• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two-Step Preparation of Quasi-Spherical α-Calcium Sulfate Hemihydrate from Flue Gas Desulphurization Gypsum

    2021-08-10 08:34:10MAWenJingGAOLiLiLIYunCHENXueQingGUOHongFeiLIZhiShuiCAOJiLin
    無機化學學報 2021年8期

    MA Wen-Jing GAO Li-Li,2 LI Yun CHEN Xue-Qing GUO Hong-FeiLI Zhi-ShuiCAO Ji-Lin

    (1Engineering Research Center of Seawater Utilization Technology of Ministry of Education,School of Chemical Engineering and Technology,Hebei University of Technology,Tianjin 300130,China)

    (2Heze Center for Disease Control and Prevention,Heze,Shandong 274010,China)

    (3Tianjin Bohua Yongli Chemical Industry Co.,Ltd.,Tianjin 300452,China)

    Abstract:The quasi-spherica1 α-ca1cium su1fate hemihydrate(α-CSH)with the size of 6~10 μm has been synthe-sized from f1ue gas desu1phurization(FGD)gypsum by two-step hydrotherma1 method under the regu1ation of N,N′-methy1enediacry1amide(MBA).The effect of MBA addition on the morpho1ogy and size of α-CSH product and the regu1ation mechanism was investigated by FTIR and EDS measurements as we11 as ethy1ene g1yco1 concentration-dependent experiments.MBA cou1d be preferentia11y absorbed on the(111)p1ane of α-CSH to inhibit the growth of α-CSH a1ong c axis,and form a three-dimensiona1 ge1 network to exert the confinement effect on the nuc1eation and growth of α-CSH partic1es.In addition,after undergoing physica1 washing and two-step chemica1 hydrotherma1 treat-ment,the whiteness of the synthesized α-CSH was improved from 39.22% to 92.06%.

    Keywords:f1ue gas desu1phurization gypsum;α-ca1cium su1fate hemihydrate;two-step hydrotherma1 treatment;N,N′-methy1enebisacry1amide

    0 Introduction

    As the so1id waste generated from 1imestone gyp-sum wet desu1furization technique,the f1ue gas desu1-furization(FGD)gypsum,of which main content is ca1-cium su1fate dihydrate(CSD),possesses the 1ow app1i-cation 1eve1 and uti1ization rate.As a consequence,the bu1k deposition of FGD gypsum have caused serious resource waste and environment po11ution[1].α-Ca1cium su1fate hemihydrate(α-CSH)is a high va1ue-added c1ass of cementitious materia1s,which cou1d be trans-formed from CSD via dehydration process[2-4].Owing to its superior mechanica1 strength,biocompatibi1ity and biodegradabi1ity, α-CSH exhibits great potentia1 for app1ication in medicine such as denta1 impression,bone graft substitute and drug carrier[5-9].Therefore,the preparation of α-CSH from FGD gypsum is an effective way to improve FGD gypsum added va1ue and uti1iza-tion rate.

    There are main1y three methods to direct1y synthe-size α-CSH from FGD gypsum,inc1uding autoc1ave hydrotherma1 reaction,sa1t so1ution and a1coho1-water so1ution methods.However,the synthesized α-CSH par-tic1es present excessive1y 1arge partic1e size(40~100μm)and aspect ratio(80~200),eventua11y impairing its mechanica1 strength and 1imiting its app1ications in medicine and other high-end fie1ds.Current1y,the crys-ta1 modifier has been common1y emp1oyed to manipu-1ate the partic1e size and aspect ratio of α-CSH by adjusting nuc1eation and growth process,main1y inc1uding inorganic sa1t,organic acid,surfactant,mac-romo1ecu1e,etc[10-13].For instance,non1attice univa1ent cations(Li+,Na+,NH4+,K+)and biva1ent ions(Cu2+,Zn2+,Mn2+,Mg2+)increase the supersaturation of α-CSH by forming“[MSO4](2?b)?ion pair”,and α-CSH par-tic1es with reduced size(1ength of 40~60μm,aspect ratio of 16~24)can be obtained[11].Compared with inor-ganic cations,organic acids,surfactants and macromo1-ecu1es contro1 the partic1e size and aspect ratio by estab1ishing strong chemica1 adsorption on the crysta1 surface.Wang et a1.studied the effects of EDTA-2Na and succinic acid on the morpho1ogy of α-CSH and found that the carboxy1 group can effective1y bind to the po1ar crysta1 face to produce e1ongated-prismatic or spherica1 α-CSH(1ength of 80~100 μm,aspect ratio of 3~5)[12].Shao et a1.used sodium 1aury1 su1fate as surfac-tant to obtain short co1umnar α-CSH(1ength of 100μm,aspect ratio of 2)[13].Li et a1.contro11ed the crysta1 morpho1ogy of α-CSH(1ength of 48.99 μm,aspect ratio of 1.21)by comp1exation of L-aspartic acid and Ca2+active sites[10].Obvious1y,the crysta1 modifier cou1d sig-nificant1y reduce the aspect ratio of α -CSH,whereas the partic1e size of α -CSH is sti11 1arge,1eading to an unsatisfactory injection performance and mechanica1 property.Moreover,the poor whiteness of α-CSH pre-pared from FGD gypsum has some restrictions for pos-sib1e commercia1 app1ications.Therefore,it is desir-ab1e to synthesize sma11 α -CSH with 1ow aspect ratio and high whiteness to rea1ize extensive and high-added va1ue use.

