• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Trigger mechanism of PDSOI NMOS devices for ESD protection operating under elevated temperatures*

    2021-07-30 07:43:06JiaXinWang王加鑫XiaoJingLi李曉靜FaZhanZhao趙發(fā)展ChuanBinZeng曾傳濱DuoLiLi李多力LinChunGao高林春JiangJiangLi李江江BoLi李博ZhengShengHan韓鄭生andJiaJunLuo羅家俊
    Chinese Physics B 2021年7期
    關(guān)鍵詞:李博羅家發(fā)展

    Jia-Xin Wang(王加鑫) Xiao-Jing Li(李曉靜) Fa-Zhan Zhao(趙發(fā)展)Chuan-Bin Zeng(曾傳濱) Duo-Li Li(李多力) Lin-Chun Gao(高林春) Jiang-Jiang Li(李江江)Bo Li(李博) Zheng-Sheng Han(韓鄭生) and Jia-Jun Luo(羅家俊)

    1Institute of Microelectronics,Chinese Academy of Sciences,Beijing 100029,China

    2Key Laboratory of Science and Technology on Silicon Devices,Chinese Academy of Sciences,Beijing 100029,China

    3University of Chinese Academy of Sciences,Beijing 100029,China

    Keywords: ESD,trigger voltage,temperature,GGNMOS,GTNMOS,TCAD

    1. Introduction

    Electrostatic discharge (ESD) has been a threat to reliability in the semiconductor industry for decades. Novel ESD protecting devices are frequently designed to mitigate such concerns.[1-4]Meanwhile, high temperature is a typical environment for integrated circuits.[5,6]The assembly and operation of integrated circuits in some cases take place at elevated temperatures. Hence, The ESD protecting designs become more complicated due to the thermally-induced variations of ESD parameters,and it is necessary to systematically and comprehensively analyze the characteristics of ESD protecting devices to ensure that they are suitable for operating under elevated temperatures.Kooet al.[7]reported the features of the high holding voltage of the new silicon controlled rectifier (SCR) ESD protecting device at different temperatures and improved the stability in a temperature range of 25°C-225°C and made a detailed analysis. Meneghessoet al.[8]introduced a new type of SCR, the low-voltage-trigger SCR ESD protecting structure, and obtained a high holding voltage, and performed two-dimensional (2D) device simulation(DESSIS Synopsys)to obtain the temperature dependence of the holding voltage at 25°C-125°C.Lianget al.[9]introduced the temperature dependence of the critical parameters of a variety of typical SCR and diode structures at a temperature of 225°C. Liet al.[10]introduced the temperature dependence of diode and GGNMOS(grounded-gate NMOS)in a temperature range from-40°C to 110°C.Jang and Lin[11]and Janget al.[12]analyzed the temperature-dependent steady and dynamic state characteristics of SCR-based ESD protecting circuits,focusing on the triggering and holding behavior of ESD protecting devices. Houet al.[13]improved a thermal-stable diode-triggered silicon-controlled rectifier(TSDTSCR)device to obtain almost constant high-temperature ESD protecting capabilities. Doet al.[14]developed the floating technology to reduce the trigger voltage of 4H-SiC GGNMOS to cater to the design window and carried out high-temperature evaluation. Arbess and Bafleur[15]looked into a new type of MOS insulated gate bipolar transistor(MOS-IGBT)power clamping device for high-temperature operation. It had a lower temperature sensitivity at 200°C. However, in most of those studies considered are only the changes in the characteristics of the traditional or novel ESD protecting devices with temperature to verify their reliability within their operating temperature range, but the relation of temperature to triggering, or holding, or failure characteristics are not analyzed by the underlying physical mechanism and simulation.

    In this paper,the temperature-dependent triggering characteristics of partially depleted silicon-on-insulator (PDSOI)NMOS devices for ESD protection are analyzed. The transmission line pulsing(TLP)I-Vcurves are measured, and the first breakdown voltage (VT1) is studied and discussed. The technology computer aided design(TCAD)simulation is carried out to obtain a physical insight into the mechanism of the temperature dependence of the triggering behavior.

    2. Experiment

    The device under test (DUT) was an H-gate NMOS device and fabricated with a 0.18-μm PDSOI technology. More parameters are summarized in Table 1. The measurements were targeted to the human body model(HBM)and conducted using the TLP/VFTLP(transmission line pulse/very fast transmission line pulse)test system HOXI-I with a pulse width of 100 ns and a rise time of 5 ns, which is made in the Institute of Microelectronics of the Chinese Academy of Sciences.The heating module provided a testing temperature range from 30°C to 200°C. We characterized the TLPI-Vcurves of the two operating modes, the grounded-gate NMOS (GGNMOS)mode and the gate-triggered NMOS(GTNMOS)mode,under varying temperatures. The GGNMOS mode describes an NMOS-based ESD protecting device whose gate, source,body, and substrate electrode were connected to the ground(0 V),and the drain electrode was subjected to the ESD stress.The GTNMOS differs from GGNMOS in an extra DC gate voltage supply. In our experiment, a 1.5-V DC voltage was applied to the gate electrode during the TLP testing in GTNMOS mode.

