• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Extended-source broken gate tunnel FET for improving direct current and analog/radio-frequency performance*

    2021-07-30 07:43:12HuiFangXu許會芳WenSun孫雯andNaWang王娜
    Chinese Physics B 2021年7期
    關(guān)鍵詞:王娜

    Hui-Fang Xu(許會芳), Wen Sun(孫雯), and Na Wang(王娜)

    Institute of Electrical and Electronic Engineering,Anhui Science and Technology University,Fengyang 233100,China

    Keywords: extended-source,broken gate,radio-frequency performances,tunnel field-effect transistor

    1. Introduction

    As the size of metal-oxide-semiconductor field-effect transistors (MOSFETs) scales down continuously, the power dissipation, limitation of subthreshold swing (SS) of 60 mV/decade of current at room temperature, and significant increase of the off-state currentIoffhave become critical issues. However, in next-generation technology nodes,novel devices with low power, high on-chip packing density,and high speed are of great demands. Therefore,tunnel fieldeffect transistors(TFETs)have been proposed to replace conventional MOSFETs in order to overcome the shortcomings of MOSFETs. In contrast to the thermal injection of carriers for MOSFETs,the working mechanism of TFETs is bandto-band tunneling (BTBT).[1]The BTBT mechanism can reduce the values of SS, various researches have proved that SS is lower than 60 mV/decade at 300 K.[2-4]Moreover, the BTBT mechanism produces a large tunneling barrier for the current carriers when the device is operated in the off-state,which makesIoffsmaller. As a result, the power dissipation of TFETs is lower than that of MOSFETs. However,in spite of the above-mentioned advantages for TFETs, conventional TFETs suffer from ambipolar behavior and small on-state currentIon. Therefore,many papers have extensively boostedIonand reduced ambipolar behavior. For the purpose of suppressing ambipolar behavior, many technologies have been used, such as low doping levels in the drain region,[5]underlap and overlap of gate-drain.[6-8]Furthermore, in order to enhanceIon, many novel architectures of TFETs such as T-shape,[9,10]nanowire,[11,12]L-shape,[2,13]U-shape,[14]nanotube,[15,16]are proposed. Moreover, the materials with small energy bandgap,[17-19]high-kgate dielectrics,[20]high doping levels in the source region as well as abruptness at the source-channel tunnel junction are need to design. As is well known, the tunneling barrier decreases with the energy bandgap decreasing,so the tunneling rate increases,which results in a largeIon. Moreover,a sharp abrupt junction between the source region and channel region should be formed in order to increase the generation efficiency of BTBT as much as possible, and as a result,Ionis boosted. Thus, many researchers have concentrated on how to form an abrupt source-channel junction based on the process technology.

    Furthermore, for better applications from the perspective of low-power and analog/rf circuits, the performance parameters of TFETs such as low SS, small threshold voltageVth, high on-state current to off-state current ratioIon/Ioff,large transconductancegm, high cut-off frequencyfT, high gain bandwidth product (GBP), and large transconductance frequency product (TFP) should be obtained. Miscellaneous techniques have been reported in the literature to improve the dc and analog/rf performance parameters.[21-28]Pujaet al.reported a ferroelectric TFET with SS of 40 mV/decade,Ion/Ioffof 8.4×1011.[29]Tripureshet al.reported an extended-source double-gate TFET (ESDG TFET) withVthof 0.42 V, SS of 12.24 mV/decade,Ion/Ioffof 1012,fTof 37.7 GHz, GBP of 3.4 GHz.[30]Rounaket al.proposed a broken gate TFET(BG TEFT), which combines the advantages of the double gate TFET(DG TFET)and the L-shaped TFET(L TFET).[31]Moreover, superior characteristics such as small ambipolar current, low SS, and largeIonare achieved for BG TFET. In this paper,a novel TFET named as the ESBG TFET,which is an amalgamation between the ESDG TFET and the BG TFET in order to enhance the dc and analog/rf performance.

    2. Device structure

    The structure of the ESBG TFET is shown in Fig.1. The source region is extended into the channel for the purpose of enhancing the point and line tunneling probabilities at the tunneling junction.The gate dielectrics near the source region and near the drain region are hafnium dioxide(HfO2)and silicon dioxide (SiO2) in order to reduce ambipolarity. It should be noted that the device is called the ESBG TFET(HfO2)when the gate dielectrics near the source and drain regions are HfO2.Similarly,when the gate dielectrics are silicon dioxide(SiO2),the device is called the ESBG TFET (SiO2). The length and height of the p+source region isLsandTs,respectively. The silicon thicknesses near the gate and near the drain areT1andT2,respectively. The lengths of gate and gate 2 areL1andL3,respectively. The distance between gate and gate 2 isL2. The parameters for the ESBG TFET are listed in Table 1.

