discusses its classical aspect but also provides an elementary insight into quantum gravity.In thermodynamic systems,intrinsic entropy is assumed to play an essential role in the study of their physical features and is correlated to horizon area.It is intended that BHs must have maximum entropy to avoid the infringement of the second law of thermodynamics.This scenario will reduce the entropy of the Universe;consequently,the equilibrium phase between thermal radiations and BH physics cannot be obtained.The connection between the BH area with the maximum entropy has provoked the holographic principle[1],which only remains valid for large-scale structures and gets violated near the Planck scale due to the quantum corrections in the area–entropy relation.These correction terms do not perturb BHs that have a larger horizon radius but have certain implications on small BHs whose sizes reduce due to Hawking radiation[2].As a pioneer,Das et al[3],developed the algorithm of corrected entropy and applied it to Schwarzschild,Reissner–Nordstrom(RN)and Ba?ados–Teitelboim–Zanelli(BTZ)BHs.

    The effect of thermal fluctuations on numerous BHs has been studied in the literature[4].Pourhassan et al[5]discussed the impact of logarithmic corrections on several quantities such as entropy and volume in the background of a modified Hayward BH.Using a similar approach in higherdimensional charged BHs,Pourhassan et al[6]studied the influence of corrected entropy on thermodynamics quantities.They also investigated the validity of the first law of thermodynamics.Haldar and Biswas[7]graphically analyzed the behavior of enthalpy,Helmholtz and Gibbs free energies for Lovelock anti-de Sitter(AdS)BHs and concluded that the thermodynamic quantities follow a decreasing trend against logarithmic corrections.The same authors[8]explored thermodynamic characteristics of regular BHs by incorporating thermal fluctuation effects near the equilibrium phase.Nadeem-ul-Islam et al[9]discussed the effects of quantum corrections on BTZ BHs and found that small BHs show unstable behavior due to logarithmic corrections.Ganai et al[10]discussed thermodynamic potentials of a charged rotating BTZ BH in the presence of small statistical perturbations.Upadhyay[11]discussed the effects of thermal fluctuations on the stability of charged rotating AdS BHs and showed that thermodynamic potentials satisfy the first law of BH thermodynamics.He found that for small BHs,the specific heat takes negative values,which suggests that small BHs are thermodynamically in an unstable phase.However,the specific heat is found to be always positive for larger BHs,which means that these BHs are in a stable phase.

    The Newman–Unti-Tamburino(NUT)metric[12]is one of the most interesting solutions of general relativity.This metric carries a particular type of gravitational charge named the NUT charge,which is analogous to the magnetic monopole in many respects.In theoretical physics,substantial work has been carried out to study the essential characteristics of the NUT parameter.Sharif and Wajiha[13]studied Hawking radiation as tunneling of charged fermions through event horizons of a pair of charged accelerating and rotating BHs with the NUT parameter.The same authors[14]evaluated thermodynamic quantities such as the Hawking temperature,entropy,and heat capacity in a charged rotating and accelerating BH with the NUT parameter.Jan and Gohar[15]found the exact expression of the Hawking temperature using the quantum tunneling approach in a rotating and accelerating NUT BH.Johnson[16]considered a cosmological constant as dynamical pressure and derived gravitational thermodynamics for the Taub–NUT geometry in AdS spacetime.

    Liu and Lu[17]discussed the thermodynamics of a charged rotating AdS BH in conformal gravity.They derived all the thermodynamical quantities,including mass,angular momentum,electric/magnetic charges,and their thermodynamical conjugates.They verified that the first law of thermodynamics,as well as the Smarr relation,holds.In[18]the author derived the area product,entropy product,area sum,and entropy sum of the event horizon and Cauchy horizons for the Kerr–Newman–Taub–NUT BH in fourdimensional Lorentzian geometry.He observed that these thermodynamic products are not universal(mass-independence).He also examined the entropy sum and area sum.It is shown that they all depend on the mass,charge,and NUT parameter of the background spacetime.He concluded that the Kerr–Newman-Taub–NUT BH does not satisfy the first law of BH thermodynamics and Smarr–Gibbs–Duhem relations.Hennigar et al[19]discussed the thermodynamics of the Lorentzian Taub–NUT solution and formulated the first law of BH thermodynamics with a new NUT charge.Bordo et al[20]derived the thermodynamics of Taub–NUT spacetimes in the presence of magnetic as well as electric charge and showed that the NUT parameter can be varied independently without dependence on the event horizon.

    This paper aims to study the impact of statistical perturbations on a charged rotating NUT–AdS BH.The paper is arranged as follows.The following section provides the fundamentals of spacetime and calculates the thermodynamic variables in extended phase space(EPS).In section 2,we provide the exact expression of corrected entropy,internal energy,modified mass,and Gibbs and Helmholtz free energies and graphically analyze their behavior.Moreover,we examine the stability of the BH through specific heat,and the final comments are summarized in the last section.