    Table 1. Some parameters of the device under test.

    Figure 1(a)shows the measured TLPI-Vcurves near the first breakdown point of the GGNMOS.The measured TLPIVcurves near the first breakdown point of the GTNMOS are presented in Fig. 1(b) as discussed in our previous work.[16]Each figure includes five curves related to the five different temperatures. The measured TLPI-Vcurves are normalized to the current per unit gate width,i.e.,each ESD current value is divided by the total width of the PDSOI NMOS device. The measurement results suggest that the values ofVT1of GTNMOS are all lower than those of GGNMOS.The value ofVT1in GGNMOS mode increases from 8.8 V to 9.7 V with temperature increasing from 30°C to 195°C.The total rise is about 0.9 V, accounting for 10.2 percent of room-temperatureVT1.In the GTNMOS mode,a 1.5-V voltage is applied to the gate electrode.The value ofVT1in GTNMOS mode decreases from 6.84 V to 6.11 V in a temperature range from 30°C to 195°C.The total decline is nearly 0.73 V,which is about 10.7 percent ofVT1at room temperature,The above results indicate that theVT1varies in an opposite trend with the increasing of temperature in the two modes. The mechanisms will be analyzed by TCAD simulation below.

    Fig. 1. TLP I-V curves of DUT in temperature range of 30 °C to 195 °C(near the first breakdown point)for(a)GGNMOS and(b)GTNMOS.

    3. Simulation results

    To support and analyze the experimental conclusion,TCAD simulation is carried out. The two-dimensional (2D)model for simulation is shown in Fig. 2, in which the body contact is set to be on the right of the source contact. Just because the body contact configuration of the 2D model is different from that in the real H-gate PDSOI NMOS device, the absolute value ofVT1in the simulation curve differs from that of the measured TLPI-Vcurve. Nevertheless,the same trend ofVT1versus temperature is obtained in the TCAD simulation, which is essential to analyze the trigger mechanism at high temperatures.

    The simulation method is named the multi-current pulse simulation method.In the method,a customized piecewise linear function(PWL)is used to generate the TLP current pulse which is applied to the drain electrode.As shown in Fig.2,the DC voltages of 0 V and 1.2 V are applied to the gate electrode in GGNMOS and GTNMOS modes,respectively. Other electrodes including the source, body, and substrate electrode are connected to the ground(0 V).

    Fig.2. Schematic diagram of the 2D model.

    Figures 3 and 4 show the simulated transientI-Vcurves of DUT operating in GGNMOS mode and GTNMOS mode,respectively. The variation ofVT1versustemperature of TLP testing and TCAD simulation are shown in Fig. 5. The simulation results suggest thatVT1increases with temperature increasing in GGNMOS mode and decreases in GTNMOS mode, which is consistent well with the measured TLPI-Vcharacteristics given in Figs.1(a)and 1(b).

    Fig.3. TCAD simulation I-V curves of GGNMOS at temperatures ranging from 30°C to 195°C near the first breakdown point,with inset showing overall simulation I-V curves of GGNMOS under five different temperatures.

    Fig.4. TCAD simulation I-V curves of GTNMOS at temperatures ranging from 30 °C to 195 °C near the first breakdown point, with inset exhibiting overall simulation I-V curves of GTNMOS under five different temperatures.

    To analyze the underlying physical mechanism of the temperature dependence ofVT1in GGNMOS mode and in GTNMOS mode comparatively,we choose 5 points in each mode to analyze the response process under five operating temperatures as marked in Figs. 3 and 4. At each point, a certain moment in a range of 70%-90%of the TLP pulse period is selected to analyze the distribution of some essential parameters in the following.

    Fig.5. Variations of VT1 with temperature of TLP testing and TCAD simulation.

    3.1. Discussion of GGNMOS

    3.1.1. Electric field

    Before the first breakdown point, the ESD current maintains a very low level and flows through the drain contact,reversed drain-body junction, body region, and the body contact.Because of the high resistance of the reversed drain-body junction, a relatively high ESD voltage is mostly clamped at the junction, thus forming an extremely high electric field.Therefore,the electric field distribution at the first breakdown point is an indication ofVT1. The electric field distribution along path 1 (marked in Fig. 2) is shown in Fig. 6. It can be seen that the electric field increases with temperature in GGNMOS mode and decreases in GTNMOS mode. The peak electric field of GGNMOS is about 1.5 times higher than that of GTNMOS.The relationship between the critical electric field,Ec,and the avalanche threshold voltage,Vava,is given by[17]

    whereε0andεrare the permittivity of vacuum and the relative dielectric constant, respectively,αjrepresents the ionization rate of collision,andqdenotes the elementary charge.Equation (1) describes the avalanche mechanism in the linear graded PN junction. As temperature increases, the mean free path of the carriers in the space charge region decreases,a higherEcis needed for the carriers to obtain enough kinetic energy to trigger the avalanche breakdown. Thus, the thermal coefficient of the avalanche mechanism is proportional to temperature.[9,10]

    Fig.6. Electric field distributions in GGNMOS mode and GTNMOS mode along path 1 under various ambient temperatures.