    Fig.1. Structure of the extended-source broken gate TFET.

    Table 1. Parameters of the ESBG TFET used in this paper.

    The performance parameters of the ESBG TFET are simulated using the silvaco atlas simulator,[32]and the nonlocal band-to-band tunneling(BTBT)model,the auger recombination model,the shockley-read-hall(SRH)model as well as the fermi-dirac statistics model are used. The material parameters such as tunneling mass of electron(me.tunnel)and tunneling mass of hole (mh.tunnel) are used in the nonlocal tunneling model. Moreover,the tunneling current of the TFET is exponentially related to the values of me.tunnel and mh.tunnel. In our simulations,the values of me.tunnel and mh.tunnel are set as 0.21 and 0.16 for the purpose of calibrating the simulation models with the experimental results.[30,32]It should be noted that the gates for the ESBG TFET are simultaneously provided with the same gate-source voltage for all the simulations and analysis presented in this paper.

    3. Results and discussions

    3.1. Direct-current analysis for the ESBG TFET

    Figure 2(a)shows the comparisons of transfer characteristics for the conventional dual material gate (DMG) TFET and the ESBG TFET with anLsof 25 nm. It is evident from Fig. 2(a) that the ESBG TFET shows an improvement in theIoffby seven orders in comparison to the DMG TFET.Moreover,Ionis also enhanced for the ESBG TFET due to increase of the line and point tunneling probabilities at the source-channel junction.IonandIoffdefined at gate-source voltage ofVgsfixed at 1 V and 0 V, respectively, have been calculated with the drain-source voltage ofVdsfixed at 0.5 V.Ion~3.26×10-5A/μm andIoff~1.84×10-18A/μm have been obtained for the ESBG TFET with anLsof 25 nm.Moreover,the transfer characteristic curves of the proposed device and the ESBG TFET (HfO2) are almost coincided, butIoffof the proposed device is less than that of the ESBG TFET(HfO2).However,Ionfor the ESBG TFET(SiO2)is very small because of the large tunneling width. Figure 2(b) shows the variation ofIdswithVdsfor the DMG TFET and the ESBG TFET. The curves depicts that with increase inVds,Idssaturates to a constant value as the barrier width becomes independent ofVds. Moreover, the ESBG TFET exhibits superior drain current in comparison with the other three devices.

    Fig. 2. (a) Transfer characteristics and (b) output characteristics comparison for the ESBG TFET and the DMG TFET.

    Figure 3(a)shows the variation in the electric field along the cutlineC1(as shown in Fig. 1). The peak electric field is lied at the corners due to the point tunneling in the device.The variation in the electric field is reflected in the energy band along the cutlineC1,as observed in Fig.4(a). It is obvious that the value of energy band range over which tunneling takes place and the value of the average tunneling width varies withLs,the higher the value of energy band range over which tunneling takes place, the lower the value of the average tunneling width,the higher the charge carrier transmission probability,and henceIonis enhanced. Moreover,it is obvious from Fig.3(b)that the peak electric field at the source corners along the cutlineC2(as shown in Fig.1)is higher,which infers the line tunneling in the ESBG TFET.Figure 4(b)shows the variation in the energy band at the source corners along the cutlineC2. More energy band bending at the source corners along the cutlineC2will result in a higherIon. However,the differences of electric field and energy band along the cutlineC2betweenLs=15 nm andLs=25 nm are not obvious.

    Fig.3. Electric field variation along the cutline(a)C1 and(b)C2 for the ESBG TFET with different Ls.

    Fig.4. Energy band variation along the cutline(a)C1 and(b)C2 for the ESBG TFET with different Ls.

    Figure 5(a)shows the effects ofLsonIonandIon/Iofffor the ESBG TFET. TheIonincreases with increase inLswhen the value ofLsis lower than 35 nm, butIondegrades afterLsof 35 nm. Moreover, theIon/Ioffdegrades rapidly whenLsis larger than 15 nm due to the increase inIoff. Therefore, in terms of enhancedIonandIon/Ioff,the optimum value ofLsis set to 25 nm for the ESBG TFET.Figure 5(b)shows the output characteristics for the ESBG TFET with four values ofLs.The ESBG TFET withLsof 35 nm exhibits improved drain current in comparison with other threeLsvalues.