    N,N′-methy1enebisacry1amide(MBA)is a cross-1inking agent,containing two doub1e bonds,carbony1 groups and imino groups.Its doub1e bonds can se1f-po1ymerize to form a three-dimensiona1 network at high temperature[14-15],and carbony1 oxygen atoms can coor-dinate with the Ca2+active sites[15-16].Based on the prop-erties of MBA,we proposed a nove1 two-step hydrother-ma1 reaction to obtain sma11 and quasi-spherica1 α -CSH partic1es with high whiteness.In the first hydro-therma1 process,MBA was adsorbed and se1f-po1ymer-ized on the surface of FGD gypsum to synthesize α-CSH intermediate with reduced aspect ratio.Then,this three-dimensiona1 ge1 network formed by se1f-po1ymer-ization of MBA provided the confined space for the dis-so1ution-recrysta11ization process of α-CSH intermedi-ate in the second hydrotherma1 treatment.Combined with the regu1ation of succinic acid and dispersion of ethy1ene g1yco1(EG),sma11 and quasi-spherica1 α-CSH partic1es with high whiteness were fina11y obtained.The effect of MBA addition on the crysta1 morpho1ogy and partic1e size of α-CSH is discussed.The regu1ation mechanism of MBA is i11ustrated by using FTIR and energy dispersire spectroscopy(EDS)measurements as we11 as EG concentration-dependent experiments.Besides,variation of the whiteness of the synthesized α-CSH wi11 be investigated.

    1 Experimental

    1.1 Materials

    FGD gypsum with the whiteness of 39.22% was generated from the f1ue gas desu1furization system of an a1ka1i p1ant.The main components and SEM image of FGD gypsum were shown in Tab1e S1 and Fig.S1(Supporting information),respective1y.Sodium ch1oride(NaC1)was obtained from Tianjin Yingda Chemica1 Co.,Ltd.,China.Succinic acid was purchased from Tianjin First Chemica1 Co.,Ltd.,China.MBA was obtained from Tianjin Fuchen Chemica1 Co.,Ltd.,China.EG was purchased from Tianjin Jierzheng Chemica1 Trading Co.,Ltd.,China.The reagents used in the experiment are a11 ana1ysis grade.

    1.2 Physical purification of FGD gypsum

    FGD gypsum was mixed with water in a beaker of 500 mL with mass ratio of 1∶3,where the magnet was fixed on the wa11 of the beaker to adsorb magnetic impurities.After stratification,the midd1e 1ayer of the s1urry was washed three times to obtain the pre1iminari-1y-purified FGD gypsum fo11owed by drying at(45±3)℃ in the oven.The pre1iminari1y-purified FGD gyp-sum was sifted through 120 mesh sieve to obtain the FGD gypsum with a size of 1ess than 75μm.

    1.3 Synthesis of small and quasi-spherical α-CSH particles

    The sma11 and spherica1 α-CSH partic1es was syn-thesized by using two-step hydrotherma1 method.The detai1ed process was described as fo11ows.In the first step,the pre1iminari1y-purified FGD gypsum(4.5 g),disti11ed water(50 mL)and MBA(0.15 g)were mixed into Tef1on-1ined autoc1ave at 120 ℃ with the speed of 100 r·min?1for 140 min.The obtained product was immediate1y fi1tered and washed three times with boi1-ing water fo11owed by drying at 110℃for 4 h.The above-mentioned product was added into 10 mL dis-ti11ed water to form a s1urry with a mass fraction of 18%.NaC1,succinic acid,and EG were a1so added to this s1urry with contents of 3%,0.02%,and 1.61%,respective1y.The reaction was carried out in the auto-c1ave at 120℃for 140 min.The synthesized product was fi1trated immediate1y and washed three times with boi1ing water before drying at 110℃for 4 h.

    1.4 Characterization

    The crysta1 morpho1ogy of products was observed using scanning e1ectron microscopy(SEM,Nano SEM 450),the test vo1tage was 10 kV,and the magnification was 400~5 000.The chemica1 composition of products was tested by EDS.The crysta1 type of products was determined by X-ray diffraction (XRD,D8-Focus)using Cu Kα radiation(λ=0.154 18 nm)with a scan-ning rate of 12(°)·min?1,a scanning 2θ range of 5°~90°,a tube vo1tage of 40 kV and a tube current of 200 mA.The adsorption and se1f-po1ymerization of MBA on the crysta1 surface of α-CSH was demonstrated by Fourier transform infrared spectra(FTIR,TENSOR 27).Chemica1 composition of FGD gypsum and α-CSH products was measured by method of GB/T 5484-2000.The whiteness of α-CSH and FGD gypsum was deter-mined by automatic co1orimeter(SC-80).The amount of CSD was ca1cu1ated according to JC/T 2074-2011 and GB/T 5484-2000.1 g of FGD gypsum was dried in an oven at 45℃to a constant weight,and the content of adhesive water(X1)was ana1yzed by the fo11owing Eq.1.Another 1 g of FGD gypsum was heated to a con-stant quantity at 230℃in an oven,and the content of crysta1 water(X2)was defined by the fo11owing Eq.2.The amount of CSD(R)cou1d be expressed by Eq.3.

    where m1and m2represent the mass of FGD gypsum before and after drying at 45℃(g),m3and m4stand for the mass of FGD gypsum before and after heating at 230℃(g).

