• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hinokiflavone and Related C-O-C-Type Biflavonoids as Anti-cancer Compounds:Properties and Mechanism of Action

    2021-08-10 03:07:42JeanFranoisGoossensLaurenceGoossensChristianBailly
    Natural Products and Bioprospecting 2021年4期

    Jean-Fran?ois Goossens·Laurence Goossens·Christian Bailly

    1 Univ.Lille,CHU Lille,EA 7365-GRITA-Groupe de Recherche sur les Formes Injectables et les Technologies Associées,59000 Lille,France

    2 OncoWitan,59290 Lille(Wasquehal),France

    Abstract Biflavonoids are divided in two classes:C-C type compounds represented by the dimeric compound amentoflavone and C-O-C-type compounds typified by hinokiflavone(HNK)with an ether linkage between the two connected apigenin units.This later sub-group of bisflavonyl ethers includes HNK,ochnaflavone,delicaflavone and a few other dimeric compounds,found in a variety of plants,notably Selaginella species.A comprehensive review of the anticancer properties and mechanism of action of HNK is provided,to highlight the anti-proliferative and anti-metastatic activities of HNK and derivatives,and HNK-containing plant extracts.The anticancer eff ects rely on the capacity of HNK to interfere with the ERK1-2/p38/NFκB signaling pathway and the regulation of the expression of the matrix metalloproteinases MMP-2 and MMP-9(with a potential direct binding to MMP-9).In addition,HNK was found to function as a potent modulator of pre-mRNA splicing,inhibiting the SUMO-specific protease SENP1.As such,HNK represents a rare SENP1 inhibitor of natural origin and a scaff old to design synthetic compounds.Oral formulations of HNK have been elaborated to enhance its solubility,to facilitate the compound delivery and to enhance its anticancer efficacy.The review shed light on the anticancer potential of C-O-C-type biflavonoids and specifically on the pharmacological profile of HNK.This compound deserves further attention as a regulator of pre-mRNA splicing,useful to treat cancers(in particular hepatocellular carcinoma)and other human pathologies.

    Keywords Hinokiflavone·Biflavonoid·Cancer therapy·Mechanism of action·Natural product

    Abbreviations

    HNK Hinokiflavone

    MMP Matrix metalloproteinase

    SUMO Small ubiquitin-like modifier

    1 Introduction:Biflavonoids

    Dimeric flavonoids,usually called biflavonoids,form a specific group of natural products encountered in a large variety of plant species.They are composed of two phenyl-chromenone units,linked via a C-C or C-O-C bond between the chromenone moiety or the appended phenyl ring.The first biflavonoid,ginkgentin was discovered fromGinkgo bilobaL.in 1929 and,almost one century later,the family includes more than 200 members with a large structural diversity[1].

    A motif frequently encountered within biflavonoids corresponds to the dimerization of the apigenin unit(or 4′,5,7-trihydroxy-flavone).There are multiple possible combinations.For example,the linkage of two apigenin motifs via an 8 → 3′ connector affords amentoflavone whereas the connection via an 8 → 6 linker aff ords agathisflavone.Other combinations are represented in Fig.1 a.The dimerization can also occur via an ether linkage,using one of the hydroxyl groups of apigenin,as shown in Fig.1 b.This is the case for compounds like hinokiflavone,ochnaflavone and a few other C-O-C-type biflavonoids(Fig.2).

    Fig.1 Linkage between two apigenin units to form a C-C-type or b C-O-C-type biflavonoids

    Hinokiflavone(HNK)is a bis-apigenyl ether(Fig.2)discovered in 1958 in Japan.It was first isolated from the dried leaves of the plantChamaecyparis obtusaEndlicher(also known as Hinoki cypress,Japanese false cypress)[2,3].Its structure was fully elucidated one year later[4].Over the past sixty years,the compound has been isolated from numerous plants(primarily in gymnosperms),such asToxicodendron succedaneum,Isophysis tasmanica,Juniperus rigida,J.phoenicea,Platycladi cacumen,Rhus succedanea,Selaginella tamariscina,S.bryopteris,Metasequoia glyptostroboidesand many other plants[5-11].It can be obtained also by total synthesis[12-15].This apigenin dimer presents an extended V-shaped configuration,similar to that of ochnaflavone,also a C-O-C-type biflavonoid composed of an apigenin and a luteolin subunit(Fig.2).

    Fig.2 Structures of selected C-O-C-type biflavonoids.They all present an ether linkage between the two apigenin units(or methylated apigenin in some cases)

    Biflavonoids display a large range of biological properties.Some compounds present marked antiviral activities,such as robustaflavone which potently inhibits hepatitis B virus replication[16].Other compounds display antibacterial properties,like amentoflavone which efficiently kills cyanobacteria[17].Some compounds also present marked antiproliferative activity,like agasthisflavone[18].These three natural products-robustaflavone,amentoflavone and agasthisflavone-are C-C-type biflavonoids,which have been previously reviewed[19,20].Here,we mainly focused on C-O-C-type biflavonoids and in particular the leading compound in the series,HNK.A review of the antitumor activity and mechanism of action of HNK is off ered.

    2 Pharmacological Profile of HNK

    HNK displays multiple pharmacological activities,including anti-inflammatory,antioxidant,antiprotozoal and antitumor activity(Fig.3).Due to its antioxidant capacity[21],HNK presents a hepato-protective action,enhanced in the presence of glycyrrhizin[22].In addition,an in silico study has predicted that HNK can bind to and inhibit prostaglandin D2 synthase,thereby being potentially useful to limit hair loss[23]but,as far as we know,the computer prediction has not been validated experimentally.The anti-inflammatory action of biflavonoids is well documented(reviewed in[24]),although there are not many studies of the anti-inflammatory potential with HNK itself.Nevertheless,HNK was found to suppress the production of inflammatory mediators like nitric oxide(NO)and interleukins IL-6 and IL-8[25].The combined antioxidant and anti-inflammatory actions have led to the proposal of using biflavonoids for the treatment of Alzheimer’s disease,considering that biflavonoids have a greater capacity to reduce the toxicity of amyloid-β peptide oligomers than the corresponding monoflavonoids[26,27].And indeed,amentoflavone is now emerging as a potential regulator of amyloid β40 neurotoxicity in Alzheimer’s disease[28-30].But a recent structure-activity study demonstrated that HNK-type biflavonoids are less eff ective than the amentoflavonone-type biflavonoids at reducing Aβ40 aggregation[31].

    Fig.3 Tridimensional representation of hinokiflavone(HNK,C30H18O10,PubChem CID:5281627)and its diverse pharmacological activities.The anticancer properties are highlighted here

    Antiviral eff ects have been reported.A weak inhibition of HIV reverse transcriptase activity has been described with HNK[32,33],as well as an activity against influenza virus sialidase,but also very limited[34].The activity of HNK against diff erent Herpes viruses is modest,with a minimal margin between the active dose and the cytotoxic dose[35].Nevertheless,it was shown that HNK can inhibit the dengue 2 virus RNA-dependent RNA polymerase(DV-NS5 RdRp),with a submicromolar efficacy,but other biflavonoids such as amentoflavone and robustaflavone are considered more promising inhibitors[36,37].Finally,HNK has also revealed antiprotozoal activities,with a marked capacity to inhibit the growth of both parasitesLeishmania donovaniandPlasmodium falciparum,at least in vitro(IC50=2.9 and 2.3 μM,respectively)[8].

    3 Anticancer Activity of HNK-Containing Plant Extracts

    An ethanol extract of the plantSelaginella tamariscinaused in traditional medicines in Asia was found to display a marked anti-proliferative activity in vitro,against osteosarcoma cell lines.The extract,which contains HNK and other flavonoids,weakly inhibited cell proliferation but markedly reduced cell migration and invasion in a dose-dependent manner.The eff ect was attributed to a marked down-regulation and inhibition of the matrix metalloproteinases MMP-2 and MMP-9,coupled to an inhibition of the phosphorylation of p38 and Akt signaling molecules[38].A similar anti-metastatic eff ect with inhibition of MMP-9 was also reported using human nasopharyngeal carcinoma HONE-1 cells[39].In general,these biflavonoids including HNK are only mild cytotoxic agents,inhibiting cancer cell growth with IC50in the range 15-40 μM[40].The anti-metastatic activity of this plant extract has been evidenced in diff erent studies,using leukemia,gastric and lung cancer cells in vitro[41-44]and,also in vivo[45].The eff ect has been partially attributed to the presence of amentoflavone,although the extract is known to contain multiple biflavonoids,including HNK but also others,such as pulvinatabiflavone and neocryptomerin[40].The major characteristic of the extract is to restrict cell migration and invasion(Fig.4).

    Fig.4 Proposed signaling pathways activated by Selaginella extracts and HNK leading to the observed anticancer eff ect.Down-regulation of matrix metalloproteases MMP-2 and MMP-9 by HNK is a central event largely implicated in the drug-induced reduction of cell migration and invasion,which contributes to inhibition of metastasis

    Recently,a noticeable anticancer eff ect was reported using a purified extract of anotherSelaginellaspecie,namelySelaginella moellendorffiiHieron which was found to contain mainly six biflavonoids including HNK[46].The extract suppressed the migration of laryngeal cancer cells,via an induction of apoptosis and inhibition of STAT3 and the Akt/NFκB signaling pathway.Importantly,the extract showed a dose-dependent activity in vivo,reducing the subcutaneous growth of Hep-2 tumor in mice[46].HNK is one of the many active compounds that can be found in this type of extract[47].Both amentoflavone and HNK can be found in variousSelaginellasp.,such asS.doederleiniiandS.sinensis[48-50].Anticancer eff ects have been characterized with diff erent types ofSelaginellaextracts,in particular with an ethyl acetate extract ofS.doederleiniicapable of markedly reducing the microvascular density and A549 tumor growth in mice[48,51].