    In the GGNMOS mode,the triggering of the DUT relies on the avalanche breakdown of the drain-body junction. The avalanche multiplication generates a large number of electronhole pairs and the holes drift towards the body contact,which generates a voltage drop across the body resistanceRBodyand raises the local body potentialVBody. The source-body junction is turned on by enoughVBody, leading the parasitic BJT to trigger on. Thus, theVT1of GGNMOS is governed by the avalanche critical electric field and the avalanche threshold voltage in the drain-body junction,resulting in theVT1of GGNMOS increasing with temperature rising.

    Oppositely, the decreasing ofVT1of GTNMOS suggests that there exist other prior triggering mechanisms besides the avalanche in GTNMOS mode.

    3.1.2. Impact ionization

    Impact ionization occurs when the high reverse bias voltage of the drain-body junction creates a strong internal electric field,which accelerates the carriers through the silicon crystal lattice and produces secondary electron-hole pairs. The impact ionization can be used to characterize the efficiency of avalanche multiplication for GGNMOS.

    Figure 7 shows the impact ionization distributions at the drain-body junction under various ambient temperatures in GGNMOS mode and the GTNMOS mode, respectively. It can be seen in Fig.7 that the total impact ionization decreases with temperature increasing in both GGNMOS mode and GTNMOS mode.

    The impact ionization is mainly governed by the electric field and the mean-free path of the carriers. As mentioned before,the critical triggering electric field increases with temperature increasing. Hence, the electric field with a positive temperature coefficient proves to influence the impact ionization little in the GGNMOS mode. The mean free path of the carriers is dominated by the scattering of phonons, generated by the vibration of the atomic lattice,which is positively correlated with temperature. The mean-free path is visualized by the mobility distribution,which decreases with temperature increasing as shown in Fig.8.

    Fig. 7. Impact ionization distributions in GGNMOS mode and GTNMOS mode at drain-body junction under various ambient temperatures.

    To sum up,the avalanche threshold voltage of the drainbody junction in DUT increases with temperature increasing because the impact ionization is inversely proportional to temperature. And it is the reason why theVT1in GGNMOS mode rises when the temperature goes up.

    From Figs. 3 and 4 it follows that comparing with the GGNMOS mode,VT1of GTNMOS decreases with temperature increasing, which means that the first breakdown in the GTNMOS mode occurs at a lower electric field and lower impact ionization than in GGNMOS. Thus, the temperature dependence of triggering in GTNMOS mode is not governed by avalanche breakdown but the channel current and the triggering-on of the parasitic BJT.We will analyze theVT1of GTNMOS as followed.

    Fig.8.Mobility distributions in(a)GGNMOS mode and(b)GTNMOS mode along path 1 under various ambient temperatures.

    3.2. Discussion of GTNMOS

    3.2.1. Channel current

    Unlike GGNMOS, theVT1of GTNMOS decreases because there exists channel current,IDS, in the period of ESD pulse. TheIDSplays a crucial part in reducing theVT1of GTNMOS mode because theIDSis the main contributor to the increase of the incident currentIpfor the avalanche multiplication at the drain-body junction. The avalanche generation currentIgenis related toIpand the avalanche multiplication factorMby[18]

    Before the turning on of BJT, body currentIBody=Igen. TheIpis strengthened byIDS,and a lowerMcan sustain the sameIBody. TheIDSmakesVT1of GTNMOS decrease with respect to that of GGNMOS.Thus,the temperature dependence ofVT1is not simply affected by the avalanche breakdown. As shown in Figs.1(b)and 4,before the first breakdown points,theIDSof the GTNMOS transistor increases with temperature increasing. According to Eq. (2),IDSstrengthensIpand lowersM,which ultimately makesVT1of GTNMOS decrease.

    3.2.2. Electrostatic potential

    The forward bias of the source-body junction is one of the most essential conditions to trigger the parasitic BJT.The threshold voltage of the source-body junction can be characterized by the electrostatic potential barrier.

    Figure 9 shows the distribution of electrostatic potential along path 2 (marked in Fig. 2) before the ESD stress is applied to the drain electrode of DUT.It suggests that the electrostatic potential barrier at the source-body junction decreases when the temperature goes up. The source-body junction can be forward-biased more easily at higher temperatures, which contributes to the turning on of the parasitic BJT at a lowerVT1. Thus, the electrostatic potential barrier of the sourcebody junction decreasing with temperature increasing is one of the factors leading theVT1to decline in the GTNMOS mode.But it is not the major cause in GGNMOS mode compared with the avalanche breakdown behavior.

    Fig.9. Electrostatic potential distributions in GTNMOS mode along path 2 under various ambient temperatures.