    2.Kerr–Newman–NUT–AdS BH

    In theoretical physics,the crucial discovery of BHs assists in the exploration of hidden characteristics of the Universe.The first-ever non-trivial spherically symmetric BH solution of the Einstein field equations is known as the Schwarzschild BH,which is extended to other BH geometries such as RN,Kerr,and Kerr–Newman by including the effects of electric charge and rotation parameters.Later,many BH solutions were developed by incorporating various sources,such as acceleration,magnetic charge,the NUT parameter as well as a cosmological constant in the usual mass of a BH.BHs with these extensions are categorized as a class of type-D spacetimes(proposed by Plebanski and Demianski[21]),which is represented by seven arbitrary parameters.The charged rotating NUT–AdS BH,in Boyer-Lindquist coordinates[22],is defined by

    with

    Here,a is the rotation parameter,w is proportional to twisting behavior of the sources,and q is defined aswhere qmand qedenote the magnetic and electric charges,respectively.Also,m is the BH mass,defines the radius with Λ as the cosmological constant,l is the NUT parameter,and k can be specified as

    The line element(1)can be re-written as

    where

    The electromagnetic potential for the considered BH solution is given as

    Generally,the NUT parameter represents the twisting property of the spacetime or gravitomagnetic monopole parameter of the central mass.However,its exact physical interpretation could not be ascertained until a static Schwarzschild mass immersed in the stationary source-free electromagnetic universe is not considered.In this scenario,the NUT parameter is associated with the twist of the electromagnetic universe by excluding the other possibility.In the absence of an electromagnetic field,it relates to the twist of vacuum space.Thus,the NUT parameter is generated by the twist of the surrounding space coupled with the mass of the source.In the Kerr–Newman–NUT–AdS BH,if the NUT parameter dominates the rotation parameter,i.e.al,a ring singularity appears and the respective solution corresponds to Kerrlike.These cases of curvature singularity have no dependence on the cosmological constant.

    Now,we analyze the effects of the NUT parameter on the quantum level.We provide thermal properties of the Kerr–Newman-NUT–AdS BH within the context of the EPS,which correlates pressure with the cosmological constant and the conjugate factor with the BH volume[23].In this scenario,the area of the event horizon is given by

    where r+denotes the event horizon of the BH,which is evaluated through χ(r+)=0.Using the horizon area,the entropy is defined as

    For the considered BH,the Hawking temperature is calculated as[15]and is evaluated as

    where the mass is given by

    The angular velocity is evaluated as

    The radial function χ becomes zero at horizon r=r+,which yields

    where ΠHis the angular velocity.From equations(10)and(11),we obtain

    where the new charge factor(N)(related to the NUT parameter),thermodynamical volume(V)and the electric potential(Φ)read

    For l=0,the derived results reduce to a charged rotating AdS BH[24].From equation(16),it can be seen that the NUT parameter is an independently varied function and can be introduced separately in the first law.The first law of thermodynamics,within the context of the EPS,is expressed as

    where the corresponding potential functions are given by

    3.Thermal fluctuations

    This section is devoted to examining the impact of thermal fluctuations on the thermodynamics of a charged rotating NUT–AdS BH.We firstly compute corrected entropy near the equilibrium position,which implies modification in other thermodynamic potentials.For this purpose,we consider the function

    where σ(E)corresponds to the quantum density of the system,and E represents the average energy with[3].Using inverse transformation,we have

    where S0=lnZ+βE is the corrected entropy,and b>0.Using the steepest descent approach near η,the above equation reduces to

    where S=S0(η)withandat η=b.Using equations(19)and(20),we obtain

    which can be written as

    Eventually,this leads to

    Without loss of generality,we can substitute a general correction parameter α in place of the factorto increase the participation of correction terms in the entropy.Around the equilibrium phase,the corrected entropy takes the form

    Notice that the above expression contains a logarithmic term which shows the small contribution of quantum corrections.It is known that statistical perturbations become efficient on the Planck scale,whereas the BHs are macroscopic stellar objects;therefore,the logarithmic corrections have little influence on the equilibrium entropy.From equations(10)and(11),the corrected entropy turns out to be

    To study the effects of state parameters,we plot entropy(corrected and uncorrected)for different choices of NUT and rotation parameters.For graphical analysis,we have considered two cases,i.e.a>l(figure 1)and al)obtains the negative value of entropy against larger choices of correction parameter and shows decreasing behavior for a specific range of horizon radius.We observe that BH entropy increases for larger modes of NUT and rotation parameters,which correspondingly increases the area of the BH.For a larger horizon radius,the behavior of corrected entropy coincides with the uncorrected one,which implies that the thermodynamics of a large BH is not affected by thermal fluctuations.From equation(16),the corrected mass can be computed as

    Figures 3 and 4 represent the graphical behavior of corrected mass for different values of NUT and rotation parameters,respectively.We observe that for a>l,the mass of the BH remains positive while,in the case of al depicts a more proficient and realistic scenario in contrast to another possibility as the mass can never be a negative quantity.Figure 3 shows that BH mass decreases until the critical horizon;thereafter,it is an increasing function.We find that the correction parameter decreases and increases the corrected BH mass before and after the horizon radius,respectively.From figure 4,one can observe a continuous increase in the physical mass,and the critical horizon radius decreases for larger values of the rotation parameter.It is found that for larger values of l and a,the BH becomes more massive.