    4 Anticancer Properties of HNK

    HNK directly aff ects the proliferation of cancer cells.Early studies showed that HNK inhibited the growth of KB nasopharyngeal cancer cells in vitro,with an ED50of 4 μg/mL,whereas amentoflavone,robustaflavone,and agathisfiavone were inactive against this cell line.However,HNK is a mild cytotoxic agent,being 16-times less potent than the reference drug etoposide against this cell line[52].Other in vitro studies have reported a modest cytotoxic potential for HNK against various cancer cell lines,with IC50of 19.0,29.8 and 39.3 μg/mL,against HeLa(cervix),U251(glioma)and MCF-7(breast)cancer cells,respectively[40].Whatever the cell line considered,HNK is almost always more potent than amentoflavone but much less cytotoxic than a conventional cytotoxic drug like cisplatin or etoposide.HNK is active against a variety of cancer cell types,including colorectal cancer cells such as the HT29,HCT116 and CT26 colon cancer cell lines which are roughly equally sensitive to HNK[53].The cell growth inhibitory action is both time-and drug concentration-dependent,with an inhibitory action on both cell growth and colony formation.

    HNK markedly induces apoptosis of colon cancer cells,with an up-regulation of the protein Bax and down-regulation of Bcl-2 and a drug-induced loss of mitochondrial potential.When given daily at 25-50 mg/kg/day,HNK reduced the growth of colon CT26 subcutaneous tumor in mice,without apparent toxicity.The growth inhibitory action in vivo was accompanied with an induction of apoptosis(caspase-3 activation,mitochondrial alterations)and a down-regulation of matrix metalloprotease-9(MMP-9)[53].But the eff ect is not specific to colon cancer cells because much the same activity was reported using A375 and B16 melanoma cells,with an inhibition of cell proliferation,induction of caspase-dependent apoptosis and inhibition of cell migration due to inhibition of MMP-2 and MMP-9[54].Inhibition of MMPs is a key element of the mechanism of action of HNK(see below).

    The drug-induced modulation of the Bax/Bcl-2 expression ratio(up-regulation of Bax,down-regulation of Bcl-2),associated with a release of cytochrome c and caspases activation has been clearly evidenced using colon[53],hepatocellular[55]and breast[56]cancer cells.In addition,in the case of hepatocellular carcinoma(HCC),HNK was found to inhibit the activation of NFκB(nuclear factor kappa B)signaling,thereby suppressing the expression of several NFκB-target anti-apoptotic genes,and thus reinforcing the direct proapoptotic eff ect of the compound via upregulation of phospho-JNK[55].In the study using a breast cancer model(MDA-MB-231),the authors pointed out the induction of apoptosis as well as a marked anti-metastatic eff ect.HNK inhibited migration and invasion of breast cancer cells via a modulation of the epithelial-to-mesenchymal transition(EMT),specifically through an up-regulation of the expression level of E-cadherin and down-regulation of N-cadherin[56].HNK thus displays both antiproliferative and anti-metastatic properties.

    It is interesting to compare the level of in vivo activities of HNK in the three independent studies using colon,breast and hepatocellular tumors.In all three cases,the drug significantly slowed down the tumor growth but did not stopp the growth.The eff ect was relatively modest with the MDAMB-231 breast cancer model,with a reduction of the tumor volume by 30-40% when HNK was given(intraperitoneal injection)at 20-40 mg/kg[56].A slightly better eff ect was obtained when using the CT26 colon cancer model,with a reduction of the tumor volume reaching about 50% when the drug was used at 50 mg/kg[53].But in the case of HCC,the antitumor eff ect in vivo was much more pronounced,with a reduction of the volume of SMMC-7721 subcutaneous tumor by 50-70% when the drug was given(ip)at the dose of 4 and 8 mg/kg only.This HCC tumor model seems to be much more sensitive to HNK than the breast and colon cancer models.It should be noted that amentoflavone can also inhibit the growth of HCC tumor cells in mice,but the observed eff ect was relatively weak,even when the drug was given orally at 100 mg/kg[57].HNK seems to be much more potent than amentoflavone at inhibiting HCC growth.It would be useful to investigate the combination of HNK with other drugs,such as sorafenib approved to treat advanced HCC.

    Whether HNK can also interfere indirectly with cancer cells,via an immune-regulatory action,is not known at present.But this hypothesis is plausible because the related product ochnaflavone presents a T cell immunoregulatory activity,resulting in the production of IL-4 and IL-10 cytokines and suppression of IFN-γ and IL-2 cytokines in a mouse model of fungal(Candida)arthritis[58].Amentoflavone has also been shown to elevate the production of IL-2 and IFN-γ in carcinoma-bearing animals and to enhance natural killer cell activity and lymphocyte proliferation[59].It would be interesting and timely to determine if HNK also can modulate the immune response and reduce antitumor immunity.The molecular mechanism leading to the anticancer eff ects of HNK is not precisely known,but at leasttwo categories of protein targets have been evoked.They are discussed below.

    5 Potential Binding to and Inhibition of Metalloproteases

    Matrix metalloproteinases(MMPs)form a class of zincdependent peptidase able to remodel the extracellular matrix by favoring tumor invasive processes[60,61].Notably,MMP-9 is essential for tumor invasion,metastasis and angiogenesis,and considered as a valid biomarker for cancers[62].These enzymes are the targets of many natural and synthetic products[63,64].

    Several studies have evidenced the capacity of diverse biflavonoids to inhibit the expression of MMPs,in particular MMP-2 and MMP-9,and this eff ect is directly implicated in their antitumor action.For example,the C-C type biflavonoids ginkgetin and isoginkgetin both have the capacity to regulate MMPs,reducing the mRNA and protein expression of MMP-2 and MMP-9 and these eff ects contribute to their anticancer potential[65-67].Similarly,amentoflavone was found to inhibit metastasis down-regulation of MMP-2 and-9[68]and to block glioblastoma and osteosarcoma tumor progression through via suppression of the ERK/NFκB signaling pathway,with a down-regulation of MMP-2 and-9[69,70].We can also mention the case of the C-O-C type biflavone ochnaflavone which inhibits MMP-9 secretion in human aortic smooth muscle cells through the transcription factors NFκB and AP-1[71]or a derivative of agathisflavone which suppresses MMP-2 expression and reduces metastasis of melanoma cells[72].Other biflavonoids aff ecting MMPs expressions could be cited[73,74].But in general,the biflavonoid-induced down-regulation of MMP-2 and/or-9 is essentially a consequence of an inhibition of the NFκB activity or an upstream signal such as an inhibition of the phosphorylation of extracellular-regulated kinases(pERK-1/2)(Fig.4).This is the case for HNK which down-regulates the expression of MMP-2 and-9 in A375 and B16 melanoma cells,so as to reduce the invasion/migration capacities of these tumor cells[54].A down-regulation of MMP-2 was also observed in HNK-treated breast cancer cells[56].The downregulation of MMPs by HNK can be explained by the modulation of the ERK/NFκB signaling pathway[25].

    In parallel,a direct interaction of HNK with MMP-9 has been advanced.A pharmacophore model of MMP-9 has been constructed and potential ligands were screened.HNK turned out to be a suitable binder of MMP-9,forming stable complexes via interaction with the catalytic active site of the protein[75].In the proposed HNK/MMP-9 model,multiple van der Waals contacts and H-bonds stabilize the biflavone bound to the S1 active site of the protein,as represented in Fig.5.Each part of the tetracyclic structure of HNK participates in the interaction with MMP-9.Preliminary experimental validation of this in silico hypothesis was provided by the authors who showed that HNK can inhibit MMP-9 activity in cells,with a limited efficacy(IC50=53 μM)[75].This is a modest affinity,compared to other known products with submicro-molar affinities[76,77].

    Fig.5 Illustration of the proposed binding of HNK to MMP-9.The structure of MMP-9 is presented(PDB code:1GKC),with a detailed view of the hinge region which delimits the catalytic active site.Molecular modeling has predicted that HNK can bind deeply into the active site cavity,engaging multiple interactions with the protein,notably through 3 hydrogen bonds with the NH groups of Gly-215,Tyr-423 and C=O group of Glu-402(arrows),plus hydrophobic contacts with several amino acids(italicized,dashed lines),as represented(adapted from[75])

    It is worth to note that the formation of a stable biflavonoid/MMP-9 complex has been also proposed with the C-C-type compound amentoflavone[78].Moreover,MMP-2 and MMP-9 may not be the only metalloproteinases targeted by HNK and other biflavonoids.Recently,it has been proposed,based on an in silico docking study,that lanaroflavone,podocarpusflavone and amentoflavone can bind to the surface metalloprotease leishmanolysin(glycoprotein 63),implicated in the pathogenesis ofLeishmania[79].

    6 HNK:A SENP1 Protease Inhibitor Modulating pre-mRNA Splicing

    SUMOylation is a post-translational modification whereby members of the Small Ubiquitin-like MOdifier(SUMO)family of proteins are conjugated to lysine residues in target proteins.The SUMOylation process plays a key role in numerous aspects of cell physiology,including cell cycle regulation,protein stability,and DNA-damage repair.SUMO actively regulates transcription,negatively or positively[80].The deSUMOylation process,carried out by SUMO-specific proteases(SENPs),is equally important and considered as a potential therapeutic target in the treatment of cancers.Small molecules modulators of deSUMOylation are actively searched[81,82].Potent SENP-selective inhibitors are now emerging[83]as well as efficient SUMOylation inhibitors,like the anticancer trihydroxyflavone derivative 2-D08[84-86].A deregulation of the SUMO pathway has been observed in diff erent cancers,such as breast cancer[87]and hepatocellular carcinoma[88].