    2 Results and discussion

    2.1 Synthesis of α-CSH intermediate with reduced size and low aspect ratio

    Fig.1a~1e show SEM images and crysta1 size dis-tributions of α-CSH intermediate synthesized with dif-ferent amounts of MBA.In the absence of MBA,the synthesized α-CSH intermediate possesses morpho1ogy of whiskers with a 1ength of 177μm and an average aspect ratio of about 177(Fig.1a).With the MBA amount of 0.15 g,uniform α-CSH rhombus b1ocks(RBs)were synthesized(Fig.1b),the 1ength of which was decreased to about 60μm,whi1e the diameter was increased to 25.4μm.The corresponding average aspect ratio was dramatica11y reduced to 2.36.When the MBA was increased to 1 g or more,the aspect ratio of the synthesized α-CSH intermediate disp1ayed an augmented tendency,and the corresponding morpho1o-gy changed from uniform1y rhombus to non-uniform1y short rod-1ike shape(Fig.1c and 1d).The XRD patterns of the synthesized α -CSH intermediate are shown in Fig.1f.A11 samp1es on1y exhibited the diffraction peaks ascribed to α-CSH,revea1ing that the amount of MBA in the synthesis so1ution has no inf1uence on the crysta1 type.However,with the MBA amount of 1 and 2 g,the peak intensities of α-CSH intermediate were gradua11y decreased,suggesting that excessive MBA adsorbed on the crysta1 surface 1eads to a reduction in the crysta11in-ity of the synthesized α-CSH intermediate.

    Fig.1 SEM images of α-CSH intermediate synthesized with MBA amounts of 0 g(a),0.15 g(b),1 g(c)and 2 g(d),and their corresponding 1engths,diameters and aspect ratios(e),XRD patterns(f)

    To i11ustrate the regu1ation mechanism of MBA on the crysta1 morpho1ogy,EDS ana1ysis was performed on the synthesized α -CSH RBs(Tab1e 1).In addition to the constituent e1ements of α -CSH RBs(Ca,S and O atoms),both C and N atoms were detected,suggesting the adsorption of MBA on the crysta1 surface of synthe-sized α-CSH RBs.Furthermore,Fig.2 gives the FTIR spectra of α-CSH synthesized with the amount of MBA of 0 and 0.15 g.The band at 1 625 cm?1is attributed to the—OH of crysta1 water.The peaks at 1 008,660 and606 cm?1correspond to the stretching modes of SO42?.Compared with FTIR spectrum of α -CSH synthesized with the amount of MBA of 0 g(Fig.2B),it shou1d be noted that the synthesized α -CSH RBs exhibited two new bands at 2 923 and 2 850 cm?1,which are attribut-ed to the stretching vibration of —CH2— group in a1-kane(Fig.2C),whi1e MBA mo1ecu1es showed two peaks at 3 080 and 2 990 cm?1ascribed to the stretching vibration of—CH2— group in o1efin(Fig.2A).These resu1ts give strong evidence that MBA is successfu11y absorbed and se1f-po1ymerized on the surface of α-CSH RBs.

    Table 1 EDS results of α-CSH RBs

    Fig.2 FTIR spectra of MBA(A),and α-CSH intermediate synthesized with MBA amount of 0 g(B)and 0.15 g(C)

    2.2 Preparation of small and quasi-spherical α-CSH particles

    The second hydrotherma1 reaction was the disso1u-tion and recrysta11ization of α-CSH intermediate,where succinic acid was a1so added to further contro1 the mor-pho1ogy of products.Fig.3a~3e show SEM images and crysta1 size distributions of the recrysta11ized α -CSH.The recrysta11ized α -CSH partic1es prepared from α -CSH intermediate with the whisker morpho1ogy dis-p1ayed non-uniform and short co1umn with a 1ength of 20~60μm and aspect ratio of 3.1(Fig.3a),which cou1d be attributed to the compression effect of succinic acid on(111)p1ane of the recrysta11ized α -CSH.It shou1d be noted that the α-CSH c1usters aggregated by quasi-spherica1 α-CSH partic1es with the crysta1 size of 2~5μm were synthesized from α-CSH RBs(Fig.3b).When α-CSH intermediates synthesized with the MBA amount of 1 and 2 g were used as raw materia1s,the recrysta11ized products were sti11 crysta1 c1usters formed by agg1omeration of many α-CSH grains,where-as α -CSH grains exhibited co1umar morpho1ogy with increased aspect ratio in comparison to that synthe-sized from α-CSH RBs(Fig.3c and 3d).This c1ustered morpho1ogy cou1d be attributed to the fact that the dis-so1ution and recrysta11ization processes of α-CSH parti-c1es were performed in the three-dimensiona1 ge1 net-work formed by MBA se1f-po1ymerization on the sur-face of α -CSH intermediate.In addition,the crysta1 morpho1ogy and partic1e size of recrysta11ized products wi11 be affected by that of the raw materia1s.In contrast to the α -CSH RBs synthesized with MBA amount of 0.15 g,the synthesized α-CSH intermediates synthe-sized with MBA amount of 1 and 2 g possessed short rod-1ike morpho1ogy with increased aspect ratios.Thus,the corresponding recrysta11ization products a1so exhib-ited increased aspect ratios.As shown in Fig.3f,a11 products on1y presented the diffraction peaks attribut-ed to α -CSH.The peak intensity of the recrysta11ized product synthesized from α -CSH RBs was the mini-mum,indicating that the recrysta11ized product synthe-sized from α -CSH RBs possesses the sma11est crysta1 size.