    3.2.3. Body resistance

    The body resistance,RBody, is defined as the body resistance from the source-body junction to the body electrode.TheRBodyinfluences the body potential near the source-body junction when the body current,IBody,flows through the body region. Previous research has shown that the resistivity of the p-silicon increases with temperature rising in a temperature range from 30°C to 195°C.[19]

    The current density distribution in the silicon film can be used to characterizeRBodyindirectly. The total ESD current flows into the DUT through the drain electrode and flows out through the body electrode and the source electrode.Figure 10 shows the total current density distributions of GGNMOS and GTNMOS at five different temperatures. From Fig. 10(b) it can follow that at the same ESD current before GTNMOS is triggered on,the ratio of the body current decreases with temperature increasing. It suggests that the resistance on the path from drain-body junction to body electrode is proportional to temperature. The higher body resistance contributes to higher body potential at the source-body junction, which provides the forward-biasing of the source-body junction and the turning on of the parasitic BJT.

    It can be seen in Figs. 10(a) and 10(b) that theIBodyof GGNMOS is larger than that of GTNMOS at each temperature when the parasitic BJT is triggered. TheIBodyfrom the avalanche current in GGNMOS mode is large enough to provide the forward-biasing of the source-body junction, so the major cause to dominate theVT1in GGNMOS mode is the avalanche breakdown threshold but not the positive temperature coefficient ofRBody.

    To sum up,the temperature dependence of RBody is another factor to explain the negative temperature coefficient ofVT1in the GTNMOS mode.The body resistance also increases with temperature increasing in the GGNMOS mode as shown in Fig.10(a). Still,it is not the dominant factor when referring to the temperature dependence ofVT1.

    Fig.10. Current density distributions in(a)GGNMOS mode and(b)GTNMOS mode in the silicon film under various ambient temperatures.

    4. Conclusions

    We have investigated the triggering parameters,VT1,of a PDSOI NMOS device for ESD protecting device operating at elevated temperatures. We conclude the opposite effect thatVT1of GGNMOS increases with temperature increasing and thatVT1of GTNMOS shows reverse variation with temperature. Good agreement is achieved between the TLP measurements,and the TCAD simulated results obtained by the multicurrent pulse simulation method. More analyses of the temperature dependence ofVT1in the two modes are conducted by using TCAD simulation outputs. In the GGNMOS mode,the variation ofVT1with temperature is governed by the avalanche breakdown of the drain-body junction while the temperature dependence ofVT1in the GTNMOS mode is dominated by the channel current and triggering of the parasitic BJT.This study offers a useful insight into and the information about obtaining the safe margin of the triggering parameters of PDSOI NMOS devices operating in a high-temperature ESD protection environment,and also presents the way of weakening the temperature effects in the two modes, which can help to design the temperature-insensitive ESD protecting devices.