    Interestingly,Pawellek and co-workers[89]have discovered that HNK functions as an inhibitor of SENP1 in vitro and increased the levels of SUMO2 modification in cells.A treatment with HNK led to a major increase(up to 20-fold)of SUMO1 and SUMO2/3 modification of diff erent proteins in cells,notably a few protein components of the U2 small nuclear ribonucleoprotein(snRNP)spliceosome complex(Fig.6).The drug was found to block spliceosome assembly and therefore to inhibit mRNA splicing in vitro.The blockade of SENPs by HNK leads to the accumulation of SUMOylated proteins,also observed when using HeLa nuclear extracts[89].This landmark study provides key information to better comprehend the pharmacological eff ects of HNK,including its anticancer eff ects.Indeed,considering that SUMO1 is directly involved in HCC by promoting p65 nuclear translocation and regulating NFκB activity[90],the alteration of the sumoylation/desumoylation machinery by HNK could well be responsible for the observed anticancer eff ect of the compound in HCC.It is known that SENP1 regulates the migration and epithelialmesenchymal transition(EMT)of hepatocellular carcinoma[91].Therefore,inhibition of SNEPs by HNK could explain the observed eff ects mentioned above,such as the druginduced modulation of the EMT and reduction of metastasis[56].

    Fig.6 HNK functions as an inhibitor of sentrin-specific protease 1(SENP1),an essential enzyme for deSUMOylating proteins.The noncovalent structure of SENP1 in complex with SUMO2 is shown(PDB:6NNQ)[135].Inhibition of SENP1 by HNK leads to an increased level of six major proteins component(Sm proteins)of the U2 snRNP complex in cells.By this process,HNK induces SUMOylation of splicing factors,thus preventing the correct assembly of the spliceosome and modulating pre-mRNA splicing[89]

    Diff erent flavonoids are known to modulate or inhibit mRNA splicing,such as apigenin and luteolin[92-94]and the biflavonoid isoginkgetin was also shown to function as an inhibitor of pre-mRNA splicing[95,96].Although this compound is a C-C type biflavonoid structurally distinct from HNK,isoginkgetin appears similar to HNK in terms of mechanism of action,because like HNK,it inhibits tumor cell invasion by regulating MMP-9 expression[65]and interferes with spliceosome assembly,aff ecting multiple phases of the cell cycle[97].For example,isoginkgetin efficiently inhibits the splicing of SMN2(survival of motor neuron 2)mRNA[98].However,isoginkgetin exerts multiple cellular eff ects,being also a proteasome inhibitor[99]and a transcription modulator,modifying RNA polymerase elongation rates[100].In contrast,HNK has no major eff ect on transcription and is a more potent biflavonoid modulator of splicing than isoginkgetin(and amentoflavone did not alter splicing in vitro)[89].

    7 Anticancer Activities and Mechanism of Action of HNK Analogues

    A semisynthetic derivative of HNK has been reported in two Chinese patents recently.The lead compound,designated WG020(Fig.7),is a 4′-phenolic ester,prepared by reaction of HNK with succinic acid and amino-glucose.The long polar side chain was incorporated to increase the water solubility and bioavailability of the compound.WG020 displays marked antiproliferative activity,at least in vitro.The compound dose-and time-dependently inhibits the proliferation of breast cancer cells MDA-MB-231,4T1 and MCF-7.WG020 induces cell apoptosis,characterized by a down-regulation of the anti-apoptotic protein Bcl-2 and up-regulation of pro-apoptotic protein Bax and activation of pro-caspase-3 to complete apoptosis.The compound also inhibits invasion and migration of 4T1 and MDA-MB-231 cells in vitro[101].Similarly,WG020 inhibits proliferation of human melanoma cells A375 and CHL-1,and murine melanoma cells B16-F10,with IC50in the range 7-11 μM after 72 h and the compound is less toxic toward non-tumoral cells such as VERO and LO2 cells(IC50=25 μM).WG020 also induces apoptosis of the melanoma cells,again with a marked impact on the expression of Bax and Bcl-2 and with a marked druginduced decrease of the mitochondrial membrane potential and variations of the production of reactive oxygen species.WG020 reduces migration and invasion of A375 cells[102].This compound represents a developable form of HNK.After administration,the pro-drug WG020 will be cleaved by internal esterases to release the HNK active unit.Its pharmacokinetic properties have not yet been reported.A prenyl analogue of HNK,made by enzymatic linkage of a geranyl group to the 3’’position,has been described recently[103]but its bioactivity has not been presented.

    Fig.7 Structure of WG020[101,102]

    With more than 200 biflavonoids identified to date,it is not possible to summarize the biological properties of all compounds but,to complete the review,it is useful to refer to the anticancer properties of selected HNK-like compounds with a C-O-C linkage.Lanaroflavone B is an anti-inflammatory biflavonoid and the formation of stable complexes with human neutrophil elastase has been proposed,based on molecular modeling[104],in addition to the aforementioned binding to leishmanolysin[79].Ochnaflavone is also an antiinflammatory agent with a dual cyclooxygenase-2/5-lipoxygenase inhibitory activity[105]but it can also inhibit other enzymes such as phospholipase A2[106]and suppresses lymphocyte proliferation[107].But in the context of our review,the most interesting HNK analog is delicaflavone(Fig.2),isolated fromSelaginella doederleinii,which has revealed marked anticancer activities in vitro and in vivo,via an inhibition of PI3K/AKT/mTOR and MAPK signaling cascade[108-110].However,its molecular targets have not been identified yet.

    Other biflavonoids have revealed interesting anticancer properties recently,such as robustaflavone[111],isoginkgetin[99],japoflavone D[112],sumaflavone[113]and cupressuflavone[113,114],but these C-C-type biflavonoids will not be further discussed here.

    8 Stability,Metabolism and Formulation of HNK

    The metabolism of HNK has been investigated recently[115].More than 40 metabolites have been identified in vitro and in vivo(in rats).The main phase I biotransformation refers to the rupture of the connective C-O-C bond between the two apigenin units,as well and mono-and bi-hydrogenation and hydrolysis of the parent compound.The main phase II metabolism concerns amino acid conjugation(with glutamine,glycine or cysteine),acetylation,and glucuronidation reactions.The metabolites identified are extremely diversified(49 and 41 metabolites identified in vitro and in vivo,respectively),including 25 metabolites only observed in vitro and 24 metabolites found both in vitro and in vivo[115].Thus,the natural product is largely metabolized but,nevertheless,the elimination of the natural product is not excessively rapid.A pharmacokinetic study in rat indicated that the half-life of HNK elimination(t1/2)was 6.1 h and the area under the plasma concentration-time curve value(AUC0-∞)was about 2500 h×ng/mL[116].

    Oral delivery formulations of HNK have been developed to improve the solubility,dissolution rate,and oral bioavailability of the product(Fig.8).A mixed micelle formulation of HNK comprising Soluplus?,the lipophilic cation dequalinium,and the nonionic surfactant D-α-tocopherol acid polyethylene glycol 1000 succinate(TPGS,a derivative of vitamin E)has been successfully prepared via a thin-film hydration method,to entrap HNK and to facilitate the drug delivery.The micellar formulation has revealed increased pro-apoptotic and anticancer activities,both in vitro and in vivo compared to the free HNK product.At the dose of 80 mg/kg,the antitumor efficacy of encapsulated HNK was significantly superior to that a free HNK against lung cancer A549-xenografted nude mice[117].The use of such mixed micelles,characterized by a CMC(critical micelle concentration)value of 5.5×10-4mg/mL and an average particle size of 65.6 nm,can be extremely useful to facilitate the oral delivery of the product and enhance its anticancer efficacy,without causing additional toxicity.Other formulations have been developed,such as those applied to promote the effi-cacy of a biflavonoid extract fromSelaginella doederleinii(containing both C-C-type and C-O-C-type biflavones)[118,119].For example,the use of proliposomes made of a bile salt and a protective hydrophilic isomalto-oligosaccharides coating,has permitted to increase the anticancer efficacy of a biflavonoid extract(containing amentoflavone,robustaflavone,delicaflavone)against a HT29 colon cancer xenograft model[118].The solubility of the compounds can be vastly improved:for example,the solubility of delicaflavone(C-O-C biflavone)increased from 9.6 μg/mL in water to 188 μg/mL when using a polymer-based formulation prepared by amorphous solid dispersion.The biflavonoid solubility was improved,as well as the dissolution rate of the ingredients and the stability was preserved[119].These diff erent studies indicate that the encapsulation of HNK or an analog is feasible and recommended to facilitate the handling of the compound and its anticancer efficacy(Fig.8).

    Fig.8 Stable formulations of HNK increase the antitumor eff ect.Diff erent biodegradable formulations have been proposed to protect the compound,to increase its solubility in aqueous media and its bioavailability.Mixed micelles,proliposomes and amorphous solid dispersion of the polymerstabilized compounds have been reported.These formulations significantly promote the anticancer activity of HNK or derivatives[107-109]

    9 Discussion

    HNK is the leading product of the C-O-C-type sub-group of biflavonoids which also includes lanoroflavone,lophirone L,ochnaflavone and delicaflavone,and a few other compounds such as the methyl esters of HNK,designated cryptomerin A and B[120]and isocryptomerin[121](Fig.2).The latter compound is rather an antibacterial and antifungal agent[122,123]whereas HNK is essentially an anticancer product,like delicaflavone.However,these biflavonoids exhibit a relatively large spectrum of bioactivities,as observed for the C-C-type biflavonoids.Recently,a potential binding of robustaflavone to the protease Mproof SARS-CoV-2 virus has even been postulated[124]and 17 other potential protein targets have been proposed for this compound[20].Similarly,amentoflavone has revealed multiple targets and pharmacological activities[19],as it is the case with many mono-flavonoids as well.A limited(or obscure)target specificity often restricts the therapeutic applications of these compounds in the clinic[125].