    Fig.5.(a)Ion,Ion/Ioff and(b)output characteristics for the ESBG TFET with different Ls.

    3.2. Parasitic capacitance and radio-frequency performance for the ESBG TFET

    Parasitic capacitances impact the performances of TFET significantly at high frequency since they establish a feedback path between output and input, which leads to parasitic oscillations as well as signal distortion. These parasitic capacitances contain gate-to-source capacitanceCgs, gate-to-drain capacitanceCgd. The dependences ofCgs,Cgd, and transconductance(gm)onVgsfor the ESBG TFET with differentLsare illustrated in Fig. 6. It is obvious that for the ESBG TFET withLs= 15 nm,Cgsis lower thanCgdwhenVgsis larger than 0.3 V.Cgdincreases rapidly due to the fact that a large number of electrons are accumulated in the channel at the gate interface,whileCgsremains almost unaffected with rise inVgs.The gate capacitanceCggis the sum ofCgsandCgd. Therefore,the main component of the gate capacitanceCggisCgd. However, because of the increase of the overlap between the gate and the source regions for the ESBG TFET withLs=35 nm,Cgsis larger thanCgdwhenVgsis less than 1.3 V. Therefore,Cggis mainly determined byCgsfor most of theVgsrange at largerLs. However,Cgdis also the main component ofCggwhenVgsis larger than 1.3 V, which is due to the fact that the increase of the electron concentration in the channel leads toCgdincreasing rapidly withVgs. However, the values ofCgsandCgdare very large for the ESBG TFET withLs=40 nm whenVgsis larger than 1.3 V, which will deteriorate the high-frequency characteristics of TFET.Also,gmis an important parameter for analogue applications of the TFET which converts the gate-source voltage into the drain-source current. It is obvious from Fig. 6(c) thatgmfor the ESBG TFET withLs=35 nm is larger than that of the ESBG TFET withLs=15 nm, 25 nm and 40 nm. The higher thegmof the ESBG TFET, the better the sensitivity for the conversion of gate-source voltage into drain-source current,the better the linearity and high-frequency characteristics.

    Fig.6. (a)Cgs,(b)Cgd,and gm for the ESBG TFET with different Ls.

    The performance parameters of the ESBG TFET aboutIon/Ioff,gm,fTand GBP as compared with those of the recently reported TFET structures are given in Table 2. The proposed structure provides higherIon/Ioff,and largergmthan those of other reported TFET structures. Moreover,the ESBG TFET offers two times improvement infTand four times increase in GBP as compared to the recently reported ESDG TFET.

    Fig.7. Characteristics of(a) fT,(b)GBP,and TFP for the ESBG TFET with different Ls.

    Table 2. Comparison of performance parameters of the ESBG TFET with the recently reported TFETs.

    The variation of the second and third-order voltage intercept points(VIP2,VIP3),the third-order input interception point(IIP3), and the third-order intermodulation distortion (IMD3)withVgsfor the proposed device with differentLsare analyzed.The equations of these parameters can be written as follows:

    The second- and third-order harmonic distortions(HD2,HD3)are analyzed in order to understand the distortion characteristics of the device,and the equations about HD2and HD3can be written as

    Fig.8. (a)VIP2,(b)VIP3,(c)IIP3,and(d)IMD3 for the ESBG TFET with different Ls.

    Fig.9. (a)HD2 and(b)HD3 for the ESBG TFET with different Ls.

    whereVais the amplitude of the input signal, which is fixed at 50 mV.It is obvious that the proposed device withLsfixed at 15 nm provides less HD2and HD3than the device with the other length ofLs. Therefore,the noise in the proposed device withLsfixed at 15 nm will be less. Consequently, it can be concluded that the proposed device withLsfixed at 15 nm is more linear with higher reliability.

    4. Conclusions

    The dc characteristics,analog/rf parameters and linearity parameters for ESBG TFET are analyzed. The results shows that the ESBG TFET can achieve significant improvement in parameters likeIon/Ioff,gm,fT, GBP,and TFP.The length of the source region for ESBG TFET is optimized to increase the point and line tunneling at the tunneling junction. It can be concluded that the optimum value ofLsis set to 25 nm in terms of enhancedIonandIon/Ioffof 1013. However, the parameters such asgm,fT,GBP,and TFP are slightly enhanced whenLsis set to 35 nm. Moreover, the ESBG TFET offers two times improvement infTand four times increase in GBP as compared to the recently reported ESDG TFET, thus the ESBG TFET shows better analog/rf characteristics. Furthermore,the linearity distortion parameters in terms ofVIP2,VIP3,IIP3,IMD3, HD2, and HD3for the ESBG TFET with differentLsare analyzed in order to address the nonlinearity issue.