    Figure 1.Corrected entropy versus event horizon for q=0.5,L=2 with a=1>l=0.1(left plot),0.9(right plot).Here,α=0.9,0.5,and 0 are represented by blue,green,and red curves,respectively.

    Figure 2.Corrected entropy versus event horizon for q=0.5,L=2 with l=1>a=0.1(left plot),0.9(right plot).

    Figure 3.Corrected mass versus event horizon for q=0.5,L=2 with a=1>l=0.1(left plot),0.9(right plot).

    Figure 4.Corrected mass versus event horizon for q=0.5,L=2 with l=1>a=0.1(left plot),0.9(right plot).

    The internal energy,as the total energy of the BH,is directly proportional to the temperature.Using the definition,U=M0?PV?ψN,the internal energy is evaluated as

    Figure 5 provides evidence that higher modes of the NUT parameter increase the internal energy,indicating that BHs have a high temperature.Due to the fluctuation effect,the internal energy decreases and increases before and after the horizon radius,respectively.Figure 6 shows that the internal energy becomes negative for a small BH,which shows that the BH is releasing heat to its surroundings.However,for large BHs,it depicts increasing as well as positive behavior.It is observed that the system attains negative values corresponding to larger modes of rotation.

    Figure 5.Internal energy versus event horizon for q=0.5,L=2 with a=1>l=0.1(left plot),0.9(right plot).

    Figure 6.Internal energy versus event horizon for q=0.5,L=2 with l=1>a=0.1(left plot),0.9(right plot).

    The Helmholtz free energy(F=M0?TkS0?ψN)is the direct measure of work that can be extracted from a system.If the system achieves its reversible equilibrium state,the Helmholtz free energy becomes constant.The first-order corrected Helmholtz free energy is given by

    Figure 7 shows that the small BH has higher Helmholtz free energy,whereas for the large BH,the free energy gains negative values and observes the same trend as that of the equilibrium state.The negative behavior of F shows that entropy and NUT charge dominate the physical mass of the BH.It is noted that smaller values of l yield higher values of the Helmholtz free energy.Figure 8 shows that smaller values of the rotation than the NUT parameter(l>a)lead to negative values of the Helmholtz free energy,which becomes positive by considering larger values of the rotation and correction parameters.It is important to note that leading order correction terms play a critical part in the thermodynamics of small BHs,whereas the large BHs remain unaffected.The BH mass,within the context of the EPS,is named enthalpy,and Gibbs free energy is utilized to quantify the reversible work that might be carried out by a thermodynamic system.The Gibbs energy(G=M0?TkS0?ΦQ?ψN)is derived to be

    Figure 7.Helmholtz energy versus event horizon for q=0.5,L=2 with a=1>l=0.1(left plot),0.9(right plot).

    Figure 8.Helmholtz energy versus event horizon for q=0.5,L=2 with l=1>a=0.1(left plot),0.9(right plot).

    Figures 9 and 10 indicate that the Gibbs free energy remains positive for small and medium BHs,while it becomes negative for larger values of the horizon radius.It is known that positive values of the Gibbs energy correspond to nonspontaneous reactions that require an external source of energy,whereas its negative values correspond to spontaneous reactions which can be driven without any external source.BHs with negative Gibbs energy are thermodynamically stable as they release their energy into the surroundings to acquire the low-energy state.It is seen that small and medium BHs are thermodynamically unstable as G>0.It is also noted that correction terms increase the Gibbs free energy for small BHs but,for large BHs,its negative range increases corresponding to larger values of acceleration and rotation parameters.This indicates that larger values of state parameters yield the stable model.Figure 10 implies that the negative profile of the Gibbs energy decreases against the higher choices of rotation parameter,which shows that the smaller modes lead to the stable model.

    Figure 9.Gibbs energy versus event horizon for q=0.5,L=2 with a=1>l=0.1(left plot),0.9(right plot).

    Figure 10.Gibbs energy versus event horizon for q=0.5,L=2 with l=1>a=0.1(left plot),0.9(right plot).

    Figure 11.Specific heat versus event horizon for q=0.5,L=2 with a=1>l=0.1(left plot),0.9(right plot).

    Figure 12.Specific heat versus event horizon for q=0.5,L=2 with l=1>a=0.1(left plot),0.9(right plot).