    HNK can be found in many plants and contributes to the anticancer eff ects observed with certain plant extracts,in particular extracts fromSelaginellasp.It is not a highly cytototoxic agent but a natural product with a good capacity to reduce tumor cell invasion and invasion.It can certainly be easily combined with several conventional anticancer drugs primarily targeting tumor cell proliferation.The anticancer activity of HNK relies,at least in part,on its capacity to interfere with ERK/p38/NFκB signaling pathway and possibly on a direct interaction with MMP-9,but this later aspect remains to be proved experimentally.More importantly,HNK functions as a mRNA splicing modulator and displays a quasi-unique capacity to alter the correct assembly and functioning of the U2 small nuclear ribonucleoprotein(snRNP)spliceosome complex,via an inhibition of SUMO specific protease 1(SENP1)[89].Inhibition of SENP1 is very likely the primary eff ect at the origin of most of the pharmacological properties of HNK.SENP1 is a regulator of key proteins,like the tumor protein suppressor p53.It has been shown recently that SENP1 depletion synergizes with the DNA damage-inducing drug etoposide to induce p53 activation and the expression of p21[126].This is exactly the type of eff ect observed with HNK in hepatocellular carcinoma.HNK was found to inhibit the proliferation of HCC cells via G0/G1 cell cycle arrest with p21/p53 up-regulation[55].SENP1 is now considered as a valid anticancer target,overexpressed in certain cancer(like non-small cell lung[127]and pancreatic[128]cancers)and a promotor of HCC[129].Small molecules targeting SENP1 are actively searched[130-132].

    Natural products targeting SENP1 are relatively rare but at least two plant products have been reported:the pentacyclic triterpenoid momordin Ic which directly interacts with SENP1 in prostate cancer cells[133]and the triterpenoid triptolide which down-regulates SENP1 in prostate cancer cells[134].HNK is the third plant product identified as a SENP1 inhibitor,potentially useful for the treatment of cancers,in particular HCC,an essentially incurable inflammation-related cancer for which eff ective medications are still lacking.The interaction of HNK with SENP1 and the functional consequences of this interaction warrant further investigation,also because SENP1 inhibitors could be usefulto treat other human diseases,such as Alzheimer’s disease and diff erent CNS pathologies.

    In conclusion,the present review highlights the anticancer potential of a category of C-O-C-type biflavonoids,typified by the apigenin dimer hinokiflavone.These bis-apigenyl ethers represent an interesting family of anticancer/antimetastatic agents.Their mechanism of action is likely multifactorial but importantly,HNK stands as a unique regulator of pre-mRNA splicing,interfering with the SUMO-specific protease SNEP1.Oral formulations of HNK can be elaborated to facilitate the handling of the product and to enhance its anticancer efficacy.This plant natural product provides an original scaff old for the design of novel anticancer drugs targeting SNEP1.

    FundingThis research did not receive any specific grant from funding agencies in the public,commercial,or not-for-profit sectors.

    Compliance with Ethical Standards

    Conflict of interestThe authors declare no conflict of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

    Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License,which permits use,sharing,adaptation,distribution and reproduction in any medium or format,as long as you give appropriate credit to the original author(s)and the source,provide a link to the Creative Commons licence,and indicate if changes were made.The images or other third party material in this article are included in the article’s Creative Commons licence,unless indicated otherwise in a credit line to the material.If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use,you will need to obtain permission directly from the copyright holder.To view a copy of this licence,visit http://creat iveco mmons.org/licen ses/by/4.0/.

    References

    1.V.S.Gontijo,M.H.Dos Santos,C.Viegas Jr.,Mini Rev.Med.Chem.17,834-862(2017)

    2.T.Kariyone,T.Sawada,Yakugaku Zasshi(J.Pharm.Soc.Japan)78,1020-1022(1958)

    3.T.Kariyone,Y.Fukui,Yakugaku Zasshi(J.Pharm.Soc.Japan)80,746-749(1958)

    4.Y.Fukui,N.Kawano,J.Am.Chem.Soc.81,6331(1959)

    5.Y.M.Lin,F.C.Chen,K.H.Lee,Planta Med.55,166-168(1989)

    6.J.A.López-Sáez,M.J.Pérez-Alonso,A.V.Negueruela,Z.Naturforsch.49c,267-270(1994)

    7.Y.Yuan,B.Wang,L.Chen,H.Luo,D.Fisher,I.A.Sutherland,Y.Wei,J.Chrom.A 1194,192-198(2008)

    8.O.Kunert,R.C.Swamy,M.Kaiser,A.Presser,S.Buzzi,A.V.N.A.Rao,W.Schühlu,Phytochem.Lett.1,171-174(2008)

    9.A.N.B.Singab,I.M.Ayoub,M.El-Shazly,M.Korinek,T.Y.Wu,Y.B.Cheng,F.R.Chang,Y.C.Wu,Indus.Crops Prod.92,308-335(2016)

    10.S.Lee,N.J.Park,S.K.Bong,J.Jegal,S.A.Park,S.N.Kim,M.H.Yang,J.Ethnopharmacol.214,160-167(2018)

    11.B.Zhuang,Z.M.Bi,Z.Y.Wang,L.Duan,C.J.Lai,E.H.Liu,J.Pharm.Biomed.Anal.154,207-215(2018)

    12.K.Nakazawa,Tetrahedron Lett.8,5223-5225(1967)

    13.K.Nakazawa,Chem.Pharm.Bull.16,2503-2511(1968)

    14.M.Rahman,M.Riaz,U.R.Desai,Chem.Biodiv.4,2495-2527(2007)

    15.G.Sagrera,A.Bertucci,A.Vazquez,G.Seoane,Bioorg.Med.Chem.19,3060-3073(2011)

    16.Y.M.Lin,H.Anderson,M.T.Flavin,Y.H.Pai,E.Mata-Greenwood,T.Pengsuparp,J.M.Pezzuto,R.F.Schinazi,S.H.Hughes,F.C.Chen,J.Nat.Prod.60,884-888(1997)

    17.J.Lee,M.Kim,S.E.Jeong,H.Y.Park,C.O.Jeon,W.Park,J.Hazard.Mater.384,121312(2020)

    18.N.A.Konan,N.Lincopan,I.E.Díaz,J.J.de Fátima,M.M.Tiba,J.G.Amarante Mendes,E.M.Bacchi,B.Spira,Exp.Toxicol.Pathol.64,435-440(2012)

    19.S.Yu,H.Yan,L.Zhang,M.Shan,P.Chen,A.Ding,S.F.Li,Molecules 22,299(2017)

    20.M.T.Islam,S.M.N.K.Zihad,M.S.Rahman,N.Sifat,M.R.Khan,S.J.Uddin,R.Rouf,IUBMB Life 71,1192-1200(2019)

    21.G.Wang,S.Yao,X.X.Zhang,H.Song,Int.J.Anal.Chem.2015,849769(2015)

    22.M.S.Abdel-Kader,A.T.Abulhamd,A.M.Hamad,A.H.Alanazi,R.Ali,S.I.Alqasoumi,Saudi Pharm.J.26,496-503(2018)

    23.P.Fong,H.H.Tong,K.H.Ng,C.K.Lao,C.I.Chong,C.M.Chao,J.Ethnopharmacol.175,470-480(2015)

    24.H.P.Kim,H.Park,K.H.Son,H.W.Chang,S.S.Kang,Arch.Pharm.Res.31,265-273(2008)

    25.S.Y.Shim,S.G.Lee,M.Lee,Molecules 23,926(2018)

    26.A.Thapa,E.R.Woo,E.Y.Chi,M.G.Sharoar,H.G.Jin,S.Y.Shin,I.S.Park,Biochemistry 50,2445-2455(2011)

    27.A.Thapa,E.Y.Chi,Adv.Exp.Med.Biol.863,55-77(2015)

    28.N.Zhao,C.Sun,M.Zheng,S.Liu,R.Shi,Life Sci.239,117043(2019)

    29.L.Sun,A.K.Sharma,B.H.Han,L.M.Mirica,ACS Chem.Neurosci.11,2741-2752(2020)

    30.M.S.Uddin,M.T.Kabir,D.Tewari,B.Mathew,L.Aleya,Sci.Total Environ.700,134836(2020)

    31.N.Sirimangkalakitti,L.D.Juliawaty,E.H.Hakim,I.Waliana,N.Saito,K.Koyama,K.Kinoshita,Bioorg.Med.Chem.Lett.29,1994-1997(2019)

    32.Y.M.Lin,E.Z.Zembower,M.T.Flavin,R.M.S.Schure,H.M.Anderson,B.E.Korba,F.C.Chen,Bioorg.Med.Chem.Lett.7,2325-2328(1997)

    33.K.C.Chinsembu,Rev.Brasil Farmaco.29,504-528(2019)

    34.K.Miki,T.Nagai,T.Nakamura,M.Tuji,K.Koyama,K.Kinoshita,K.Furuhata,H.Yamada,K.Takahoshi,Heterocycles 75,879-885(2008)

    35.Y.M.Lin,M.T.Flavin,R.Schure,F.C.Chen,R.Sidwell,D.L.Barnard,J.H.Huff man,E.R.Kearn,Planta Med.65,120-125(1999)

    36.P.Coulerie,C.Eydoux,E.Hnawia,L.Stuhl,A.Maciuk,N.Lebouvier,B.Canard,B.Figadère,J.C.Guillemot,M.Nour,Planta Med.78,672-677(2012)

    37.P.Coulerie,M.Nour,A.Maciuk,C.Eydoux,J.C.Guillemot,N.Lebouvier,E.Hnawia,K.Leblanc,G.Lewin,B.Canard,B.Figadère,Planta Med.79,1313-1318(2013)

    38.J.S.Yang,C.W.Lin,Y.S.Hsieh,H.L.Cheng,K.H.Lue,S.F.Yang,K.H.Lu,Food Chem.Toxicol.59,801-807(2013)