    猜你喜歡
    李博羅家發(fā)展
    破解函數(shù)零點差問題的兩個“妙招”
    LabVIEW下通信原理實驗教改探討
    邁上十四五發(fā)展“新跑道”,打好可持續(xù)發(fā)展的“未來牌”
    中國核電(2021年3期)2021-08-13 08:56:36
    Dynamic Modeling of Variable Stiffness and Damping for Spatial Linkage Weft Insertion Mechanism with Clearance
    小蝸牛
    Muelleria pseudogibbula, a new species from a newly recorded genus (Bacillariophyceae) in China*
    砥礪奮進(jìn) 共享發(fā)展
    華人時刊(2017年21期)2018-01-31 02:24:01
    Experimental and simulation studies of single-event transient in partially depleted SOI MOSFET?
    Harry Potter 哈利·波特
    改性瀝青的應(yīng)用與發(fā)展
    北方交通(2016年12期)2017-01-15 13:52:53
    少妇猛男粗大的猛烈进出视频| 电影成人av| www.自偷自拍.com| 国产成人免费无遮挡视频| 久久天躁狠狠躁夜夜2o2o| 日韩成人在线观看一区二区三区| 久久青草综合色| 一级,二级,三级黄色视频| h视频一区二区三区| 精品卡一卡二卡四卡免费| 免费观看a级毛片全部| 人人妻人人澡人人爽人人夜夜| 曰老女人黄片| 少妇的丰满在线观看| 18禁美女被吸乳视频| 精品一区二区三区视频在线观看免费 | 国产成人av激情在线播放| 99国产精品免费福利视频| 变态另类成人亚洲欧美熟女 | 在线观看人妻少妇| 法律面前人人平等表现在哪些方面| 美女午夜性视频免费| 熟女少妇亚洲综合色aaa.| 国产一区有黄有色的免费视频| 欧美成人免费av一区二区三区 | 亚洲黑人精品在线| 亚洲七黄色美女视频| 我要看黄色一级片免费的| 1024视频免费在线观看| 国产一区二区激情短视频| 两个人免费观看高清视频| 欧美亚洲日本最大视频资源| 夜夜骑夜夜射夜夜干| 国产人伦9x9x在线观看| 国产极品粉嫩免费观看在线| 极品教师在线免费播放| 免费黄频网站在线观看国产| 久久精品亚洲熟妇少妇任你| 天堂8中文在线网| 国产欧美日韩一区二区精品| 天堂中文最新版在线下载| 在线永久观看黄色视频| 国产精品久久久久久精品古装| 国产成人免费无遮挡视频| svipshipincom国产片| 在线观看免费午夜福利视频| 性色av乱码一区二区三区2| 成年动漫av网址| 一级a爱视频在线免费观看| 久久ye,这里只有精品| 午夜精品久久久久久毛片777| 99国产综合亚洲精品| 国产91精品成人一区二区三区 | 国产男女超爽视频在线观看| 国产高清激情床上av| 久久久久久久大尺度免费视频| 激情在线观看视频在线高清 | a级毛片在线看网站| 80岁老熟妇乱子伦牲交| 老汉色∧v一级毛片| 午夜91福利影院| 国产单亲对白刺激| 麻豆国产av国片精品| 99在线人妻在线中文字幕 | 曰老女人黄片| 丰满迷人的少妇在线观看| 最黄视频免费看| 亚洲精品粉嫩美女一区| 老熟女久久久| 国产亚洲精品一区二区www | 又大又爽又粗| 色94色欧美一区二区| 欧美变态另类bdsm刘玥| 999久久久国产精品视频| 曰老女人黄片| 中文字幕精品免费在线观看视频| 免费av中文字幕在线| aaaaa片日本免费| 久久精品成人免费网站| 亚洲中文av在线| 一本一本久久a久久精品综合妖精| 搡老岳熟女国产| 国产一区二区三区视频了| 99国产精品99久久久久| 2018国产大陆天天弄谢| 国产成人影院久久av| 啪啪无遮挡十八禁网站| 露出奶头的视频| 80岁老熟妇乱子伦牲交| 欧美av亚洲av综合av国产av| 一个人免费看片子| 久久精品熟女亚洲av麻豆精品| 蜜桃国产av成人99| 香蕉久久夜色| 丁香六月欧美| 成人影院久久| 可以免费在线观看a视频的电影网站| 免费人妻精品一区二区三区视频| 丝袜美腿诱惑在线| 美女高潮到喷水免费观看| 午夜福利,免费看| 免费看a级黄色片| 久久久久久久久免费视频了| 成人手机av| 热99久久久久精品小说推荐| 亚洲欧美色中文字幕在线| 不卡一级毛片| 国产老妇伦熟女老妇高清| 激情在线观看视频在线高清 | a在线观看视频网站| 免费高清在线观看日韩| 一进一出好大好爽视频| 大型黄色视频在线免费观看| 欧美激情久久久久久爽电影 | 国产精品偷伦视频观看了| 