    猜你喜歡
    王娜
    Experimental investigation of dynamic stall flow control using a microsecond-pulsed plasma actuator
    傳統(tǒng)連綴式四方連續(xù)紋樣參數(shù)化創(chuàng)新設(shè)計研究
    設(shè)計(2022年8期)2022-05-25 05:27:44
    王娜作品賞析
    美顏
    上海故事(2019年5期)2019-05-21 15:01:22
    An Analysis of George Orwell’s Anti—Utopian Elements in 1984
    適時的愛情
    新青年(2018年3期)2018-03-16 22:06:32
    王娜的變化
    喜劇世界(2016年9期)2016-11-26 13:41:07
    另一種保護
    一場被忽悠的鬧劇,“影帝”原來是真兇
    各得其所
    故事會(2013年2期)2013-05-14 15:24:04
    女人十人毛片免费观看3o分钟| av.在线天堂| 最近的中文字幕免费完整| 丝袜美腿在线中文| 国产精品精品国产色婷婷| 全区人妻精品视频| 国产精品电影一区二区三区| 国模一区二区三区四区视频| 婷婷六月久久综合丁香| 在线观看66精品国产| 麻豆国产av国片精品| 日韩中字成人| 人妻制服诱惑在线中文字幕| 欧美成人精品欧美一级黄| 久久韩国三级中文字幕| 久久中文看片网| 亚洲中文字幕一区二区三区有码在线看| 乱码一卡2卡4卡精品| 国产精品一二三区在线看| 美女内射精品一级片tv| 我要看日韩黄色一级片| 国产精品一及| 日本色播在线视频| 久久欧美精品欧美久久欧美| 在线观看免费视频日本深夜| 欧美日本视频| 亚洲精品乱码久久久v下载方式| 美女cb高潮喷水在线观看| 乱人视频在线观看| 国产一区二区在线观看日韩| 欧美最新免费一区二区三区| 真实男女啪啪啪动态图| 久久精品夜色国产| 最近中文字幕高清免费大全6| 久久久成人免费电影| 免费观看在线日韩| 国产在线男女| 午夜激情欧美在线| 亚洲国产精品成人综合色| 色综合亚洲欧美另类图片| 国产精品一区二区在线观看99 | 欧洲精品卡2卡3卡4卡5卡区| 少妇丰满av| 国内精品久久久久精免费| 99热这里只有是精品在线观看| 欧美bdsm另类| 国产高清视频在线观看网站| 欧美区成人在线视频| 久久精品国产99精品国产亚洲性色| 噜噜噜噜噜久久久久久91| 日本-黄色视频高清免费观看| 亚洲av电影不卡..在线观看| 亚洲欧美日韩卡通动漫| 深夜精品福利| 亚洲欧美日韩无卡精品| www.av在线官网国产| 国产探花在线观看一区二区| 色尼玛亚洲综合影院| 在现免费观看毛片| 禁无遮挡网站| 日本av手机在线免费观看| 久久国产乱子免费精品| 色哟哟哟哟哟哟| 亚洲电影在线观看av| 国产成人午夜福利电影在线观看| 观看免费一级毛片| 成人鲁丝片一二三区免费| 青春草国产在线视频 | 美女xxoo啪啪120秒动态图| 男女视频在线观看网站免费| 久久人人爽人人爽人人片va| 久久九九热精品免费| 一夜夜www| 成人国产麻豆网| 亚洲国产高清在线一区二区三| 波多野结衣巨乳人妻| 欧美色欧美亚洲另类二区| 久久精品综合一区二区三区| eeuss影院久久| 国产午夜福利久久久久久| 不卡视频在线观看欧美| 日本一本二区三区精品| 国产视频内射| 亚洲最大成人手机在线| 九九热线精品视视频播放| 精品国产三级普通话版| 欧美精品一区二区大全| 中国美白少妇内射xxxbb| 亚洲一区高清亚洲精品| 最近手机中文字幕大全| 亚洲无线在线观看| 