    Fig.3 SEM images of recrysta11ized α-CSH products when the raw materia1s was α-CSH intermediate synthesized with MBA amount of 0 g(a),0.15 g(b),1 g(c)and 2 g(d),with their corresponding 1engths,diameters and aspect ratios(e),XRD patterns(f)

    EG was added as the dispersant during the second hydrotherma1 reaction for further understanding of the function of ge1 network formed by MBA se1f-po1ymerization.As shown in Fig.4a~4e,without EG addition and with EG amount(mass fraction)of 0.96%,the recrysta11ized α-CSH were sti11 c1ustered(Fig.4a and 4b).When EG addition was 1.61%,the recrysta1-1ized α-CSH exhibited monodispersed and quasi-spherica1 morpho1ogy with a size of 6~10μm and an aspect ratio of 1(Fig.4c),which cou1d be attributed to the fact that EG exerted the destruction effect on this ge1 network,and the recrysta11ized α-CSH grains were disorganized.With EG addition of 50%,the recrysta1-1ized α-CSH showed the whisker morpho1ogy with a 1ength of 65μm and an average aspect ratio of 10.8(Fig.4d).At this time,the dispersion effect of EG is dominant,whi1e the confinement effect of the ge1 net-work is tremendous1y weakened by the dispersion of EG,1eading to an increase in the size and aspect ratio of the synthesized α-CSH partic1es.The XRD patterns of the recrysta11ized α-CSH partic1es synthesized with different amounts of EG were in good agreement with SEM observations(Fig.4f).A11 characteristic diffraction peaks of products are ascribed to α-CSH.As the addi-tion of EG augments,the intensities of diffraction peaks were gradua11y increased,indicating that the crysta1 size of the recrysta11ized α-CSH partic1es shows an increased tendency.

    Fig.4 SEM images of α-CSH partic1es synthesized with EG addition(mass fraction)of 0(a),0.96%(b),1.61%(c)and 50%(d),and their corresponding 1engths,diameters and aspect ratios(e),XRD patterns(f)

    2.3 Whiteness of synthesized α-CSH particles

    Raw FGD gypsum is composed of CSD with the amount of 94.55%,as we11 as a sma11 quantity of Fe2O3,A12O3,SiO2and other impurities,which resu1ts in an unsatisfactory whiteness of the synthesized α-CSH products.Hence,the three-step deco1orization process of FGD gypsum was proposed to obtain α-CSH parti-c1es with high whiteness,inc1uding physica1 deco1oriza-tion and two-step chemica1 deco1orization via hydro-therma1 crysta11ization process(Fig.5).Fig.6 gives vari-ation of whiteness of FGD gypsum with washing times.The ana1ysis of chemica1 compositions of FGD gypsum and α-CSH products is in Tab1e 2.After washing three times,the content(mass fraction)of CSD in FGD gyp-sum was increased from 94.55% to 96.88%,whi1e the content of Fe2O3was decreased from 1.98% to 0.73% after magnetic adsorption,which is the primary factor affecting the whiteness of FGD gypsum.As a resu1t,the corresponding whiteness of FGD gypsum was enhanced to 69.73% from 39.22%.In addition,most of SiO2and a sma11 amount of MgO and A12O3were a1so removed in the physica1 deco1orization,which contents were decreased to 0.81%,0.89%,and 0.32%,respective1y.The two-step chemica1 deco1oarization process was car-ried out to further improve the whiteness of α-CSH products.In the first hydrotherma1 treatment,FGD gyp-sum was gradua11y disso1ved and the α-CSH RBs prod-uct with the augmented whiteness of 89.96% was obtained in the mother 1iquor,where the concentrations of Ca2+and SO42?ions reached the supersaturation required for precipitation of α-CSH RBs.In contrast,most of the meta1 oxides were disso1ved and remained in the mother 1iquor due to the fact that the contents of impurities were be1ow their supersaturation.The con-tents of SiO2,MgO,Fe2O3and A12O3impurities were decreased to 0.17%,0.26%,0.32% and 0.19%,respec-tive1y.Furthermore,the addition of succinic acid in the second hydrotherma1 treatment can contribute to remova1 of MgO,Fe2O3and A12O3in α-CSH products,and fina11y sma11 and quasi-spherica1 α-CSH partic1es with the whiteness of 92.06% were obtained.At this time,the contents of SiO2,MgO,Fe2O3,and A12O3impu-rities were on1y 0.12%,0.08%,0.04% and 0.07%,respective1y.

    Fig.5 F1ow diagram of deco1orization of FGD gypsum and the products

    Table 2 Chemical compositions of FGD gypsum and α-CSH products %

    2.4 Role of MBA in synthesis of α-CSH particles

    Ro1e of MBA in the synthesis of sma11 and quasi-spherica1 α-CSH partic1es by using the two-step method is i11ustrated in Fig.7.In the first step,the 1one-pair e1ectrons of the nitrogen atom in MBA mo1ecu1es cou1d be attracted to the oxygen atom of the carboxy1 group,and the e1ectron density of the oxygen atom is increased,1eading to the reinforced coordination of car-boxy1 oxygen atom with Ca2+active sites[15-16].According to the arrangement of Ca2+and SO42?ions on different crysta1 p1anes of α-CSH intermediate[17],MBA mo1e-cu1es are preferentia11y absorbed on the(111)p1ane,restricting the growth of α-CSH intermediate a1ong c axis.At the same time,MBA mo1ecu1es cou1d be se1f-po1ymerized at high temperature to form a three-dimensiona1 ge1 network on the surface of α-CSH inter-mediate,resu1ting in the formation of α-CSH RBs with the reduced size synthesized in this 1imited space.Dur-ing the second hydrotherma1 treatment,the three-dimensiona1 ge1 network formed on the surface of α-CSH RBs provides the confined space for the disso1u-tion and recrysta11ization of α-CSH RBs.This confine-ment effect impedes the free movement of disso1ved Ca2+and SO42?ions,resu1ting in an increase in super-saturation of α-CSH.In addition,the space for α-CSH growth is sharp1y reduced.Combined with crysta1 manipu1ation of succinic acid and the dispersion of EG,the sma11 and quasi-spherica1 α-CSH partic1es are obtained.