    To study the stability and phase transition,the specific heat is computed within the context of thermal fluctuations.The transition points are simply the divergence points of specific heat,whereas its positive range ensures the thermodynamically stable phase.The specific heatcan be calculated as

    The BH with larger choices of the NUT parameter yields larger heat capacity values(figure 11).From figure 12,one can observe that the specific heat diverges at critical radii r+=1.3 and r+=0.18 for a=0.1 and a=0.9,respectively,which shows that the BH experiences the first-order phase transition.Notably,the position,as well as the number of the transition,points rely on the considered choices of BH parameters.For the small BH,the uncorrected specific heat is negative,which indicates that the rotating BH is unstable even without consideration of any thermal fluctuation effects.However,for larger modes of rotation parameters,the corrected specific heat becomes more negative for small BHs without affecting the large BH’s thermodynamics.Thus,we can conclude that small BHs are thermodynamically unstable due to statistical perturbations,while this does not affect the stability of large-sized BHs.

    4.Conclusions

    In this paper,we have analyzed the influence of statistical fluctuations on the thermodynamics of the Kerr–Newman–NUT–AdS BH.For this purpose,the exact expression of the Hawking temperature,angular velocity,and entropy are computed.We have found that these variables meet the first law of thermodynamics as well as the Smarr relation in the presence of a new NUT charge in contrast to the Kerr–Newman–Taub–NUT BH[18].To investigate the influence of fluctuations,we have computed corrected entropy,which modifies other thermodynamic quantities.We have plotted these thermodynamic potentials and compared their corrected and uncorrected forms for different choices of rotation and NUT parameters.Finally,we have studied the phase transition points as well as the stability of the BH through specific heat.

    It is observed that the entropy of the BH increases against larger values of rotation and NUT parameters,which leads to the increase in the BH area.The leading order correction terms perturb the entropy of small BHs while,for BHs with a larger horizon radius,the corrected entropy observes the same behavior as that of equilibrium entropy,which implies that logarithmic corrections do not affect the thermodynamics of large BHs.For the two possibilities,i.e.a>l and l>a,the former represents the realistic scenario as it provides a positive range of the mass for small as well as large BHs.The profile of internal energy shows that the temperature of small BHs decreases for a>l,which indicates that the BH emits thermal radiation to its surroundings.However,the internal energy of the large BH increases due to quantum fluctuation effects.For smaller values of horizon radius,the Helmholtz free energy becomes positive against a>l,while it shows a negative as well as a decreasing trend for large BHs.It is noted that smaller values of l yield higher values of the Helmholtz free energy.

    The Gibbs energy is negative(positive)for l>a(a>l)indicating a stable(unstable)phase of small BHs.For BHs with a larger horizon radius,the Gibbs energy is negative for both considered cases,which leads to stable BH geometries.The profile of specific heat is studied versus the horizon radius to analyze the local stability of the BH.We observe that for large BHs,the specific heat attains positive values,which indicate that large BHs are located in a thermally stable regime[11].Moreover,the larger values of l lead the system towards stability.We observe that the BH experiences firstorder phase transition due to divergence of the specific heat at r+=1.3 against smaller values of the rotation parameter.It is concluded that thermal fluctuations(NUT parameter)induce more instability(stability)in small BHs.It is noteworthy that all the results reduce to rotating as well as charged AdS BHs[24]in the absence of the NUT parameter and,for q=a=0,it leads to the NUT–AdS BH solution[19].

    Acknowledgments

    QM would like to thank the Higher Education Commission,Islamabad,Pakistan for its financial support through the Indigenous Ph.D.Fellowship,Phase-II,Batch-III.