99精品欧美一区二区三区四区| 亚洲全国av大片| 精品少妇一区二区三区视频日本电影| 在线观看舔阴道视频| 青青草视频在线视频观看| 精品国产一区二区久久| 久久亚洲真实| 精品人妻熟女毛片av久久网站| 日韩视频在线欧美| 悠悠久久av| 两性午夜刺激爽爽歪歪视频在线观看 | 美女午夜性视频免费| 精品国产超薄肉色丝袜足j| 精品福利观看| 99久久99久久久精品蜜桃| 国产一卡二卡三卡精品| 精品亚洲成a人片在线观看| 欧美激情极品国产一区二区三区| 日韩欧美免费精品| 欧美黑人欧美精品刺激| 99精品欧美一区二区三区四区| 亚洲av美国av| 人人妻人人爽人人添夜夜欢视频| 天堂动漫精品| 国产欧美亚洲国产| 女人久久www免费人成看片| 成人免费观看视频高清| 19禁男女啪啪无遮挡网站| 亚洲精品成人av观看孕妇| 女性被躁到高潮视频| 777久久人妻少妇嫩草av网站| 侵犯人妻中文字幕一二三四区| 动漫黄色视频在线观看| 国产无遮挡羞羞视频在线观看| 亚洲国产欧美日韩在线播放| 丝袜在线中文字幕| av天堂在线播放| 免费少妇av软件| 国产又爽黄色视频| 久久久欧美国产精品| 十八禁网站免费在线| av有码第一页| 国产有黄有色有爽视频| 亚洲欧美一区二区三区黑人| 免费高清在线观看日韩| 亚洲性夜色夜夜综合| videosex国产| 国产av精品麻豆| 日韩欧美免费精品| 男女免费视频国产| 高清黄色对白视频在线免费看| 久久99一区二区三区| 国产精品 国内视频| 国产成人精品久久二区二区91| 亚洲精品自拍成人| 欧美精品人与动牲交sv欧美| 免费看十八禁软件| 麻豆av在线久日| 菩萨蛮人人尽说江南好唐韦庄| 精品国产乱码久久久久久小说| 一级片免费观看大全| 交换朋友夫妻互换小说| 国产亚洲精品久久久久5区| 天天操日日干夜夜撸| 天天操日日干夜夜撸| 日韩人妻精品一区2区三区| 久久中文字幕人妻熟女| 国产在线免费精品| av有码第一页| 大陆偷拍与自拍| 亚洲性夜色夜夜综合| 日本a在线网址| 一级,二级,三级黄色视频| 免费人妻精品一区二区三区视频| 亚洲色图 男人天堂 中文字幕| 国产欧美日韩综合在线一区二区| 女警被强在线播放| 成人三级做爰电影| 男人操女人黄网站| 天天添夜夜摸| 国产成人精品无人区| 久久精品亚洲av国产电影网| 欧美精品一区二区免费开放| 黄色片一级片一级黄色片| 亚洲国产av新网站| 2018国产大陆天天弄谢| 自拍欧美九色日韩亚洲蝌蚪91| 免费久久久久久久精品成人欧美视频| 亚洲精品国产色婷婷电影| 色尼玛亚洲综合影院| 国产高清videossex| 黄色怎么调成土黄色| 亚洲成人手机| 高清欧美精品videossex| 国产视频一区二区在线看| 亚洲精品在线观看二区| 国产淫语在线视频| 久久中文看片网| 五月开心婷婷网| 51午夜福利影视在线观看| av超薄肉色丝袜交足视频| 一边摸一边抽搐一进一小说 | 在线观看免费视频网站a站| 少妇被粗大的猛进出69影院| 久久精品aⅴ一区二区三区四区| 国产午夜精品久久久久久| 亚洲欧美一区二区三区黑人| 男女边摸边吃奶| 如日韩欧美国产精品一区二区三区| bbb黄色大片| √禁漫天堂资源中文www| 亚洲午夜理论影院| 少妇 在线观看| 日韩免费av在线播放| 精品亚洲成国产av| 国产伦理片在线播放av一区| 亚洲性夜色夜夜综合| 国产av又大| 99热网站在线观看| 久久热在线av| 我要看黄色一级片免费的| 超碰97精品在线观看| 欧美精品高潮呻吟av久久| 日本黄色日本黄色录像| 国产有黄有色有爽视频| 男人操女人黄网站| 欧美一级毛片孕妇| 国精品久久久久久国模美| 欧美精品亚洲一区二区| 国产xxxxx性猛交| 国产在线视频一区二区| 亚洲av欧美aⅴ国产| 久久久精品国产亚洲av高清涩受| 欧美另类亚洲清纯唯美| 亚洲欧美日韩高清在线视频 | 热99久久久久精品小说推荐| 99精品欧美一区二区三区四区| 老司机影院毛片| 亚洲精华国产精华精| 国产极品粉嫩免费观看在线| 老司机福利观看| 国产一区二区 视频在线| 国产av国产精品国产| 亚洲一区中文字幕在线| 亚洲三区欧美一区| 涩涩av久久男人的天堂| kizo精华| 18禁美女被吸乳视频| 国产熟女午夜一区二区三区| 亚洲第一欧美日韩一区二区三区 | 美国免费a级毛片| 蜜桃国产av成人99| 国产精品香港三级国产av潘金莲| 美女高潮到喷水免费观看| 电影成人av| 成人国语在线视频| 国产av国产精品国产| 亚洲精品成人av观看孕妇| 亚洲美女黄片视频| 老汉色av国产亚洲站长工具| 母亲3免费完整高清在线观看| 一区二区av电影网| 正在播放国产对白刺激| av电影中文网址| 另类精品久久| 国产免费现黄频在线看| 日本av免费视频播放| 91大片在线观看| a级毛片黄视频| 