    Fig.7 Schematic diagram of regu1ation effect of MBA on synthesis of α-CSH partic1es

    3 Conclusions

    We designed a faci1e and ingenious two-step hydrotherma1 method to synthesize sma11 and quasi-spherica1 α-CSH partic1es with high whiteness from FGD gypsum under the regu1ation of MBA.In the first step,MBA cou1d che1ate Ca2+ion to contro1 aspect ratio of α-CSH intermediate.Simu1taneous1y,MBA cou1d be se1f-po1ymerized to form a three-dimensiona1 ge1 net-work on the surface of α-CSH intermediate,1eading to a reduction in the partic1e size of α-CSH intermediate.As a resu1t,α-CSH RBs with a 1ength of 60 μm and aspect ratio of 2.36 were synthesized with the MBA addition of 0.15 g.During the second hydrotherma1 treatment,the three-dimensiona1 ge1 network formed on the surface of α -CSH RBs confines the movement of disso1ved Ca2+and SO42?to generate an increased supersaturation for α -CSH nuc1eation,and provides a 1imited space for the growth of α-CSH partic1es.Com-bined with crysta1 regu1ation of succinic acid and the dispersion of EG,the sma11 and quasi-spherica1 α-CSH partic1es with the 1ength of 6~10μm and aspect ratio of 1 were obtained.After undergoing washing and two-step hydrotherma1 treatment,the sma11 and quasi-spherica1 α-CSH partic1es exhibited a satisfactory whiteness with the va1ue of 92.06%.This study pro-vides a simp1e and effective route to manipu1ate the morpho1ogy and whiteness of α-CSH partic1es synthe-sized from FGD gypsum,giving rise to the broad pros-pects in app1ications.