    日韩三级伦理在线观看| 五月伊人婷婷丁香| 久久鲁丝午夜福利片| 天堂网av新在线| 国产又黄又爽又无遮挡在线| 91精品国产九色| 久99久视频精品免费| 精品欧美国产一区二区三| 午夜精品在线福利| 久久九九热精品免费| 午夜福利视频1000在线观看| 天天躁日日操中文字幕| 亚洲精品久久国产高清桃花| 亚洲aⅴ乱码一区二区在线播放| 欧美激情在线99| 中国美女看黄片| 18禁在线无遮挡免费观看视频 | 男女下面进入的视频免费午夜| ponron亚洲| 12—13女人毛片做爰片一| 人人妻人人澡人人爽人人夜夜 | 国产极品精品免费视频能看的| 99久久精品热视频| 免费观看的影片在线观看| 亚洲久久久久久中文字幕| 欧美高清成人免费视频www| 99久久久亚洲精品蜜臀av| 国产精品免费一区二区三区在线| 99riav亚洲国产免费| 亚洲图色成人| 亚洲专区国产一区二区| 日韩精品有码人妻一区| 久久午夜福利片| 亚洲人成网站在线播| 成人高潮视频无遮挡免费网站| 欧美日本亚洲视频在线播放| 欧美性猛交黑人性爽| 可以在线观看的亚洲视频| 人妻丰满熟妇av一区二区三区| 日本黄色视频三级网站网址| 少妇的逼好多水| 最近在线观看免费完整版| 男女那种视频在线观看| 身体一侧抽搐| 久久久久久大精品| 免费看av在线观看网站| 亚洲色图av天堂| 少妇被粗大猛烈的视频| 最后的刺客免费高清国语| 国产爱豆传媒在线观看| 久久久久久久久久黄片| 成人性生交大片免费视频hd| 淫妇啪啪啪对白视频| 国产亚洲精品久久久久久毛片| 久久婷婷人人爽人人干人人爱| 91久久精品国产一区二区成人| 欧美色欧美亚洲另类二区| 国产亚洲精品综合一区在线观看| 美女大奶头视频| 91在线精品国自产拍蜜月| 亚洲精品456在线播放app| 国产精品亚洲美女久久久| 人人妻,人人澡人人爽秒播| 亚洲无线在线观看| 91精品国产九色| 国内精品一区二区在线观看| 日韩欧美一区二区三区在线观看| 一本一本综合久久| 久久久久久久久中文| 国产精品综合久久久久久久免费| 国产男人的电影天堂91| 久久国内精品自在自线图片| 老师上课跳d突然被开到最大视频| av福利片在线观看| 国产精品免费一区二区三区在线| 可以在线观看的亚洲视频| 真人做人爱边吃奶动态| 日本免费一区二区三区高清不卡| 一级毛片电影观看 | 日韩欧美三级三区| 国产人妻一区二区三区在| 免费一级毛片在线播放高清视频| 亚洲人成网站在线观看播放| 国产av在哪里看| 18禁在线播放成人免费| 蜜桃久久精品国产亚洲av| 伦理电影大哥的女人| 成人国产麻豆网| 六月丁香七月| 国产欧美日韩精品一区二区| 亚洲成人精品中文字幕电影| 午夜老司机福利剧场| 最近最新中文字幕大全电影3| 夜夜看夜夜爽夜夜摸| 久久久久久久久久黄片| 国产片特级美女逼逼视频| 国产精品电影一区二区三区| 色在线成人网| 一个人免费在线观看电影| 亚洲欧美精品综合久久99| 黄色一级大片看看| 长腿黑丝高跟| 久久精品国产99精品国产亚洲性色| 国产探花极品一区二区| 无遮挡黄片免费观看| av在线播放精品| 午夜精品国产一区二区电影 | 日韩一本色道免费dvd| a级毛片a级免费在线| a级毛色黄片| 日韩国内少妇激情av| 精品熟女少妇av免费看| 国产真实伦视频高清在线观看| 国国产精品蜜臀av免费| 在线免费观看的www视频| av视频在线观看入口| 美女 人体艺术 gogo| 国产视频内射| 亚洲人成网站在线播| 日本熟妇午夜| 精品一区二区三区视频在线观看免费| 嫩草影视91久久| 一a级毛片在线观看| 丰满乱子伦码专区| 嫩草影院新地址| 男插女下体视频免费在线播放| 我要搜黄色片| 97热精品久久久久久| 欧美3d第一页| 国产精品永久免费网站| 国产午夜精品论理片| 日本黄色视频三级网站网址| eeuss影院久久| 国产一区二区在线av高清观看| 一级毛片我不卡| 欧美极品一区二区三区四区| 啦啦啦观看免费观看视频高清| 欧美绝顶高潮抽搐喷水| 国产亚洲精品久久久com| 午夜爱爱视频在线播放| 国产中年淑女户外野战色| 高清毛片免费看| 午夜视频国产福利| 国产老妇女一区| 日本色播在线视频| 长腿黑丝高跟| 亚洲五月天丁香| 国产视频内射| 亚洲三级黄色毛片| 国产高清不卡午夜福利| 久久精品影院6| 麻豆av噜噜一区二区三区| 国产毛片a区久久久久| 久久婷婷人人爽人人干人人爱| 在现免费观看毛片| 