    39.C.H.Hsin,B.C.Wu,C.Y.Chuang,S.F.Yang,Y.H.Hsieh,H.Y.Ho,H.P.Lin,M.K.Chen,C.W.Lin,Altern.Med.13,234(2013)

    40.G.G.Zhang,Y.Jing,H.M.Zhang,E.L.Ma,J.Guan,F.N.Xue,H.X.Liu,X.Y.Sun,Planta Med.78,390-392(2012)

    41.I.S.Lee,A.Nishikawa,F.Furukawa,K.Kasahara,S.U.Kim,Cancer Lett.144,93-99(1999)

    42.S.H.Ahn,Y.J.Mun,S.W.Lee,S.Kwak,M.K.Choi,S.K.Baik,Y.M.Kim,W.H.Woo,J.Med.Food.9,138-144(2006)

    43.S.F.Yang,S.C.Chu,S.J.Liu,Y.C.Chen,Y.Z.Chang,Y.S.Hsieh,J.Ethnopharmacol.110,483-489(2007)

    44.Y.J.Jung,E.H.Lee,C.G.Lee,K.J.Rhee,W.S.Jung,Y.Choi,C.H.Pan,K.Kang,J.Ethnopharmacol.202,78-84(2007)

    45.C.G.Lee,E.H.Lee,C.H.Pan,K.Kang,K.J.Rhee,Data Brief.13,162-165(2017)

    46.H.Huang,J.Hao,K.Pang,Y.Lv,D.Wan,C.Wu,Y.Ma,X.Yang,W.K.Zhang,J.Cell.Mol.Med.24,11922-11935(2020)

    47.Y.Cao,N.H.Tan,J.J.Chen,G.Z.Zeng,Y.B.Ma,Y.P.Wu,H.Yan,J.Yang,L.F.Lu,Q.Wang,Fitoterapia 81,253-258(2010)

    48.J.Z.Wang,J.Li,P.Zhao,W.T.Ma,X.H.Feng,K.L.Chen,Evid.Based Complement.Alternat.Med.2015,865714(2015)

    49.L.F.Liu,H.H.Sun,J.B.Tan,Q.Huang,F.Cheng,K.P.Xu,Z.X.Zou,G.S.Tan,Nat.Prod.Res.34,1-7(2019)

    50.D.Li,C.Sun,J.Yang,X.Ma,Y.Jiang,S.Qiu,G.Wang,Molecules 24,2507(2019)

    51.Y.Sui,S.Li,P.Shi,Y.Wu,Y.Li,W.Chen,L.Huang,H.Yao,X.Lin,J.Ethnopharmacol.190,261-271(2016)

    52.Y.M.Lin,F.C.Chen,K.H.Lee,Planta Med.55,166-168(1899)

    53.J.Zhou,R.Zhao,T.Ye,S.Yang,Y.Li,F.Yang,G.Wang,Y.Xie,Q.Li,J.Gastroenterol.Hepatol.34,1571-1580(2019)

    54.S.Yang,Y.Zhang,Y.Luo,B.Xu,Y.Yao,Y.Deng,F.Yang,T.Ye,G.Wang,Z.Cheng,Y.Zheng,Y.Xie,Biomed.Pharmacother.103,101-110(2018)

    55.W.Mu,X.Cheng,X.Zhang,Y.Liu,Q.Lv,G.Liu,J.Zhang,X.Li,J.Cell.Mol.Med.24,8151-8165(2020)

    56.W.Huang,C.Liu,F.Liu,Z.Liu,G.Lai,J.Yi,Cell.Biochem.Funct.38,249-256(2020)

    57.K.C.Lee,W.T.Chen,Y.C.Liu,S.S.Lin,F.T.Hsu,Vivo.32,1097-1103(2018)

    58.J.H.Lee,Arch.Pharm.Res.34,1209-1217(2011)

    59.C.Guruvayoorappan,G.Kuttan,J.Exp.Ther.Oncol.6,285-295(2007)

    60.S.Napoli,C.Scuderi,G.Gattuso,V.D.Bella,S.Candido,M.S.Basile,M.Libra,L.Falzone,Cells 9,1151(2020)

    61.G.Gonzalez-Avila,B.Sommer,A.A.García-Hernández,C.Ramos,Adv.Exp.Med.Biol.1245,97-131(2020)

    62.H.Huang,Sensors(Basel).18,3249(2018)

    63.G.B.Kumar,B.G.Nair,J.J.P.Perry,D.B.C.Martin,Medchemcomm.10,2024-2037(2019)

    64.K.Umezawa,Y.Lin,Biochim.Biophys.Acta Proteins Proteom.1868,140412(2020)

    65.S.O.Yoon,S.Shin,H.J.Lee,H.K.Chun,A.S.Chung,Mol.Cancer Ther.5,2666-2675(2006)

    66.N.Lian,J.Tong,W.Li,J.Wu,Y.Li,Biomed.Pharmacother.102,510-516(2018)

    67.W.H.Hu,G.K.Chan,R.Duan,H.Y.Wang,X.P.Kong,T.T.Dong,K.W.Tsim,Cancers(Basel)11,1828(2019)

    68.C.Guruvayoorappan,G.Kuttan,Immunopharmacol.Immunotoxicol.30,711-727(2008)

    69.Y.J.Lee,J.G.Chung,Y.T.Chien,S.S.Lin,F.T.Hsu,Anticancer Res.39,3669-3675(2019)

    70.F.T.Hsu,I.T.Chiang,Y.C.Kuo,T.C.Hsia,C.C.Lin,Y.C.Liu,J.G.Chung,Am.J.Chin.Med.47,913-931(2019)

    71.S.J.Suh,U.H.Jin,S.H.Kim,H.W.Chang,J.K.Son,S.H.Lee,K.H.Son,C.H.Kim,J.Cell.Biochem.99,1298-1307(2006)

    72.C.M.Lin,Y.L.Lin,S.Y.Ho,P.R.Chen,Y.H.Tsai,C.H.Chung,C.H.Hwang,N.M.Tsai,S.C.Tzou,C.Y.Ke,J.Chang,Y.L.Chan,Y.S.Wang,K.H.Chi,K.W.Liao,Oncotarget 8,60046-60059(2016)

    73.U.Lewandowska,K.Szewczyk,K.Owczarek,Z.Hrabec,A.Pods?dek,D.Sosnowska,E.Hrabec,Nutr.Cancer 65,1219-1231(2013)

    74.J.Cao,Q.Lu,N.Liu,Y.X.Zhang,J.Wang,M.Zhang,H.B.Wang,W.C.Sun,Int.Immunopharmacol.49,109-117(2017)

    75.S.Kalva,E.R.Azhagiya Singam,V.Rajapandian,L.M.Saleena,V.Subramanian,J.Mol.Graph.Model.49,25-37(2014)

    76.Q.Gao,Y.Wang,J.Hou,Q.Yao,J.Zhang,J.Comput.Aided Mol.Des.31,625-641(2017)

    77.J.Hou,Q.Zou,Y.Wang,Q.Gao,W.Yao,Q.Yao,J.Zhang,J.Biomol.Struct.Dyn.37,3135-3149(2019)

    78.C.G.Wang,W.N.Yao,B.Zhang,J.Hua,D.Liang,H.S.Wang,Bioorg.Med.Chem.Lett.28,2413-2417(2018)

    79.J.Mercado-Camargo,L.Cervantes-Ceballos,R.Vivas-Reyes,A.Pedretti,M.L.Serrano-García,H.Gómez-Estrada,ACS Omega 5,14741-14749(2020)

    80.P.Chymkowitch,P.A.Nguéa,J.M.Enserink,BioEssays 37,1095-1105(2015)

    81.Y.Jia,L.A.Claessens,A.C.O.Vertegaal,H.Ovaa,ACS Chem.Biol.14,2389-2395(2019)

    82.S.Chen,D.Dong,W.Xin,H.Zhou,Curr.Issues Mol.Biol.35,17-34(2020)

    83.Z.Wang,Y.Liu,J.Zhang,S.Ullah,N.Kang,Y.Zhao,H.Zhou,Eur.J.Med.Chem.204,112553(2020)

    84.Y.S.Kim,S.G.Keyser,J.S.Schneekloth Jr.,Bioorg.Med.Chem.Lett.24,1094-1097(2014)

    85.M.Lorente,A.García-Casas,N.Salvador,A.Martínez-López,E.Gabicagogeascoa,G.Velasco,L.López-Palomar,S.Castillo-Lluva,J.Cell.Sci.132,234120(2019)

    86.P.Zhou,X.Chen,M.Li,J.Tan,Y.Zhang,W.Yuan,J.Zhou,G.Wang,Biochem.Biophys.Res.Commun.513,1063-1069(2019)

    87.A.Rabellino,K.K.Khanna,Crit.Rev.Biochem.Mol.Biol.55,54-70(2020)

    88.M.L.Tomasi,K.Ramani,Transl.Gastroenterol.Hepatol.3,20(2018)

    89.A.Pawellek,U.Ryder,T.Tammsalu,L.J.King,H.Kreinin,T.Ly,R.T.Hay,R.C.Hartley,A.I.Lamond,Elife 6,27402(2017)

    90.J.Liu,X.Tao,J.Zhang,P.Wang,M.Sha,Y.Ma,X.Geng,L.Feng,Y.Shen,Y.Yu,S.Wang,S.Fang,Y.Shen,Oncotarget 7,22206-22218(2016)

    91.W.Zhang,H.Sun,X.Shi,H.Wang,C.Cui,F.Xiao,C.Wu,X.Guo,L.Wang,Tumour Biol.37,7741-7748(2016)

    92.D.Arango,K.Morohashi,A.Yilmaz,K.Kuramochi,A.Parihar,B.Brahimaj,E.Grotewold,A.I.Doseff,Proc.Natl.Acad.Sci.USA 110,2153-2162(2013)