女人高潮潮喷娇喘18禁视频| 男女床上黄色一级片免费看| 母亲3免费完整高清在线观看| 国产一区二区在线观看av| 久久久久精品国产欧美久久久| 午夜日韩欧美国产| 一区二区三区激情视频| 久久久国产欧美日韩av| www.999成人在线观看| 大型av网站在线播放| 精品熟女少妇八av免费久了| 国产精品 欧美亚洲| 一本大道久久a久久精品| 飞空精品影院首页| 久久精品aⅴ一区二区三区四区| 国产一区二区三区在线臀色熟女 | 精品少妇内射三级| 久久久久网色| 首页视频小说图片口味搜索| 人人澡人人妻人| 色老头精品视频在线观看| 老熟女久久久| 99国产精品免费福利视频| 欧美精品人与动牲交sv欧美| 国产色视频综合| 成人国语在线视频| 一级毛片精品| 成年版毛片免费区| 蜜桃国产av成人99| 老熟女久久久| 一本一本久久a久久精品综合妖精| 51午夜福利影视在线观看| 如日韩欧美国产精品一区二区三区| 狂野欧美激情性xxxx| 9色porny在线观看| 9热在线视频观看99| 亚洲专区中文字幕在线| 男女床上黄色一级片免费看| 久久久久久久久久久久大奶| 日本vs欧美在线观看视频| 黄色a级毛片大全视频| 亚洲精品一卡2卡三卡4卡5卡| 波多野结衣av一区二区av| 精品人妻熟女毛片av久久网站| 免费看十八禁软件| 高清av免费在线| www日本在线高清视频| 老熟女久久久| 欧美激情极品国产一区二区三区| 欧美在线一区亚洲| 国产一区二区在线观看av| 怎么达到女性高潮| 亚洲欧美日韩另类电影网站| 在线观看免费视频网站a站| 狠狠狠狠99中文字幕| 国产区一区二久久| 啦啦啦视频在线资源免费观看| 国产日韩欧美视频二区| 久久久精品免费免费高清| 中文字幕人妻丝袜制服| 日韩一卡2卡3卡4卡2021年| 精品少妇内射三级| 在线亚洲精品国产二区图片欧美| 99国产精品免费福利视频| 国产精品偷伦视频观看了| 中文字幕最新亚洲高清| 757午夜福利合集在线观看| 亚洲少妇的诱惑av| 在线天堂中文资源库| 一边摸一边抽搐一进一小说 | 香蕉国产在线看| 在线播放国产精品三级| 国产精品99久久99久久久不卡| 国产在线观看jvid| 满18在线观看网站| 亚洲avbb在线观看| 激情在线观看视频在线高清 | 丰满饥渴人妻一区二区三| 欧美激情 高清一区二区三区| 在线观看免费日韩欧美大片| 国产精品一区二区在线不卡| 变态另类成人亚洲欧美熟女 | 亚洲伊人色综图| 美女高潮到喷水免费观看| 欧美亚洲 丝袜 人妻 在线| 在线播放国产精品三级| 在线观看66精品国产| 欧美黑人精品巨大| 黄色视频,在线免费观看| av在线播放免费不卡| 一级毛片电影观看| 一二三四社区在线视频社区8| 国产精品99久久99久久久不卡| 欧美日韩亚洲国产一区二区在线观看 | 国产精品久久久久久精品古装| 少妇精品久久久久久久| 天天添夜夜摸| 国产单亲对白刺激| 亚洲午夜精品一区,二区,三区| 考比视频在线观看| 这个男人来自地球电影免费观看| 最近最新中文字幕大全电影3 | 精品一区二区三区av网在线观看 | 免费在线观看完整版高清| 色播在线永久视频| 精品一区二区三区视频在线观看免费 | 在线观看免费视频日本深夜| 不卡一级毛片| 99re6热这里在线精品视频| 露出奶头的视频| 久久九九热精品免费| 2018国产大陆天天弄谢| 一级毛片女人18水好多| 99久久精品国产亚洲精品| 黄色怎么调成土黄色| 777久久人妻少妇嫩草av网站| 精品亚洲乱码少妇综合久久| 性高湖久久久久久久久免费观看| 女警被强在线播放| 亚洲avbb在线观看| 亚洲自偷自拍图片 自拍| 欧美av亚洲av综合av国产av| 久久精品人人爽人人爽视色| 久久久久国内视频| 国产精品电影一区二区三区 | 在线 av 中文字幕| 新久久久久国产一级毛片| 蜜桃在线观看..| 国产一区二区三区综合在线观看| 精品人妻熟女毛片av久久网站| 精品国产乱码久久久久久小说| 亚洲一区中文字幕在线| 视频在线观看一区二区三区| 日韩免费高清中文字幕av| 女人久久www免费人成看片| 男男h啪啪无遮挡| 极品少妇高潮喷水抽搐| 久久av网站| 日韩中文字幕欧美一区二区| 美女国产高潮福利片在线看| 亚洲精品久久午夜乱码| 免费在线观看黄色视频的| 久久精品国产亚洲av高清一级| 美女高潮喷水抽搐中文字幕| 老熟妇仑乱视频hdxx| 丝袜在线中文字幕| 丝袜在线中文字幕| 欧美成人午夜精品| 国产av精品麻豆| 亚洲av欧美aⅴ国产| 免费观看a级毛片全部| 精品一区二区三区四区五区乱码| 欧美一级毛片孕妇| 最近最新中文字幕大全电影3 | av在线播放免费不卡| 精品福利永久在线观看| 男女高潮啪啪啪动态图| 飞空精品影院首页| videosex国产| 午夜激情久久久久久久| 亚洲精品国产区一区二| 搡老岳熟女国产| 12—13女人毛片做爰片一| 