搡老熟女国产l中国老女人| 日韩精品有码人妻一区| 久久精品夜色国产| 九九在线视频观看精品| 中文字幕熟女人妻在线| 观看免费一级毛片| 无遮挡黄片免费观看| 成人无遮挡网站| 大又大粗又爽又黄少妇毛片口| av中文乱码字幕在线| 久久6这里有精品| 成人美女网站在线观看视频| 国产不卡一卡二| 亚洲av免费高清在线观看| 岛国在线免费视频观看| 九九爱精品视频在线观看| 午夜福利在线观看免费完整高清在 | 在线播放无遮挡| 少妇丰满av| 给我免费播放毛片高清在线观看| 国产免费男女视频| 长腿黑丝高跟| 蜜桃久久精品国产亚洲av| 99久久久亚洲精品蜜臀av| 免费观看人在逋| 乱码一卡2卡4卡精品| 日韩精品青青久久久久久| av在线播放精品| 亚洲在线观看片| 欧美日本亚洲视频在线播放| 最近在线观看免费完整版| 搞女人的毛片| 国产精品日韩av在线免费观看| 99久国产av精品| 亚洲中文字幕一区二区三区有码在线看| 俄罗斯特黄特色一大片| 久久久久久伊人网av| 男插女下体视频免费在线播放| 97超碰精品成人国产| 亚洲美女视频黄频| 国产中年淑女户外野战色| 亚洲av二区三区四区| 天堂√8在线中文| 男人狂女人下面高潮的视频| 女同久久另类99精品国产91| 少妇被粗大猛烈的视频| avwww免费| 国产爱豆传媒在线观看| 亚洲av免费在线观看| 亚洲aⅴ乱码一区二区在线播放| 特大巨黑吊av在线直播| 黄色欧美视频在线观看| 亚洲精华国产精华液的使用体验 | 18+在线观看网站| 免费av不卡在线播放| 亚洲欧美成人综合另类久久久 | 亚洲国产精品合色在线| 亚洲美女黄片视频| 女生性感内裤真人,穿戴方法视频| 亚洲欧美清纯卡通| 亚洲欧美精品综合久久99| 国产精品人妻久久久久久| 老熟妇仑乱视频hdxx| 九色成人免费人妻av| 好男人在线观看高清免费视频| 精品久久久久久久久久免费视频| 日韩,欧美,国产一区二区三区 | 国产av麻豆久久久久久久| 国产视频一区二区在线看| 草草在线视频免费看| 99国产精品一区二区蜜桃av| 看黄色毛片网站| 国产伦精品一区二区三区视频9| 国产成人影院久久av| 黄色日韩在线| 天堂√8在线中文| 精品久久久久久成人av| 日韩人妻高清精品专区| 一本一本综合久久| 国产熟女欧美一区二区| 99九九线精品视频在线观看视频| 亚洲丝袜综合中文字幕| 久久精品夜夜夜夜夜久久蜜豆| 亚洲国产色片| 国产老妇女一区| 最近视频中文字幕2019在线8| 亚洲天堂国产精品一区在线| 五月伊人婷婷丁香| 亚洲人与动物交配视频| 国产一级毛片七仙女欲春2| 女人十人毛片免费观看3o分钟| 99热精品在线国产| 99久久精品热视频| 午夜福利成人在线免费观看| 日韩欧美精品v在线| 别揉我奶头~嗯~啊~动态视频| 国产精品亚洲美女久久久| 亚洲精品成人久久久久久| 嫩草影视91久久| 国产精品1区2区在线观看.| 一级a爱片免费观看的视频| 噜噜噜噜噜久久久久久91| 精品欧美国产一区二区三| 日本一本二区三区精品| 国产熟女欧美一区二区| 91麻豆精品激情在线观看国产| 日本一二三区视频观看| 真实男女啪啪啪动态图| 欧美最新免费一区二区三区| 日韩中字成人| 成人午夜高清在线视频| 精品午夜福利视频在线观看一区| 成人永久免费在线观看视频| 国产av在哪里看| 九九热线精品视视频播放| 亚洲欧美中文字幕日韩二区| 亚洲成av人片在线播放无| 97碰自拍视频| 国产高清有码在线观看视频| 久久精品国产鲁丝片午夜精品| 亚洲欧美精品自产自拍| 五月伊人婷婷丁香| 九九在线视频观看精品| 国产高清视频在线观看网站| 男插女下体视频免费在线播放| 亚洲中文日韩欧美视频| 看非洲黑人一级黄片| 岛国在线免费视频观看| 内地一区二区视频在线| 人人妻人人澡人人爽人人夜夜 | 成人特级黄色片久久久久久久| 久久精品综合一区二区三区| 欧美高清性xxxxhd video| 午夜福利在线观看免费完整高清在 | 男人舔奶头视频| 一夜夜www| 淫妇啪啪啪对白视频| 一级a爱片免费观看的视频| 最后的刺客免费高清国语| 午夜日韩欧美国产| 国产精品女同一区二区软件| 免费黄网站久久成人精品| 亚洲经典国产精华液单| 日韩欧美一区二区三区在线观看| 一级毛片久久久久久久久女| 如何舔出高潮| 久久鲁丝午夜福利片| 2021天堂中文幕一二区在线观| 成人特级av手机在线观看| 一级黄片播放器| 国产伦在线观看视频一区| 