国产高清激情床上av| 日本黄大片高清| 久久久欧美国产精品| 国产v大片淫在线免费观看| 99久久精品热视频| 九草在线视频观看| 国产在线精品亚洲第一网站| 精品一区二区三区视频在线| 亚洲国产欧美人成| 3wmmmm亚洲av在线观看| 精品少妇黑人巨大在线播放 | 两个人的视频大全免费| 91精品一卡2卡3卡4卡| 真实男女啪啪啪动态图| 美女被艹到高潮喷水动态| 亚洲欧美成人精品一区二区| 国产伦在线观看视频一区| 国产精品国产高清国产av| 一级黄色大片毛片| 国产女主播在线喷水免费视频网站 | 亚洲va在线va天堂va国产| 欧美性猛交╳xxx乱大交人| 波多野结衣高清无吗| 中文欧美无线码| 国产精品福利在线免费观看| 91午夜精品亚洲一区二区三区| 久久精品国产亚洲av涩爱 | 亚洲中文字幕日韩| 尾随美女入室| 精品人妻一区二区三区麻豆| 性欧美人与动物交配| 亚洲欧美清纯卡通| 综合色丁香网| 亚洲18禁久久av| 国产av在哪里看| 12—13女人毛片做爰片一| 久久亚洲国产成人精品v| 蜜桃久久精品国产亚洲av| 国产麻豆成人av免费视频| 能在线免费看毛片的网站| 久久精品影院6| 精华霜和精华液先用哪个| 国产不卡一卡二| 日韩精品有码人妻一区| 久久久久久久久大av| 久久久精品94久久精品| 亚洲一级一片aⅴ在线观看| 天堂中文最新版在线下载 | 成人二区视频| 校园春色视频在线观看| 国产午夜精品久久久久久一区二区三区| 91午夜精品亚洲一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | 一本久久精品| 亚洲精品久久国产高清桃花| 久久6这里有精品| 欧美激情在线99| 久久6这里有精品| 免费人成视频x8x8入口观看| 一区二区三区四区激情视频 | 天堂av国产一区二区熟女人妻| 国产日韩欧美在线精品| 久久久久久久亚洲中文字幕| 久久久久久久亚洲中文字幕| 国产日韩欧美在线精品| 亚洲欧美日韩高清在线视频| 亚洲国产精品国产精品| 亚洲图色成人| 亚洲人成网站在线播| 亚洲av不卡在线观看| 精品日产1卡2卡| 嘟嘟电影网在线观看| 女的被弄到高潮叫床怎么办| 99久国产av精品| 午夜福利成人在线免费观看| 亚洲久久久久久中文字幕| 99热这里只有精品一区| 99久久人妻综合| 久久久久久久久久久丰满| 国产成人影院久久av| 国产日本99.免费观看| 久久精品国产鲁丝片午夜精品| 蜜桃久久精品国产亚洲av| 观看免费一级毛片| 精品久久久久久久久久久久久| 亚洲人成网站高清观看| 九九在线视频观看精品| 男女做爰动态图高潮gif福利片| 女人十人毛片免费观看3o分钟| 女人被狂操c到高潮| a级一级毛片免费在线观看| 国产精品一区二区性色av| 国产亚洲91精品色在线| 最近手机中文字幕大全| 国产亚洲av片在线观看秒播厂 | 99九九线精品视频在线观看视频| 国产亚洲精品久久久com| 丝袜喷水一区| 国产极品精品免费视频能看的| 色吧在线观看| 午夜免费激情av| 最近最新中文字幕大全电影3| 熟女电影av网| 亚洲av男天堂| 国产成人影院久久av| 丝袜喷水一区| 色哟哟哟哟哟哟| 国产av不卡久久| 精品一区二区三区视频在线| 日韩一区二区视频免费看| 我的老师免费观看完整版| 欧美精品国产亚洲| 乱系列少妇在线播放| 美女被艹到高潮喷水动态| 久久精品人妻少妇| 亚洲无线在线观看| 色视频www国产| 久久精品国产亚洲av涩爱 | 欧美极品一区二区三区四区| 国内精品一区二区在线观看| 黄片wwwwww| 丝袜美腿在线中文| 精品99又大又爽又粗少妇毛片| 国产精品一区二区三区四区免费观看| 国产不卡一卡二| 免费搜索国产男女视频| 午夜福利成人在线免费观看| 