    93.M.Chiba,H.Ariga,H.Maita,Chem.Biol.Drug Des.87,275-282(2016)

    94.M.Kurata,N.Fujiwara,K.I.Fujita,Y.Yamanaka,S.Seno,H.Kobayashi,Y.Miyamae,N.Takahashi,Y.Shibuya,S.Masuda,iScience 22,336-352(2019)

    95.K.O’Brien,A.J.Matlin,A.M.Lowell,M.J.Moore,J.Biol.Chem.283,33147-33154(2008)

    96.K.I.Fujita,T.Ishizuka,M.Mitsukawa,M.Kurata,S.Masuda,Int.J.Mol.Sci.21,2026(2020)

    97.E.J.Vanzyl,K.R.C.Rick,A.B.Blackmore,E.M.MacFarlane,B.C.McKay,PLoS ONE 13,e0191178(2018)

    98.M.Sivaramakrishnan,K.D.McCarthy,S.Campagne,S.Huber,S.Meier,A.Augustin,T.Heckel,H.Meistermann,M.N.Hug,P.Birrer,A.Moursy,S.Khawaja,R.Schmucki,N.Berntenis,N.Giroud,S.Golling,M.Tzouros,B.Banfai,G.Duran-Pacheco,J.Lamerz,Y.Hsiu Liu,T.Luebbers,H.Ratni,M.Ebeling,A.Cléry,S.Paushkin,A.R.Krainer,F.H.Allain,F.Metzger,Nat.Commun.8,1476(2017)

    99.J.Tsalikis,M.Abdel-Nour,A.Farahvash,M.T.Sorbara,S.Poon,D.J.Philpott,S.E.Girardin,Mol.Cell.Biol.39,e00489-e518(2019)

    100.S.A.Boswell,A.Snavely,H.M.Landry,L.S.Churchman,J.M.Gray,M.Springer,Nat.Chem.Biol.13,501-507(2017)

    101.J.Yongmei,L.Xiaofei,L.Xinmin,L.Qinmei,W.Gang,Y.Jiaqiang,Chinese Patent CN108553476A(publication date:2018-09-21).

    102.L.Dan,L.Xiaofei,L.Xinmin,W.Gang,X.Wen,Y.Jiaqiang,Chinese Patent CN108299366A(publication date:2018-07-20).

    103.K.Xu,C.Yang,Y.Xu,D.Li,S.Bao,Z.Zou,F.Kang,G.Tan,S.M.Li,X.Yu,Org.Biomol.Chem.18,28-31(2020)

    104.I.M.Ayoub,M.Korinek,T.L.Hwang,B.H.Chen,F.R.Chang,M.El-Shazly,A.N.B.Singab,J.Nat.Prod.81,243-253(2018)

    105.M.J.Son,T.C.Moon,E.K.Lee,K.H.Son,H.P.Kim,S.S.Kang,J.K.Son,S.H.Lee,H.W.Chang,Arch.Pharm.Res.29,282-286(2006)

    106.T.C.Moon,H.S.Hwang,Z.Quan,K.H.Son,C.H.Kim,H.P.Kim,S.S.Kang,J.K.Son,H.W.Chang,Biol.Pharm.Bull.29,2359-2361(2006)

    107.S.J.Lee,J.H.Choi,K.H.Son,H.W.Chang,S.S.Kang,H.P.Kim,Life Sci.57,551-558(1995)

    108.Y.Sui,H.Yao,S.Li,L.Jin,P.Shi,Z.Li,G.Wang,S.Lin,Y.Wu,Y.Li,L.Huang,Q.Liu,X.Lin,J.Mol.Med.(Berl).95,311-322(2017)

    109.W.Yao,Z.Lin,G.Wang,S.Li,B.Chen,Y.Sui,J.Huang,Q.Liu,P.Shi,X.Lin,Q.Liu,H.Yao,Phytomedicine 62,152973(2019)

    110.W.Yao,Z.Lin,P.Shi,B.Chen,G.Wang,J.Huang,Y.Sui,Q.Liu,S.Li,X.Lin,Q.Liu,H.Yao,Biochem.Pharmacol.171,113680(2020)

    111.W.K.Sim,J.H.Park,K.Y.Kim,I.S.Chung,Sci.Rep.10,11070(2020)

    112.H.Wan,L.Ge,J.Li,K.Zhang,W.Wu,S.Peng,X.Zou,H.Zhou,B.Zhou,X.Zeng,Phytomedicine 57,282-291(2019)

    113.A.Al Groshi,H.A.Jasim,A.R.Evans,F.M.D.Ismail,N.M.Dempster,L.Nahar,S.D.Sarker,Phytother.Res.33,2075-2082(2019)

    114.E.Al-Sayed,H.A.Gad,M.El-Shazly,M.M.Abdel-Daim,S.A.Nasser,Drug Dev.Res.79,22-28(2018)

    115.Y.Chen,X.Feng,L.Li,X.Zhang,K.Song,X.Diao,Y.Sun,L.Zhang,J.Pharm.Biomed.Anal.169,19-29(2019)

    116.R.Yin,K.Xiong,S.Wen,Y.Wang,F.Xu,Biomed.Chromatogr.31,3821(2017)

    117.Y.Chen,X.Feng,L.Li,K.Song,L.Zhang,Drug Deliv.27,565-574(2020)

    118.B.Chen,X.Wang,D.Lin,D.Xu,S.Li,J.Huang,S.Weng,Z.Lin,Y.Zheng,H.Yao,X.Lin,Int.J.Nanomedicine.14,6691-6706(2019)

    119.B.Chen,X.Wang,Y.Zhang,K.Huang,H.Liu,D.Xu,S.Li,Q.Liu,J.Huang,H.Yao,X.Lin,Drug Deliv.27,309-322(2020)

    120.H.Miura,N.Kawano,A.C.Waiss Jr.,Chem Pharm Bull.(Tokyo)14,1408-1413(1966)

    121.H.Miura,Yakugaku Zasshi(J.Pharm.Soc.Japan 87,871-874(1967)

    122.J.Lee,Y.Choi,E.R.Woo,D.G.Lee,J.Microbiol.Biotechnol.19,204-207(2009)

    123.J.Lee,Y.Choi,E.R.Woo,D.G.Lee,Biochem.Biophys.Res.Commun.379,676-680(2009)

    124.C.Shivanika,D.S.Kuma,V.Ragunathan,P.Tiwari,A.Sumitha,B.P.Devi,J.Biomol.Struct.Dyn.(2020).https ://doi.org/10.1080/07391 102.2020.18155 84

    125.V.K.Singh,D.Arora,M.I.Ansari,P.K.Sharma,Phytother.Res.33,3064-3089(2019)

    126.K.M.Chauhan,Y.Chen,Y.Chen,A.T.Liu,X.X.Sun,M.S.Dai,J.Cell.Biochem.122,189-197(2021)

    127.K.Liu,J.Zhang,H.Wang,J.Clin.Lab.Anal.32,e22611(2018)

    128.D.M.Bouchard,M.J.Matunis,J.Gastrointest.Oncol.10,821-830(2019)

    129.Y.Tao,R.Li,C.Shen,J.Li,Q.Zhang,Z.Ma,F.Wang,Z.Wang,Aging(Albany NY)12,1563-1576(2020)

    130.Y.Chen,D.Wen,Z.Huang,M.Huang,Y.Luo,B.Liu,H.Lu,Y.Wu,Y.Peng,J.Zhang,Bioorg.Med.Chem.Lett.22,6867-6870(2012)

    131.Y.Zhao,Z.Wang,J.Zhang,H.Zhou,Eur.J.Med.Chem.122,178-184(2016)

    132.U.Lindenmann,M.Brand,F.Gall,D.Frasson,L.Hunziker,I.Kroslakova,M.Sievers,R.Riedl,ChemMedChem 15,675-679(2020)

    133.J.Wu,H.Lei,J.Zhang,X.Chen,C.Tang,W.Wang,H.Xu,W.Xiao,W.Gu,Y.Wu,Oncotarget.7,58995-59005(2016)

    134.W.Huang,T.He,C.Chai,Y.Yang,Y.Zheng,P.Zhou,X.Qiao,B.Zhang,Z.Liu,J.Wang,C.Shi,L.Lei,K.Gao,H.Li,S.Zhong,L.Yao,M.E.Huang,M.Lei,PLoS ONE 7,e37693(2012)

    135.N.D.Ambaye,Acta.Crystallogr.F Struct.Biol.Commun.75,332-339(2019)