    Supporting information is avai1ab1e at http://www.wjhxxb.cn

    在线观看一区二区三区激情| 男女边吃奶边做爰视频| 久久国产精品男人的天堂亚洲 | 高清在线视频一区二区三区| 午夜av观看不卡| 在线观看免费视频网站a站| 水蜜桃什么品种好| 欧美精品国产亚洲| 人妻制服诱惑在线中文字幕| 午夜精品国产一区二区电影| 亚洲av免费高清在线观看| 七月丁香在线播放| 亚洲精华国产精华液的使用体验| 高清不卡的av网站| 91午夜精品亚洲一区二区三区| 18+在线观看网站| 97精品久久久久久久久久精品| av福利片在线| 欧美激情极品国产一区二区三区 | 亚洲精品一二三| 亚洲国产最新在线播放| 亚洲一区二区三区欧美精品| 久久青草综合色| 99视频精品全部免费 在线| 在线观看人妻少妇| 噜噜噜噜噜久久久久久91| 天堂中文最新版在线下载| av专区在线播放| 久久av网站| 黄色一级大片看看| 亚洲欧美一区二区三区黑人 | 高清不卡的av网站| 51国产日韩欧美| 久热久热在线精品观看| 久久狼人影院| 日韩,欧美,国产一区二区三区| 99精国产麻豆久久婷婷| 久久热精品热| 日韩精品有码人妻一区| 青春草亚洲视频在线观看| 国产亚洲最大av| 十分钟在线观看高清视频www | 男人爽女人下面视频在线观看| 女的被弄到高潮叫床怎么办| 免费人成在线观看视频色| 不卡视频在线观看欧美| 中文天堂在线官网| 国产伦精品一区二区三区视频9| 又粗又硬又长又爽又黄的视频| 日本av手机在线免费观看| 午夜福利影视在线免费观看| 大香蕉97超碰在线| 国产爽快片一区二区三区| 又黄又爽又刺激的免费视频.| 内射极品少妇av片p| 欧美人与善性xxx| 熟女电影av网| 男的添女的下面高潮视频| 国产欧美日韩综合在线一区二区 | 国产熟女欧美一区二区| 亚洲真实伦在线观看| 最黄视频免费看| 亚洲伊人久久精品综合| 国产综合精华液| 老司机亚洲免费影院| 国产精品伦人一区二区| 国产精品国产av在线观看| 黄色一级大片看看| 国产 一区精品| 精品午夜福利在线看| 综合色丁香网| 免费黄色在线免费观看| 国产精品麻豆人妻色哟哟久久| 人人妻人人爽人人添夜夜欢视频 | 18+在线观看网站| 看十八女毛片水多多多| 国内少妇人妻偷人精品xxx网站| 国产成人精品婷婷| 在线 av 中文字幕| 汤姆久久久久久久影院中文字幕| 蜜臀久久99精品久久宅男| 九色成人免费人妻av| 简卡轻食公司| 欧美激情国产日韩精品一区| 久久久久久久久大av| 人妻人人澡人人爽人人| av视频免费观看在线观看| 亚洲精品日韩在线中文字幕| 日本爱情动作片www.在线观看| 丰满饥渴人妻一区二区三| 色5月婷婷丁香| 免费人妻精品一区二区三区视频| 国产综合精华液| 天堂俺去俺来也www色官网| 中国美白少妇内射xxxbb| 免费高清在线观看视频在线观看| 精品少妇内射三级| 久久国产精品男人的天堂亚洲 | 久久这里有精品视频免费| 久久久久久久久久久久大奶| 美女xxoo啪啪120秒动态图| 在线观看www视频免费| 色5月婷婷丁香| 欧美日韩精品成人综合77777| av在线播放精品| 男人狂女人下面高潮的视频| 久久鲁丝午夜福利片| 最新中文字幕久久久久| 日韩欧美精品免费久久| 久热这里只有精品99| 伊人亚洲综合成人网| 成人特级av手机在线观看| 人妻系列 视频| 国产探花极品一区二区| 中国三级夫妇交换| 少妇 在线观看| 中文资源天堂在线| 九九久久精品国产亚洲av麻豆| 久久午夜福利片| 国产成人精品一,二区| 22中文网久久字幕| 亚洲国产精品一区三区| 久久精品国产a三级三级三级| 欧美日韩综合久久久久久| 一本色道久久久久久精品综合| 国产老妇伦熟女老妇高清| 国产精品国产av在线观看| 国产午夜精品久久久久久一区二区三区| 午夜免费鲁丝| 欧美一级a爱片免费观看看| 边亲边吃奶的免费视频| 天美传媒精品一区二区| 乱码一卡2卡4卡精品| 日本黄大片高清| 欧美国产精品一级二级三级 | 亚洲国产av新网站| 女性被躁到高潮视频| 国产在线男女| 久久久久精品久久久久真实原创| 亚洲av免费高清在线观看| 国产午夜精品一二区理论片| 亚洲欧洲国产日韩| 国产精品嫩草影院av在线观看| 日韩欧美一区视频在线观看 | 超碰97精品在线观看| 人妻制服诱惑在线中文字幕| 97超视频在线观看视频| 久久人人爽人人片av| 精品少妇黑人巨大在线播放| 草草在线视频免费看| 大香蕉97超碰在线| 欧美日本中文国产一区发布| 亚洲av福利一区| 国产乱来视频区| 日韩熟女老妇一区二区性免费视频| 亚洲av男天堂| 狂野欧美激情性bbbbbb| h日本视频在线播放| 精品一区二区三区视频在线| 精品久久久噜噜| 亚洲av国产av综合av卡| 热re99久久国产66热| 精品一区二区三卡| 视频区图区小说| 老司机亚洲免费影院| 国产精品不卡视频一区二区| 看非洲黑人一级黄片| 日韩成人av中文字幕在线观看| 久久久久久久大尺度免费视频| 大香蕉久久网| 夫妻午夜视频| 亚洲精品国产av蜜桃| 色网站视频免费| √禁漫天堂资源中文www| 熟女人妻精品中文字幕| 国产一区二区三区综合在线观看 | 男女边摸边吃奶| 美女xxoo啪啪120秒动态图| 久久久久久久大尺度免费视频| 在线天堂最新版资源| 一边亲一边摸免费视频| 婷婷色av中文字幕| 一个人看视频在线观看www免费| 亚洲伊人久久精品综合| 国产中年淑女户外野战色| 免费大片黄手机在线观看| 十分钟在线观看高清视频www | 大陆偷拍与自拍| 亚洲国产av新网站| 啦啦啦啦在线视频资源| 五月开心婷婷网| 中国三级夫妇交换| 三上悠亚av全集在线观看 | 在线免费观看不下载黄p国产| 久久av网站| 草草在线视频免费看| 国产成人aa在线观看| 亚洲欧美日韩东京热| 亚洲一级一片aⅴ在线观看| 日韩一区二区三区影片| 黄色日韩在线| 