三级男女做爰猛烈吃奶摸视频| 91麻豆精品激情在线观看国产| 观看美女的网站| 国产亚洲精品久久久com| 直男gayav资源| 天天一区二区日本电影三级| 亚洲欧美精品专区久久| 青青草视频在线视频观看| 欧美成人免费av一区二区三区| 欧美日韩综合久久久久久| 国产黄a三级三级三级人| 久久久久性生活片| 欧美最黄视频在线播放免费| 全区人妻精品视频| 男女边吃奶边做爰视频| 热99re8久久精品国产| kizo精华| 黄片wwwwww| 亚洲精品国产成人久久av| 成人二区视频| h日本视频在线播放| 亚洲美女视频黄频| 高清毛片免费观看视频网站| av专区在线播放| 2021天堂中文幕一二区在线观| 国产成人a∨麻豆精品| 中文字幕久久专区| 成人三级黄色视频| 插阴视频在线观看视频| 成人综合一区亚洲| 欧美日韩在线观看h| 能在线免费看毛片的网站| 中文字幕av在线有码专区| 亚洲成人中文字幕在线播放| 一区二区三区免费毛片| av专区在线播放| 在线观看一区二区三区| 久久午夜亚洲精品久久| 欧美日韩国产亚洲二区| 91麻豆精品激情在线观看国产| 午夜久久久久精精品| 成人毛片a级毛片在线播放| 亚洲av一区综合| 国产综合懂色| 国产精品福利在线免费观看| 亚洲精品久久国产高清桃花| 免费av观看视频| 99热网站在线观看| 一级黄片播放器| 国产精品一区二区在线观看99 | 啦啦啦韩国在线观看视频| 美女大奶头视频| 国产精品久久视频播放| 赤兔流量卡办理| 亚洲成人精品中文字幕电影| 日韩欧美精品免费久久| 久久久欧美国产精品| 日韩制服骚丝袜av| 日本撒尿小便嘘嘘汇集6| 一个人看的www免费观看视频| АⅤ资源中文在线天堂| 久久久国产成人精品二区| 久久精品91蜜桃| 欧美一区二区国产精品久久精品| 亚洲久久久久久中文字幕| 午夜福利高清视频| av卡一久久| 国产在线男女| 美女国产视频在线观看| 免费在线观看成人毛片| 亚洲成人av在线免费| 中国国产av一级| 国产精品永久免费网站| 寂寞人妻少妇视频99o| av在线天堂中文字幕| 国产乱人偷精品视频| 亚洲一区二区三区色噜噜| 国产精品女同一区二区软件| 国产久久久一区二区三区| 日本黄大片高清| 我要搜黄色片| 午夜久久久久精精品| 亚洲av中文av极速乱| 亚洲aⅴ乱码一区二区在线播放| 男女那种视频在线观看| 亚洲av中文av极速乱| 久久6这里有精品| 成人综合一区亚洲| 国产真实伦视频高清在线观看| 国产成人影院久久av| 国产精品电影一区二区三区| 国产爱豆传媒在线观看| 亚洲av男天堂| 亚洲av免费高清在线观看| 日韩成人伦理影院| 男人舔女人下体高潮全视频| 日韩欧美精品免费久久| 免费av观看视频| 亚洲欧美成人综合另类久久久 | 插阴视频在线观看视频| 亚洲人成网站在线观看播放| 久久99蜜桃精品久久| 精品久久久久久久末码| 国产伦精品一区二区三区四那| 五月伊人婷婷丁香| 亚洲欧美日韩高清专用| 亚洲欧美日韩东京热| 国产精品一区二区三区四区久久| 美女高潮的动态| 天堂中文最新版在线下载 | 超碰av人人做人人爽久久| 国产乱人偷精品视频| 日韩一本色道免费dvd| 欧美zozozo另类| 国产精品电影一区二区三区| 久久这里只有精品中国| 国产淫片久久久久久久久| 久久久久久久久久成人| 免费av毛片视频| 免费看av在线观看网站| 亚洲一区二区三区色噜噜| 女人十人毛片免费观看3o分钟| 看片在线看免费视频| 国产伦精品一区二区三区视频9| 热99re8久久精品国产| 免费观看在线日韩| 丝袜美腿在线中文| 国产精品野战在线观看| 搡女人真爽免费视频火全软件| 少妇人妻精品综合一区二区 | 国内揄拍国产精品人妻在线| 欧美色视频一区免费| 不卡视频在线观看欧美| 又粗又硬又长又爽又黄的视频 | .