    天美传媒精品一区二区| 极品教师在线视频| 嘟嘟电影网在线观看| 一级爰片在线观看| 色网站视频免费| 久久久午夜欧美精品| 七月丁香在线播放| 日本爱情动作片www.在线观看| 午夜福利在线观看吧| 超碰97精品在线观看| 美女被艹到高潮喷水动态| av天堂中文字幕网| av免费观看日本| 国产精品爽爽va在线观看网站| 亚洲最大成人手机在线| 一级爰片在线观看| 欧美xxⅹ黑人| 天堂√8在线中文| av在线播放精品| av女优亚洲男人天堂| 国产综合懂色| 你懂的网址亚洲精品在线观看| 精品国产三级普通话版| 天天躁日日操中文字幕| 亚洲成人久久爱视频| 在线观看人妻少妇| 亚洲国产高清在线一区二区三| 精华霜和精华液先用哪个| 91久久精品国产一区二区三区| 成人无遮挡网站| 狠狠精品人妻久久久久久综合| 亚洲国产日韩欧美精品在线观看| 黄片无遮挡物在线观看| 综合色丁香网| 欧美成人精品欧美一级黄| 欧美高清成人免费视频www| 两个人的视频大全免费| 麻豆国产97在线/欧美| 男插女下体视频免费在线播放| 欧美极品一区二区三区四区| 网址你懂的国产日韩在线| 亚洲精品成人久久久久久| 乱人视频在线观看| 久久久久性生活片| 高清视频免费观看一区二区 | 国产综合精华液| 久久人人爽人人片av| 免费观看精品视频网站| 日韩av不卡免费在线播放| 久久久国产一区二区| 插阴视频在线观看视频| 久久久久久久亚洲中文字幕| 欧美精品一区二区大全| 国产国拍精品亚洲av在线观看| 高清欧美精品videossex| 亚洲av在线观看美女高潮| 精品酒店卫生间| 婷婷色综合大香蕉| 丝袜美腿在线中文| 国产乱人偷精品视频| 色综合色国产| 男人舔女人下体高潮全视频| 嫩草影院入口| 色尼玛亚洲综合影院| 国产黄片美女视频| 菩萨蛮人人尽说江南好唐韦庄| 国精品久久久久久国模美| 天堂俺去俺来也www色官网 | av一本久久久久| 国内精品宾馆在线| 久久久精品免费免费高清| 国产免费一级a男人的天堂| 免费电影在线观看免费观看| 亚洲国产色片| 亚洲性久久影院| 国产亚洲5aaaaa淫片| 亚洲国产欧美人成| 成人鲁丝片一二三区免费| 久久久久久久久久成人| 国产不卡一卡二| 久久6这里有精品| 狠狠精品人妻久久久久久综合| 亚洲色图av天堂| 成人国产麻豆网| 欧美成人a在线观看| 欧美成人午夜免费资源| av.在线天堂| 美女国产视频在线观看| 亚洲国产色片| 中文字幕人妻熟人妻熟丝袜美| 尤物成人国产欧美一区二区三区| 日韩不卡一区二区三区视频在线| 欧美日韩在线观看h| 日韩av在线免费看完整版不卡| 亚洲av成人精品一二三区| 青青草视频在线视频观看| 亚洲精品成人av观看孕妇| 亚洲在线观看片| 三级男女做爰猛烈吃奶摸视频| 看非洲黑人一级黄片| 搡老妇女老女人老熟妇| 久久精品久久久久久久性| 在线播放无遮挡| 男女边摸边吃奶| 日韩av免费高清视频| 男人和女人高潮做爰伦理| 免费黄频网站在线观看国产| 久久久久久久久久人人人人人人| 亚洲国产精品sss在线观看| 噜噜噜噜噜久久久久久91| 欧美一区二区亚洲| 成人毛片60女人毛片免费| 亚洲真实伦在线观看| 精品久久久久久久久亚洲| 啦啦啦中文免费视频观看日本| 亚洲精品久久午夜乱码| 久久午夜福利片| 亚洲精品国产av成人精品| 国模一区二区三区四区视频| 精品99又大又爽又粗少妇毛片| 欧美一级a爱片免费观看看| 欧美不卡视频在线免费观看| 日韩人妻高清精品专区| 天天躁夜夜躁狠狠久久av| 亚洲成人精品中文字幕电影| 久久久久久伊人网av| 欧美zozozo另类| 春色校园在线视频观看| 久久99热6这里只有精品| 免费在线观看成人毛片| 午夜视频国产福利| 伊人久久精品亚洲午夜| 中文字幕av成人在线电影| 亚洲av日韩在线播放| 精品酒店卫生间| kizo精华| av专区在线播放| 观看免费一级毛片| 午夜福利成人在线免费观看| 久久韩国三级中文字幕| 国产欧美另类精品又又久久亚洲欧美| 色综合亚洲欧美另类图片| 日产精品乱码卡一卡2卡三| 日本-黄色视频高清免费观看| 日韩欧美一区视频在线观看 | av在线亚洲专区| 国产 一区 欧美 日韩| 麻豆精品久久久久久蜜桃| 午夜精品在线福利| 国产黄色小视频在线观看| 色吧在线观看| eeuss影院久久| 免费av毛片视频| 91久久精品国产一区二区三区| 性插视频无遮挡在线免费观看| 国产亚洲精品久久久com| 欧美丝袜亚洲另类| 国产精品不卡视频一区二区| 精品一区二区免费观看| 在线 av 中文字幕| 天天一区二区日本电影三级| 五月玫瑰六月丁香| 国产精品久久久久久久久免| 亚洲成人av在线免费| 久久这里只有精品中国| 午夜精品在线福利| 97超碰精品成人国产| av国产免费在线观看| 午夜福利在线观看吧| 免费观看精品视频网站| 亚洲人与动物交配视频| 国产乱人偷精品视频| 麻豆久久精品国产亚洲av| 麻豆国产97在线/欧美| 国产亚洲一区二区精品| 欧美最新免费一区二区三区| 少妇的逼好多水| 国产精品国产三级国产专区5o| 久久鲁丝午夜福利片| 高清日韩中文字幕在线| 建设人人有责人人尽责人人享有的 | 可以在线观看毛片的网站| 成人av在线播放网站| 午夜视频国产福利| 美女脱内裤让男人舔精品视频| 欧美激情国产日韩精品一区| 岛国毛片在线播放| 久久99蜜桃精品久久| 淫秽高清视频在线观看| 亚洲精品成人av观看孕妇| 精品一区二区三卡| 国产免费一级a男人的天堂| 久久久久久国产a免费观看| 亚洲最大成人av| 久久久久性生活片| 欧美不卡视频在线免费观看| 高清av免费在线| 午夜爱爱视频在线播放| av免费观看日本| 久久综合国产亚洲精品| 精品久久久久久久久久久久久| 全区人妻精品视频| 久久精品综合一区二区三区| 成年av动漫网址| 熟女电影av网| 亚洲av电影在线观看一区二区三区 | 欧美zozozo另类| 日日啪夜夜爽| 久久精品人妻少妇| 亚洲高清免费不卡视频| 免费av观看视频| 亚洲成人中文字幕在线播放| 在现免费观看毛片| 亚洲欧美成人精品一区二区| 高清日韩中文字幕在线| 一级黄片播放器| 伊人久久精品亚洲午夜| 又粗又硬又长又爽又黄的视频| 99热6这里只有精品| 久久鲁丝午夜福利片| 亚洲av男天堂| 成年免费大片在线观看| 亚洲电影在线观看av| 国产精品爽爽va在线观看网站| 欧美 日韩 精品 国产| 国产熟女欧美一区二区| 深爱激情五月婷婷| 国产成人精品一,二区| 亚洲精品久久久久久婷婷小说| 视频中文字幕在线观看| 欧美一级a爱片免费观看看| 免费高清在线观看视频在线观看| 亚洲综合精品二区| 国产伦理片在线播放av一区| 亚洲自偷自拍三级| 久久久久久久大尺度免费视频| 精品不卡国产一区二区三区| 国产黄色小视频在线观看| 国产大屁股一区二区在线视频| 国产乱人视频| 午夜免费激情av| 中文字幕av在线有码专区| 日韩伦理黄色片| 亚洲国产精品成人久久小说| 一个人看的www免费观看视频| 久久人人爽人人爽人人片va| 精品99又大又爽又粗少妇毛片| 麻豆久久精品国产亚洲av| 国产精品女同一区二区软件| 成人综合一区亚洲| 九九久久精品国产亚洲av麻豆| 麻豆成人午夜福利视频| 国产精品1区2区在线观看.| 九色成人免费人妻av| 91精品国产九色| 三级国产精品欧美在线观看| 色播亚洲综合网| 精品一区二区三卡| 日日撸夜夜添| 国产一级毛片在线| 天天躁夜夜躁狠狠久久av| 国产精品久久久久久av不卡| 午夜免费男女啪啪视频观看| 欧美97在线视频| 日产精品乱码卡一卡2卡三| 好男人视频免费观看在线| 国产午夜精品一二区理论片| 在线免费观看的www视频| 干丝袜人妻中文字幕| 亚洲欧美一区二区三区黑人 | 国产成人freesex在线| 亚洲精品色激情综合| 啦啦啦啦在线视频资源| 男的添女的下面高潮视频| 国产av国产精品国产| 十八禁国产超污无遮挡网站| 日韩伦理黄色片| 亚洲精品第二区| av天堂中文字幕网| 亚洲精品久久午夜乱码| kizo精华| 少妇的逼好多水| 色尼玛亚洲综合影院| 日产精品乱码卡一卡2卡三| 高清欧美精品videossex| 人妻一区二区av| 久久久久久久久久黄片| 成年av动漫网址| 日产精品乱码卡一卡2卡三| 高清欧美精品videossex| 日韩,欧美,国产一区二区三区| 久久久国产一区二区| 亚洲精品国产av蜜桃| 日韩一本色道免费dvd| 好男人视频免费观看在线| av在线亚洲专区| 久久精品国产亚洲av天美| 国产免费一级a男人的天堂| 欧美成人a在线观看| 免费av观看视频| 国产成年人精品一区二区| 亚洲av电影不卡..