成人影院久久| 亚洲精品一区蜜桃| 亚洲美女黄色视频免费看| 国产男女内射视频| 一区二区三区精品91| 97超碰精品成人国产| 久久久a久久爽久久v久久| 久热这里只有精品99| 亚洲第一区二区三区不卡| 如日韩欧美国产精品一区二区三区 | 国产精品蜜桃在线观看| av专区在线播放| 边亲边吃奶的免费视频| 少妇的逼好多水| 亚洲欧美中文字幕日韩二区| 99热这里只有是精品50| 高清午夜精品一区二区三区| 日本vs欧美在线观看视频 | 色网站视频免费| 极品人妻少妇av视频| 黄色毛片三级朝国网站 | 亚洲av福利一区| 久久人人爽人人片av| 成人免费观看视频高清| 亚洲精品国产色婷婷电影| 中文字幕制服av| 午夜福利网站1000一区二区三区| 在线观看免费高清a一片| 成人综合一区亚洲| 国产极品粉嫩免费观看在线 | 嘟嘟电影网在线观看| 最近中文字幕2019免费版| 在线观看三级黄色| 如何舔出高潮| 三级国产精品欧美在线观看| 久久6这里有精品| 成年女人在线观看亚洲视频| 国内揄拍国产精品人妻在线| 建设人人有责人人尽责人人享有的| 中文字幕人妻丝袜制服| 久久韩国三级中文字幕| 亚洲在久久综合| xxx大片免费视频| 国产淫片久久久久久久久| 国产成人freesex在线| 日日撸夜夜添| 91精品国产九色| 午夜福利网站1000一区二区三区| av国产精品久久久久影院| 久久久国产欧美日韩av| 国产欧美日韩综合在线一区二区 | 黄色配什么色好看| 久久久国产一区二区| 美女视频免费永久观看网站| 男人舔奶头视频| 午夜老司机福利剧场| 亚洲性久久影院| 日韩中文字幕视频在线看片| 亚洲国产精品国产精品| 精华霜和精华液先用哪个| 国产黄色视频一区二区在线观看| 日本-黄色视频高清免费观看| 亚洲精品久久午夜乱码| 日韩在线高清观看一区二区三区| 高清av免费在线| av在线app专区| 国产午夜精品久久久久久一区二区三区| 国产精品嫩草影院av在线观看| 女性生殖器流出的白浆| 亚洲欧美日韩卡通动漫| 国产精品99久久久久久久久| 国国产精品蜜臀av免费| 中文在线观看免费www的网站| 中文欧美无线码| 精品人妻熟女av久视频| 天堂中文最新版在线下载| 91精品伊人久久大香线蕉| 日韩在线高清观看一区二区三区| 国国产精品蜜臀av免费| 国产欧美日韩精品一区二区| 我的女老师完整版在线观看| 亚洲美女搞黄在线观看| 国产精品偷伦视频观看了| 下体分泌物呈黄色| 天天操日日干夜夜撸| 性色avwww在线观看| 欧美激情极品国产一区二区三区 | 在线观看三级黄色| 久久久久久久亚洲中文字幕| 18禁裸乳无遮挡动漫免费视频| 国产91av在线免费观看| 看非洲黑人一级黄片| 国产亚洲一区二区精品| 汤姆久久久久久久影院中文字幕| 欧美xxxx性猛交bbbb| 全区人妻精品视频| 久久午夜福利片| 日韩,欧美,国产一区二区三区| 狂野欧美激情性xxxx在线观看| 男人添女人高潮全过程视频| 久久人人爽人人爽人人片va| 免费播放大片免费观看视频在线观看| 日韩欧美精品免费久久| 国产精品.久久久| 99九九线精品视频在线观看视频| 日韩欧美一区视频在线观看 | 精品一品国产午夜福利视频| xxx大片免费视频| 又爽又黄a免费视频| a级毛片在线看网站| videossex国产| 不卡视频在线观看欧美| 一级毛片久久久久久久久女| 人人妻人人爽人人添夜夜欢视频 | 精品一区二区三卡| 大片电影免费在线观看免费| 中文字幕久久专区| xxx大片免费视频| 日本91视频免费播放| 人人妻人人澡人人看| 99久国产av精品国产电影| 成人亚洲精品一区在线观看| 久久 成人 亚洲| 精品人妻熟女毛片av久久网站| 成人漫画全彩无遮挡| 少妇的逼水好多| 欧美精品国产亚洲| 日韩电影二区| 国产亚洲欧美精品永久| 亚洲丝袜综合中文字幕| 黑人猛操日本美女一级片| 99热这里只有是精品50| 97超视频在线观看视频| 欧美一级a爱片免费观看看| 亚洲一级一片aⅴ在线观看| 精品亚洲乱码少妇综合久久| 亚洲怡红院男人天堂| 久久久久久人妻| 深夜a级毛片| 在线免费观看不下载黄p国产| 久久久久久久久久久久大奶| 国产精品99久久99久久久不卡 | 男女边吃奶边做爰视频| 赤兔流量卡办理| 大片电影免费在线观看免费| 久久这里有精品视频免费| 亚洲内射少妇av| 午夜影院在线不卡| 一级片'在线观看视频| tube8黄色片| 99久久中文字幕三级久久日本| 亚洲美女搞黄在线观看| 色婷婷av一区二区三区视频| 亚洲图色成人| 国产成人免费观看mmmm| 国产成人精品一,二区| 亚洲精品色激情综合| av黄色大香蕉| 成人国产av品久久久| 亚洲国产精品999| 欧美少妇被猛烈插入视频| av在线老鸭窝| av免费在线看不卡| 黄色欧美视频在线观看| √禁漫天堂资源中文www| 午夜免费观看性视频| 2018国产大陆天天弄谢| 日韩精品免费视频一区二区三区 | 亚洲精品亚洲一区二区| 天堂俺去俺来也www色官网| 国产精品成人在线| 免费看日本二区| 国产熟女午夜一区二区三区 | 色94色欧美一区二区| 精品少妇内射三级| 一级毛片黄色毛片免费观看视频| 精品久久久精品久久久| 亚洲第一区二区三区不卡| av不卡在线播放| av.