国产精品久久| 哪里可以看免费的av片| 啦啦啦啦在线视频资源| 成人毛片60女人毛片免费| 亚洲av熟女| 青春草视频在线免费观看| 亚洲真实伦在线观看| 18禁在线无遮挡免费观看视频| 日韩成人伦理影院| 久久婷婷人人爽人人干人人爱| 美女 人体艺术 gogo| 小说图片视频综合网站| 中国国产av一级| 午夜精品一区二区三区免费看| 欧美+亚洲+日韩+国产| 欧美成人a在线观看| 国产精品不卡视频一区二区| 日韩欧美三级三区| 免费黄网站久久成人精品| 只有这里有精品99| 国产精品嫩草影院av在线观看| www.av在线官网国产| 亚洲精品粉嫩美女一区| 亚洲不卡免费看| 亚洲精品自拍成人| 国产成人影院久久av| 黄色一级大片看看| 久久久精品94久久精品| 精品人妻一区二区三区麻豆| 欧美日韩在线观看h| 国产黄色视频一区二区在线观看 | 日本与韩国留学比较| 午夜福利视频1000在线观看| 欧美日本视频| 高清日韩中文字幕在线| 日本撒尿小便嘘嘘汇集6| 亚洲一区二区三区色噜噜| 美女内射精品一级片tv| 麻豆一二三区av精品| 久久中文看片网| 韩国av在线不卡| 国产熟女欧美一区二区| 亚洲av熟女| 免费av观看视频| 亚洲国产欧洲综合997久久,| 亚洲av不卡在线观看| 亚洲欧美精品专区久久| 中文字幕精品亚洲无线码一区| 亚洲成av人片在线播放无| 国产精品福利在线免费观看| 观看美女的网站| 成熟少妇高潮喷水视频| 少妇高潮的动态图| 爱豆传媒免费全集在线观看| 精品午夜福利在线看| 18禁裸乳无遮挡免费网站照片| 亚洲在线观看片| 亚洲精品久久久久久婷婷小说 | 国产午夜精品久久久久久一区二区三区| 久久6这里有精品| 亚洲av成人精品一区久久| 又粗又爽又猛毛片免费看| 狂野欧美激情性xxxx在线观看| 国产一级毛片在线| 国产熟女欧美一区二区| 亚洲内射少妇av| 久久精品国产99精品国产亚洲性色| 婷婷精品国产亚洲av| 长腿黑丝高跟| 色视频www国产| 亚洲成人av在线免费| 波多野结衣高清作品| 精品无人区乱码1区二区| 岛国毛片在线播放| 亚洲av男天堂| 99热全是精品| 黄色日韩在线| 久久人人爽人人爽人人片va| 国产中年淑女户外野战色| 色综合色国产| 久久精品影院6| 国产精品蜜桃在线观看 | 搡女人真爽免费视频火全软件| 国产淫片久久久久久久久| 欧美高清成人免费视频www| 国内揄拍国产精品人妻在线| av女优亚洲男人天堂| 国产探花极品一区二区| 久久久久久久久久黄片| 夜夜夜夜夜久久久久| 免费av不卡在线播放| 国国产精品蜜臀av免费| 午夜福利成人在线免费观看| 悠悠久久av| av在线播放精品| av黄色大香蕉| 日本免费一区二区三区高清不卡| 嫩草影院新地址| 99久久成人亚洲精品观看| 欧美人与善性xxx| 日本色播在线视频| 给我免费播放毛片高清在线观看| 精品久久久久久久人妻蜜臀av| 亚洲欧美日韩无卡精品| 国产一区二区亚洲精品在线观看| 国产中年淑女户外野战色| 中国美白少妇内射xxxbb| 精品人妻偷拍中文字幕| 国产高清有码在线观看视频| 国产又黄又爽又无遮挡在线| 免费看a级黄色片| 亚洲精品国产av成人精品| 久久久久免费精品人妻一区二区| 日韩欧美一区二区三区在线观看| 亚洲成人久久爱视频| 亚洲av二区三区四区| 九色成人免费人妻av| 午夜精品国产一区二区电影 | 日韩大尺度精品在线看网址| 国产精品福利在线免费观看| 免费看日本二区| 女同久久另类99精品国产91| 中文字幕熟女人妻在线| 亚洲国产精品国产精品| 国产亚洲5aaaaa淫片| 最近手机中文字幕大全| 国产午夜精品论理片| 在线免费观看的www视频| 啦啦啦啦在线视频资源| 日本-黄色视频高清免费观看| 欧美一区二区亚洲| 