在线观看| 免费看a级黄色片| 久久国内精品自在自线图片| 网址你懂的国产日韩在线| 欧美性猛交╳xxx乱大交人| 中文在线观看免费www的网站| 国产三级在线视频| 亚洲欧美一区二区三区国产| 亚洲欧美一区二区三区黑人 | 人妻制服诱惑在线中文字幕| 免费看美女性在线毛片视频| 国产激情偷乱视频一区二区| 国产欧美另类精品又又久久亚洲欧美| 精品人妻一区二区三区麻豆| 最新中文字幕久久久久| 久久草成人影院| 神马国产精品三级电影在线观看| 乱系列少妇在线播放| 欧美三级亚洲精品| 精品久久久精品久久久| 国产男女超爽视频在线观看| 一二三四中文在线观看免费高清| 精品少妇黑人巨大在线播放| 欧美性猛交╳xxx乱大交人| 亚洲丝袜综合中文字幕| av又黄又爽大尺度在线免费看| 精品99又大又爽又粗少妇毛片| 日本与韩国留学比较| 亚洲国产精品成人久久小说| 纵有疾风起免费观看全集完整版 | 亚洲,欧美,日韩| av一本久久久久| 国产高清三级在线| 高清日韩中文字幕在线| 午夜久久久久精精品| 3wmmmm亚洲av在线观看| 久久久久久久大尺度免费视频| 自拍偷自拍亚洲精品老妇| 在线免费十八禁| 你懂的网址亚洲精品在线观看| 国产免费视频播放在线视频 | 久久午夜福利片| 国产亚洲av片在线观看秒播厂 | 亚洲av不卡在线观看| 亚洲三级黄色毛片| 欧美三级亚洲精品| 国产一区亚洲一区在线观看| av国产久精品久网站免费入址| 99热这里只有精品一区| 波野结衣二区三区在线| 又大又黄又爽视频免费| 欧美成人精品欧美一级黄| 久久精品国产亚洲网站| 又黄又爽又刺激的免费视频.| 不卡视频在线观看欧美| 日韩伦理黄色片| 噜噜噜噜噜久久久久久91| 美女内射精品一级片tv| 乱码一卡2卡4卡精品| 成年女人看的毛片在线观看| 亚洲国产精品专区欧美| 国产高清国产精品国产三级 | 日韩欧美国产在线观看| 国产白丝娇喘喷水9色精品| 亚洲精品,欧美精品| 日本爱情动作片www.在线观看| 久久久久久久大尺度免费视频| 成年av动漫网址| 日韩一区二区视频免费看| 久久久久久久亚洲中文字幕| 波野结衣二区三区在线| 亚洲成人中文字幕在线播放| 能在线免费看毛片的网站| 亚洲av电影不卡..在线观看| 久久久久久国产a免费观看| 亚洲四区av| 国产色婷婷99| 免费高清在线观看视频在线观看| 最近中文字幕高清免费大全6| 中文字幕免费在线视频6| 欧美三级亚洲精品| 久久久精品94久久精品| 91精品国产九色| 老司机影院毛片| 久久这里只有精品中国| 亚洲精品影视一区二区三区av| 国产激情偷乱视频一区二区| 少妇人妻一区二区三区视频| 亚洲精品影视一区二区三区av| 天堂av国产一区二区熟女人妻| 免费看a级黄色片| 一区二区三区乱码不卡18| 亚洲精华国产精华液的使用体验| 最新中文字幕久久久久| 亚洲激情五月婷婷啪啪| 久久综合国产亚洲精品| 国产有黄有色有爽视频| 国产亚洲91精品色在线| 非洲黑人性xxxx精品又粗又长| 日韩在线高清观看一区二区三区| 91av网一区二区| 在线免费十八禁| 亚洲色图av天堂| 国产精品精品国产色婷婷| 亚洲精品456在线播放app| 嫩草影院入口| 成人高潮视频无遮挡免费网站| 淫秽高清视频在线观看| 啦啦啦韩国在线观看视频| 亚洲综合色惰| 亚洲精品一区蜜桃| 亚洲精品乱码久久久久久按摩| videossex国产| 亚洲精品自拍成人| 97在线视频观看| 久久人人爽人人片av| 欧美最新免费一区二区三区| av一本久久久久| 久久久久久久国产电影| 国产午夜福利久久久久久| 亚洲av电影在线观看一区二区三区 | 精品久久国产蜜桃| 丝袜喷水一区| 26uuu在线亚洲综合色| 国产精品国产三级国产专区5o| 老司机影院毛片| 一二三四中文在线观看免费高清| 国产成人a区在线观看| 国产一区二区三区av在线| 国产在视频线精品| 日韩,欧美,国产一区二区三区| 激情 狠狠 欧美| 蜜桃久久精品国产亚洲av| 九九在线视频观看精品| 搡老乐熟女国产| 免费看日本二区| 汤姆久久久久久久影院中文字幕 | 久久久久久久久久久丰满| 看非洲黑人一级黄片| 成人鲁丝片一二三区免费| 男的添女的下面高潮视频| 一级毛片我不卡| 亚洲色图av天堂| 两个人视频免费观看高清| 久久亚洲国产成人精品v| 国产av不卡久久| 亚洲国产成人一精品久久久| 三级国产精品欧美在线观看| 亚洲婷婷狠狠爱综合网| 一本一本综合久久| 国产伦理片在线播放av一区| 亚洲欧洲日产国产| 国产亚洲av片在线观看秒播厂 | 激情 狠狠 欧美| 少妇的逼水好多| 国产黄a三级三级三级人| 亚洲av成人精品一区久久| 精品久久久久久电影网| 中文字幕免费在线视频6| 91aial.com中文字幕在线观看| 国产精品一区www在线观看| 精品熟女少妇av免费看| 成人无遮挡网站| 伦理电影大哥的女人| 少妇裸体淫交视频免费看高清| 午夜视频国产福利| 丰满人妻一区二区三区视频av| 中文字幕免费在线视频6| 哪个播放器可以免费观看大片| 亚洲精品第二区| 日韩人妻高清精品专区| 国产精品久久久久久精品电影小说 | 日韩不卡一区二区三区视频在线| 99久国产av精品| 国产亚洲5aaaaa淫片| 在线免费观看不下载黄p国产| 男女啪啪激烈高潮av片| 亚洲国产色片| 美女脱内裤让男人舔精品视频| 国产黄片视频在线免费观看| 免费看不卡的av| 尾随美女入室| 国产精品精品国产色婷婷| 久久精品熟女亚洲av麻豆精品 | 午夜福利在线观看吧| 91精品一卡2卡3卡4卡| 精品久久国产蜜桃| 免费观看精品视频网站| 亚州av有码| 丝瓜视频免费看黄片| 最新中文字幕久久久久| 18禁动态无遮挡网站| 日本午夜av视频| 韩国高清视频一区二区三区| 汤姆久久久久久久影院中文字幕 | 久久国内精品自在自线图片| 高清午夜精品一区二区三区| 18禁在线无遮挡免费观看视频| 色综合色国产| 两个人视频免费观看高清| 国产一区二区三区综合在线观看 | 国产探花在线观看一区二区| 美女黄网站色视频| 亚洲精品乱码久久久v下载方式| 久久精品夜夜夜夜夜久久蜜豆| 国产中年淑女户外野战色| av网站免费在线观看视频 | 国产成人午夜福利电影在线观看| 亚洲欧洲日产国产| 国产精品人妻久久久久久| 搡老乐熟女国产| 伦精品一区二区三区| 天美传媒精品一区二区| 熟妇人妻久久中文字幕3abv| 国产亚洲最大av| 天堂网av新在线| 亚洲自偷自拍三级| 国产综合懂色| 国产欧美另类精品又又久久亚洲欧美| 99久久人妻综合| 亚洲综合色惰| 国产日韩欧美在线精品| 在线免费观看的www视频| 久久久a久久爽久久v久久| 久久久久久久久久黄片| 欧美97在线视频| 2018国产大陆天天弄谢| 午夜视频国产福利| 男女国产视频网站| 欧美变态另类bdsm刘玥| 搡老乐熟女国产| 麻豆成人av视频| 青青草视频在线视频观看| 中文资源天堂在线| 啦啦啦中文免费视频观看日本| 国产精品.久久久| 一区二区三区免费毛片| av福利片在线观看| 18禁裸乳无遮挡免费网站照片| 欧美xxⅹ黑人| 能在线免费观看的黄片| 男女边摸边吃奶| 麻豆精品久久久久久蜜桃| 2021天堂中文幕一二区在线观| 国产精品伦人一区二区| 午夜福利在线在线| 嘟嘟电影网在线观看| 国内揄拍国产精品人妻在线| 又爽又黄a免费视频| 我的女老师完整版在线观看| 性色avwww在线观看| 久久久久久久久久人人人人人人| 精品久久久久久久末码| 99久久九九国产精品国产免费| av卡一久久| 亚洲色图av天堂| 午夜老司机福利剧场| 午夜福利在线观看免费完整高清在| 免费观看的影片在线观看| 亚洲欧美精品自产自拍| 国产精品久久久久久精品电影小说 | 欧美zozozo另类| 免费av不卡在线播放| 国语对白做爰xxxⅹ性视频网站| 身体一侧抽搐| 国产人妻一区二区三区在| 久久99精品国语久久久| 如何舔出高潮| 国产精品av视频在线免费观看| 中文在线观看免费www的网站| 午夜激情久久久久久久| 国产伦精品一区二区三区四那| 国产精品三级大全| 80岁老熟妇乱子伦牲交| 国产综合精华液| 国产精品.久久久| 日日干狠狠操夜夜爽| 中国美白少妇内射xxxbb| 乱人视频在线观看| 久久久久免费精品人妻一区二区| 国产成人精品婷婷| 在线观看人妻少妇| 床上黄色一级片| 国产伦一二天堂av在线观看| 少妇猛男粗大的猛烈进出视频 | 国产免费一级a男人的天堂| 午夜激情欧美在线| 国产真实伦视频高清在线观看| 免费黄网站久久成人精品| 国产精品一及| 国产在线男女| 一区二区三区四区激情视频| 免费无遮挡裸体视频| 春色校园在线视频观看| 国产精品一区二区性色av| 久久久久性生活片| 国产精品av视频在线免费观看| 国产色婷婷99| 18禁在线播放成人免费| 亚洲色图av天堂| 五月天丁香电影| 国产午夜精品久久久久久一区二区三区| 熟妇人妻不卡中文字幕| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品嫩草影院av在线观看| 日产精品乱码卡一卡2卡三| 九九爱精品视频在线观看| 777米奇影视久久| 亚洲国产日韩欧美精品在线观看| 亚洲国产精品成人综合色| 你懂的网址亚洲精品在线观看| 午夜激情欧美在线| 男人舔女人下体高潮全视频| 丝瓜视频免费看黄片|