久久久午夜欧美精品| 亚洲性夜色夜夜综合| 老司机午夜福利在线观看视频| 国产高清不卡午夜福利| 成人无遮挡网站| 老熟妇乱子伦视频在线观看| 卡戴珊不雅视频在线播放| 搞女人的毛片| 最近中文字幕高清免费大全6| 欧美日本视频| 久久久久久久午夜电影| 久久久精品大字幕| 日韩三级伦理在线观看| 午夜精品一区二区三区免费看| 一进一出好大好爽视频| 级片在线观看| 日韩精品有码人妻一区| 九九爱精品视频在线观看| av国产免费在线观看| aaaaa片日本免费| 91久久精品电影网| 国产美女午夜福利| 久久热精品热| 国产麻豆成人av免费视频| 国内精品美女久久久久久| 69人妻影院| 成人永久免费在线观看视频| 日韩成人av中文字幕在线观看 | 狠狠狠狠99中文字幕| 91在线观看av| 99九九线精品视频在线观看视频| 国产成人一区二区在线| 嫩草影院新地址| 欧美+日韩+精品| 一级毛片久久久久久久久女| 日韩国内少妇激情av| 日韩欧美免费精品| 精品少妇黑人巨大在线播放 | 久久精品综合一区二区三区| 久久久久久久久中文| 色综合站精品国产| 91在线观看av| 在线观看美女被高潮喷水网站| 午夜免费男女啪啪视频观看 | 日韩精品中文字幕看吧| 一个人观看的视频www高清免费观看| 日本熟妇午夜| 卡戴珊不雅视频在线播放| 国内精品一区二区在线观看| 少妇猛男粗大的猛烈进出视频 | 国产精品一及| 国产又黄又爽又无遮挡在线| 波多野结衣高清作品| 成人美女网站在线观看视频| 精品久久久久久久久av| 小蜜桃在线观看免费完整版高清| a级毛片a级免费在线| 久久久久久久久中文| 久久久久久大精品| 国产亚洲精品av在线| 最近视频中文字幕2019在线8| 97超碰精品成人国产| 中文字幕熟女人妻在线| 欧美激情国产日韩精品一区| 日本爱情动作片www.在线观看 | 国产亚洲av嫩草精品影院| 欧美三级亚洲精品| 老司机影院成人| 色哟哟哟哟哟哟| 最近在线观看免费完整版| 国产女主播在线喷水免费视频网站 | 又黄又爽又免费观看的视频| 天天躁日日操中文字幕| 你懂的网址亚洲精品在线观看 | 毛片一级片免费看久久久久| 国产视频一区二区在线看| 国产成人影院久久av| 亚洲国产高清在线一区二区三| 性色avwww在线观看| 中文亚洲av片在线观看爽| 最近手机中文字幕大全| 日本黄大片高清| 欧美色视频一区免费| 精品一区二区三区人妻视频| 人妻少妇偷人精品九色| 人人妻,人人澡人人爽秒播| 国产精品一二三区在线看| 午夜福利18| 中出人妻视频一区二区| 一区福利在线观看| 级片在线观看| 哪里可以看免费的av片| 小蜜桃在线观看免费完整版高清| 亚洲av一区综合| 久久鲁丝午夜福利片| 免费搜索国产男女视频| 日本黄色视频三级网站网址| 精品人妻熟女av久视频| 亚洲美女黄片视频| 亚洲美女搞黄在线观看 | 日日摸夜夜添夜夜添小说| 女生性感内裤真人,穿戴方法视频| 看黄色毛片网站| 偷拍熟女少妇极品色| 欧美人与善性xxx| 一区二区三区四区激情视频 | 亚洲av.av天堂| 国产 一区 欧美 日韩| 丰满的人妻完整版| 天堂网av新在线| 国产精品日韩av在线免费观看| 国产精品不卡视频一区二区| 最近中文字幕高清免费大全6| 欧美不卡视频在线免费观看| 日韩高清综合在线| 欧美一区二区精品小视频在线| 欧美色视频一区免费| av福利片在线观看| 丝袜美腿在线中文| 欧美日韩一区二区视频在线观看视频在线 | 搡女人真爽免费视频火全软件 | 黄片wwwwww| 国产乱人偷精品视频| 国产精品,欧美在线| 联通29元200g的流量卡| 黄色视频,在线免费观看| 伊人久久精品亚洲午夜| 最后的刺客免费高清国语| 亚洲中文字幕一区二区三区有码在线看| 国产人妻一区二区三区在| av天堂在线播放| 欧美中文日本在线观看视频| 99久久精品热视频| 六月丁香七月| 国产精品不卡视频一区二区| 丝袜美腿在线中文| 亚洲第一区二区三区不卡| 在线免费十八禁| 亚洲精品日韩在线中文字幕 | 久久久久国产网址| 18禁裸乳无遮挡免费网站照片| 日本黄大片高清| 一级黄片播放器| 日韩中字成人| 亚洲天堂国产精品一区在线| 国产一区二区亚洲精品在线观看| 91狼人影院| 夜夜爽天天搞| 三级国产精品欧美在线观看| 成年免费大片在线观看| 男人舔女人下体高潮全视频| 久久久精品大字幕| 99精品在免费线老司机午夜| 久久久精品欧美日韩精品| 