亚洲在线自拍视频| eeuss影院久久| 亚洲国产精品成人久久小说 | 黄色视频,在线免费观看| av在线老鸭窝| 婷婷色综合大香蕉| 最近2019中文字幕mv第一页| 成人亚洲欧美一区二区av| av在线天堂中文字幕| 国产成人a区在线观看| 男人舔女人下体高潮全视频| 99热6这里只有精品| 美女脱内裤让男人舔精品视频 | 狂野欧美白嫩少妇大欣赏| 免费av不卡在线播放| 免费看美女性在线毛片视频| 久久久a久久爽久久v久久| 婷婷色综合大香蕉| 热99re8久久精品国产| 在线天堂最新版资源| 欧美激情在线99| 欧美高清成人免费视频www| 亚洲精品色激情综合| 亚洲美女搞黄在线观看| 最好的美女福利视频网| 国产亚洲精品久久久com| 国产精品乱码一区二三区的特点| 波多野结衣高清作品| 色尼玛亚洲综合影院| 免费看a级黄色片| 久久久国产成人免费| 变态另类成人亚洲欧美熟女| 一个人免费在线观看电影| 赤兔流量卡办理| 五月玫瑰六月丁香| 九九爱精品视频在线观看| av在线观看视频网站免费| 成人性生交大片免费视频hd| 插逼视频在线观看| 狠狠狠狠99中文字幕| 国产亚洲精品av在线| 精品久久久久久久久av| 国产 一区 欧美 日韩| 男人舔女人下体高潮全视频| 日本黄色片子视频| 大型黄色视频在线免费观看| 国产成人影院久久av| 国产精品.久久久| 在线观看美女被高潮喷水网站| 国产激情偷乱视频一区二区| 国产成年人精品一区二区| 高清毛片免费看| 国产 一区精品| 最近2019中文字幕mv第一页| 不卡一级毛片| 日韩av在线大香蕉| 欧美人与善性xxx| 综合色av麻豆| 日韩大尺度精品在线看网址| 一级黄色大片毛片| or卡值多少钱| 国产激情偷乱视频一区二区| 国产精品,欧美在线| 蜜桃久久精品国产亚洲av| 91av网一区二区| 色视频www国产| 亚洲欧美精品自产自拍| 国模一区二区三区四区视频| 久久精品国产亚洲av涩爱 | 国产色爽女视频免费观看| 国产高清视频在线观看网站| 精品久久久噜噜| 成年女人永久免费观看视频| 亚洲人成网站在线观看播放| 欧美性感艳星| 亚洲国产精品合色在线| 69av精品久久久久久| 国产精品一区二区在线观看99 | 国产精品一区二区三区四区免费观看| 欧美成人a在线观看| 小说图片视频综合网站| 久久午夜亚洲精品久久| 日韩人妻高清精品专区| 一级黄片播放器| 国产精品无大码| 欧洲精品卡2卡3卡4卡5卡区| 色噜噜av男人的天堂激情| 亚洲美女搞黄在线观看| 色综合亚洲欧美另类图片| 最近最新中文字幕大全电影3| 亚洲精品色激情综合| 国产成人a区在线观看| 九色成人免费人妻av| 看黄色毛片网站| 我要看日韩黄色一级片| 内射极品少妇av片p| 亚洲国产精品成人综合色| .国产精品久久| 给我免费播放毛片高清在线观看| 一进一出抽搐gif免费好疼| 人妻少妇偷人精品九色| 一区二区三区高清视频在线| 久久久色成人| 不卡一级毛片| 国产人妻一区二区三区在| 国内少妇人妻偷人精品xxx网站| 简卡轻食公司| 日韩人妻高清精品专区| av女优亚洲男人天堂| 中文字幕av成人在线电影| 中文字幕精品亚洲无线码一区| 亚洲精品自拍成人| 韩国av在线不卡| 中文欧美无线码| 特大巨黑吊av在线直播| 男女下面进入的视频免费午夜| 久久久国产成人精品二区| 97人妻精品一区二区三区麻豆| 国产精品久久久久久久久免| 亚洲乱码一区二区免费版| 男人狂女人下面高潮的视频| 免费观看a级毛片全部| 欧美3d第一页| 国产一区二区在线观看日韩| 极品教师在线视频| 在线观看一区二区三区| 99久久成人亚洲精品观看| 久久久久久久久久黄片| 国产av麻豆久久久久久久| 深夜精品福利| 欧美变态另类bdsm刘玥| 美女xxoo啪啪120秒动态图|