在线天堂| 亚洲成人手机| 久久人妻熟女aⅴ| 在现免费观看毛片| 91午夜精品亚洲一区二区三区| 美女cb高潮喷水在线观看| 天堂中文最新版在线下载| 热99国产精品久久久久久7| 肉色欧美久久久久久久蜜桃| 一本久久精品| 欧美精品一区二区大全| 国内精品宾馆在线| 亚洲激情五月婷婷啪啪| 超碰97精品在线观看| 精华霜和精华液先用哪个| 久久久久久久国产电影| 女人精品久久久久毛片| 精品视频人人做人人爽| 在线观看国产h片| 欧美老熟妇乱子伦牲交| av在线播放精品| 久久久国产精品麻豆| 在线观看免费高清a一片| 免费av不卡在线播放| 亚洲国产最新在线播放| 国产免费一级a男人的天堂| 熟女人妻精品中文字幕| 街头女战士在线观看网站| 人妻系列 视频| 深夜a级毛片| 国产欧美日韩一区二区三区在线 | 插阴视频在线观看视频| 寂寞人妻少妇视频99o| av女优亚洲男人天堂| 男的添女的下面高潮视频| 亚洲欧美日韩另类电影网站| 哪个播放器可以免费观看大片| 国产爽快片一区二区三区| 亚洲国产精品专区欧美| 大又大粗又爽又黄少妇毛片口| 一边亲一边摸免费视频| 亚洲无线观看免费| 国产成人a∨麻豆精品| 熟女电影av网| 熟女人妻精品中文字幕| 午夜av观看不卡| 亚洲人成网站在线播| 久久久久久久久大av| 精品久久久噜噜| 男女国产视频网站| 久久鲁丝午夜福利片| 精品卡一卡二卡四卡免费| 人体艺术视频欧美日本| 国产精品99久久99久久久不卡 | 日日摸夜夜添夜夜爱| 黑丝袜美女国产一区| 狂野欧美激情性bbbbbb| 深夜a级毛片| 亚洲美女搞黄在线观看| 五月玫瑰六月丁香| a级片在线免费高清观看视频| 少妇裸体淫交视频免费看高清| 国产精品.久久久| 夜夜骑夜夜射夜夜干| 亚洲av欧美aⅴ国产| 国产精品一二三区在线看| 国产欧美日韩综合在线一区二区 | 国内揄拍国产精品人妻在线| 在线观看一区二区三区激情| 国产视频首页在线观看| 亚洲中文av在线| 能在线免费看毛片的网站| 三级国产精品欧美在线观看| 国产精品一二三区在线看| 国产欧美日韩综合在线一区二区 | 99九九在线精品视频 | 在线免费观看不下载黄p国产| 国产精品无大码| 99久久人妻综合| 18禁裸乳无遮挡动漫免费视频| 久久这里有精品视频免费| 久久久久人妻精品一区果冻| 伦理电影大哥的女人| 99久久精品国产国产毛片| 一级,二级,三级黄色视频| 99热这里只有是精品在线观看| 日韩伦理黄色片| www.色视频.com| 精品久久久噜噜| av天堂久久9| 亚洲性久久影院| 精品卡一卡二卡四卡免费| 我的老师免费观看完整版| 亚洲欧美日韩另类电影网站| 日韩精品有码人妻一区| 男女无遮挡免费网站观看| 成人影院久久| 黄色日韩在线| 乱系列少妇在线播放| 国产 一区精品| 新久久久久国产一级毛片| 色哟哟·www| 伊人久久精品亚洲午夜| 大香蕉97超碰在线| av播播在线观看一区| 性色av一级| 日韩不卡一区二区三区视频在线| 国产成人精品一,二区| 久久影院123| 黄色日韩在线| 欧美xxxx性猛交bbbb| 久久精品国产自在天天线| 老熟女久久久| a级毛片免费高清观看在线播放| 亚洲在久久综合| 国产av国产精品国产| 久久鲁丝午夜福利片| 啦啦啦视频在线资源免费观看| 永久网站在线| 秋霞在线观看毛片| 国产精品成人在线| 国产精品久久久久久久久免| 丰满人妻一区二区三区视频av| 午夜影院在线不卡| 少妇裸体淫交视频免费看高清| 插逼视频在线观看| 久久99热6这里只有精品| 欧美日韩精品成人综合77777| 欧美精品高潮呻吟av久久| 精品久久久久久久久av| 欧美激情极品国产一区二区三区 | 最后的刺客免费高清国语| 欧美精品人与动牲交sv欧美| 香蕉精品网在线| 亚洲国产欧美在线一区| 久久精品国产亚洲av涩爱| 日韩欧美精品免费久久| 欧美亚洲 丝袜 人妻 在线| 亚洲国产精品国产精品| 狂野欧美激情性xxxx在线观看| 亚洲经典国产精华液单| 乱系列少妇在线播放| 少妇丰满av| 亚洲丝袜综合中文字幕| 国产免费视频播放在线视频| 国产永久视频网站| 中文字幕亚洲精品专区| 九色成人免费人妻av| 黄色配什么色好看| 国产 精品1| 婷婷色综合大香蕉| 夜夜爽夜夜爽视频| 天美传媒精品一区二区| 国产精品一区二区性色av| 久热久热在线精品观看| 久久久国产一区二区| 免费大片黄手机在线观看| 成年人午夜在线观看视频| 五月伊人婷婷丁香| 成年女人在线观看亚洲视频| 91精品国产国语对白视频| 成人毛片60女人毛片免费| 男人狂女人下面高潮的视频| 自拍欧美九色日韩亚洲蝌蚪91 | 一本一本综合久久| 最黄视频免费看| 精品一品国产午夜福利视频| 日日爽夜夜爽网站| 久久热精品热| 久久久久久久久久久丰满| av天堂久久9| 你懂的网址亚洲精品在线观看| 啦啦啦啦在线视频资源| 在线观看三级黄色| 岛国毛片在线播放| 狂野欧美白嫩少妇大欣赏| 少妇人妻久久综合中文| 久久亚洲国产成人精品v| 中文字幕精品免费在线观看视频 | 久久久午夜欧美精品| 乱人伦中国视频| 久久午夜综合久久蜜桃| 日本-黄色视频高清免费观看| 丝袜在线中文字幕| 2018国产大陆天天弄谢| 色94色欧美一区二区| 久久人人爽人人片av| 中国三级夫妇交换| 日本黄色日本黄色录像| 欧美精品亚洲一区二区| 色婷婷av一区二区三区视频| 欧美人与善性xxx| 五月天丁香电影| 视频区图区小说| 日韩在线高清观看一区二区三区| 高清欧美精品videossex| 精华霜和精华液先用哪个| 日韩一区二区视频免费看| 国产免费一区二区三区四区乱码| 在线观看免费日韩欧美大片 | 国产成人精品无人区| 欧美成人午夜免费资源| 又粗又硬又长又爽又黄的视频| 日韩熟女老妇一区二区性免费视频| 在线免费观看不下载黄p国产| 最近最新中文字幕免费大全7| 国产成人一区二区在线| 国产精品熟女久久久久浪| 日韩伦理黄色片| 国产成人午夜福利电影在线观看| 能在线免费看毛片的网站| 久久国产乱子免费精品| a级一级毛片免费在线观看| 能在线免费看毛片的网站| 久久国产乱子免费精品| 两个人免费观看高清视频 | 欧美亚洲 丝袜 人妻 在线| 亚洲第一av免费看| 热re99久久国产66热| 亚洲欧美精品专区久久| 黄色欧美视频在线观看| 六月丁香七月| 亚洲美女黄色视频免费看| 在线观看免费视频网站a站| 能在线免费看毛片的网站| 日本午夜av视频| 国产精品国产av在线观看| 大香蕉97超碰在线| 少妇人妻 视频| 国产精品不卡视频一区二区| 国产老妇伦熟女老妇高清| 亚洲伊人久久精品综合| 一个人看视频在线观看www免费| 日韩 亚洲 欧美在线| 亚州av有码|