免费看光身美女| 一边摸一边抽搐一进一小说| 日韩人妻高清精品专区| 免费看日本二区| 久久久成人免费电影| 成人美女网站在线观看视频| av在线天堂中文字幕| 不卡视频在线观看欧美| 久久久久九九精品影院| 人人妻,人人澡人人爽秒播| 午夜福利成人在线免费观看| 亚洲18禁久久av| 欧美潮喷喷水| 亚洲七黄色美女视频| 在线天堂最新版资源| 最近的中文字幕免费完整| av国产免费在线观看| 久久人妻av系列| 久久久久久大精品| 网址你懂的国产日韩在线| 亚洲av免费高清在线观看| av中文乱码字幕在线| 九九爱精品视频在线观看| 欧美精品国产亚洲| 色5月婷婷丁香| 欧美成人a在线观看| 国产免费一级a男人的天堂| 欧美3d第一页| 国产精品国产三级国产av玫瑰| 看黄色毛片网站| 少妇猛男粗大的猛烈进出视频 | 久久精品综合一区二区三区| 日韩精品中文字幕看吧| 最近在线观看免费完整版| 亚洲自拍偷在线| 亚洲天堂国产精品一区在线| 噜噜噜噜噜久久久久久91| 三级经典国产精品| 国产成人aa在线观看| eeuss影院久久| 欧美一级a爱片免费观看看| 亚洲性夜色夜夜综合| 在线观看66精品国产| 亚洲人与动物交配视频| 搡女人真爽免费视频火全软件 | 我的女老师完整版在线观看| 亚洲欧美成人精品一区二区| 中国美女看黄片| 欧美+亚洲+日韩+国产| 亚洲久久久久久中文字幕| 哪里可以看免费的av片| 又黄又爽又免费观看的视频| 麻豆成人午夜福利视频| 国产不卡一卡二| 99热精品在线国产| 欧美zozozo另类| 悠悠久久av| 精品日产1卡2卡| 亚洲熟妇熟女久久| 99久久九九国产精品国产免费| 欧美色视频一区免费| 97人妻精品一区二区三区麻豆| 国产在线精品亚洲第一网站| 成人漫画全彩无遮挡| 亚洲人成网站在线播放欧美日韩| 在线免费观看不下载黄p国产| 国产不卡一卡二| 一级毛片aaaaaa免费看小| 99国产精品一区二区蜜桃av| ponron亚洲| 亚洲性久久影院| 男女之事视频高清在线观看| 三级经典国产精品| 日韩欧美精品v在线| 国产成人aa在线观看| 国产av麻豆久久久久久久| 国产精品爽爽va在线观看网站| 欧美绝顶高潮抽搐喷水| av在线播放精品| 国产精品亚洲一级av第二区| 成人性生交大片免费视频hd| 久久欧美精品欧美久久欧美| 久久精品国产99精品国产亚洲性色| 国产不卡一卡二| 观看免费一级毛片| 国产精品三级大全| 欧美潮喷喷水| 欧美日韩乱码在线| 日韩精品中文字幕看吧| 18禁裸乳无遮挡免费网站照片| 1000部很黄的大片| 久久精品国产亚洲网站| 日本色播在线视频| 一本精品99久久精品77| 欧美精品国产亚洲| 成人永久免费在线观看视频| 亚洲精品影视一区二区三区av| 精品一区二区三区视频在线观看免费| 狂野欧美白嫩少妇大欣赏| 欧美bdsm另类| 精品久久久久久久久久久久久| 五月玫瑰六月丁香| 国产亚洲精品综合一区在线观看| 99国产精品一区二区蜜桃av| 精品一区二区三区视频在线观看免费| 久久人人爽人人片av| 五月伊人婷婷丁香| 亚洲图色成人| 国产成人福利小说| 不卡视频在线观看欧美| 禁无遮挡网站| 22中文网久久字幕| 成人二区视频| 99久久中文字幕三级久久日本| 午夜视频国产福利| 搡老妇女老女人老熟妇| 欧美日韩综合久久久久久| 1024手机看黄色片| 午夜影院日韩av| 亚洲国产精品国产精品| 国产一区二区在线av高清观看| 亚洲欧美日韩东京热| 少妇猛男粗大的猛烈进出视频 | 级片在线观看| 哪里可以看免费的av片| 国产伦一二天堂av在线观看| 国产精品久久视频播放| 国内少妇人妻偷人精品xxx网站| 成人二区视频| 香蕉av资源在线| 赤兔流量卡办理| 91在线精品国自产拍蜜月| 国产熟女欧美一区二区| 欧美xxxx性猛交bbbb| 少妇人妻一区二区三区视频| 亚洲国产精品久久男人天堂| 亚洲18禁久久av| 国产午夜精品论理片| 久久天躁狠狠躁夜夜2o2o| 人妻夜夜爽99麻豆av| 成人鲁丝片一二三区免费| 国产成人91sexporn| 大又大粗又爽又黄少妇毛片口| 我要看日韩黄色一级片| 久久鲁丝午夜福利片| 午夜精品在线福利| 蜜臀久久99精品久久宅男| 欧美成人精品欧美一级黄| 一进一出好大好爽视频| 亚洲中文日韩欧美视频| 91久久精品国产一区二区成人| 国产一级毛片七仙女欲春2| 麻豆精品久久久久久蜜桃| 午夜a级毛片| 国产欧美日韩精品一区二区|