日韩精品免费视频一区二区三区| 狠狠狠狠99中文字幕| 成人18禁在线播放| 在线 av 中文字幕| 欧美激情 高清一区二区三区| 无人区码免费观看不卡 | 大香蕉久久网| 国产成人啪精品午夜网站| 飞空精品影院首页| 国产成人精品无人区| 亚洲情色 制服丝袜| 12—13女人毛片做爰片一| 十八禁网站免费在线| 少妇裸体淫交视频免费看高清 | 成年人黄色毛片网站| 午夜福利视频精品| 巨乳人妻的诱惑在线观看| 极品教师在线免费播放| 国产有黄有色有爽视频| 免费不卡黄色视频| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩大片免费观看网站| 国产精品久久久久成人av| 99re在线观看精品视频| 久久精品国产亚洲av香蕉五月 | 国产野战对白在线观看| 国产午夜精品久久久久久| 大片电影免费在线观看免费| 亚洲三区欧美一区| 香蕉丝袜av| 国产精品欧美亚洲77777| 国产深夜福利视频在线观看| 国产色视频综合| 久久精品亚洲熟妇少妇任你| 大陆偷拍与自拍| 啦啦啦视频在线资源免费观看| 久久精品国产亚洲av香蕉五月 | 69精品国产乱码久久久| 亚洲成人手机| 搡老岳熟女国产| 美女主播在线视频| 国产精品99久久99久久久不卡| 黄色视频不卡| 法律面前人人平等表现在哪些方面| 蜜桃国产av成人99| 一边摸一边做爽爽视频免费| 国产淫语在线视频| 欧美人与性动交α欧美精品济南到| 黄色成人免费大全| 亚洲九九香蕉| 91精品国产国语对白视频| 91麻豆精品激情在线观看国产 | 欧美日韩av久久| 国产亚洲欧美在线一区二区| 精品久久蜜臀av无| 亚洲全国av大片| 高清毛片免费观看视频网站 | 国产不卡一卡二| 亚洲免费av在线视频| 国产亚洲av高清不卡| 久久99一区二区三区| 最近最新中文字幕大全电影3 | av线在线观看网站| 亚洲黑人精品在线| 99久久99久久久精品蜜桃| 无遮挡黄片免费观看| 亚洲色图 男人天堂 中文字幕| 国产精品久久久久成人av| 亚洲中文av在线| 91老司机精品| 国产野战对白在线观看| 波多野结衣一区麻豆| 亚洲专区字幕在线| 国产精品二区激情视频| 丰满人妻熟妇乱又伦精品不卡| 无遮挡黄片免费观看| 中文字幕人妻熟女乱码| 国产精品熟女久久久久浪| 久久国产精品男人的天堂亚洲| 精品福利永久在线观看| 久久精品国产综合久久久| 欧美老熟妇乱子伦牲交| 女警被强在线播放| av免费在线观看网站| 日韩三级视频一区二区三区| 国产一区二区 视频在线| 国产av一区二区精品久久| 国产高清videossex| 久久精品aⅴ一区二区三区四区| 欧美成人免费av一区二区三区 | 美女扒开内裤让男人捅视频| 亚洲全国av大片| bbb黄色大片| 99久久人妻综合| 大码成人一级视频| 人人妻人人爽人人添夜夜欢视频| 久久精品亚洲精品国产色婷小说| 欧美精品一区二区免费开放| 飞空精品影院首页| 一区二区av电影网| 王馨瑶露胸无遮挡在线观看| 日本五十路高清| 国产区一区二久久| 在线观看人妻少妇| 人妻久久中文字幕网| 亚洲精品久久成人aⅴ小说| 老司机福利观看| av视频免费观看在线观看| 国产精品 欧美亚洲| 国产成人系列免费观看| 成年女人毛片免费观看观看9 | 久久久国产一区二区| 国产一区有黄有色的免费视频| 黄色片一级片一级黄色片| 91字幕亚洲| 精品国产一区二区久久| 丰满饥渴人妻一区二区三| 又大又爽又粗| 精品福利观看| 51午夜福利影视在线观看| 亚洲国产av新网站| 国产男靠女视频免费网站| 夜夜夜夜夜久久久久| 亚洲第一av免费看| 可以免费在线观看a视频的电影网站| avwww免费| 色尼玛亚洲综合影院| 宅男免费午夜| av国产精品久久久久影院| 成年人免费黄色播放视频| 久久 成人 亚洲| 精品久久久久久久毛片微露脸| 色播在线永久视频| 狠狠婷婷综合久久久久久88av| 亚洲国产欧美网| 狠狠婷婷综合久久久久久88av| 曰老女人黄片| 欧美精品人与动牲交sv欧美| 日韩一区二区三区影片| 亚洲熟女精品中文字幕| 丝瓜视频免费看黄片| 亚洲成国产人片在线观看| tube8黄色片| 91大片在线观看| 免费观看av网站的网址| 日韩免费av在线播放| 男女高潮啪啪啪动态图| 国产亚洲精品久久久久5区| 欧美 日韩 精品 国产| www.熟女人妻精品国产| 欧美日韩亚洲综合一区二区三区_| 黄网站色视频无遮挡免费观看| 日本vs欧美在线观看视频| 午夜福利,免费看| 在线 av 中文字幕| 精品一区二区三区四区五区乱码| 欧美黑人欧美精品刺激| 国产精品99久久99久久久不卡| 久久久久久亚洲精品国产蜜桃av| www.999成人在线观看| 国产精品1区2区在线观看. | 男女免费视频国产| 999久久久国产精品视频| 国产片内射在线| 欧美激情高清一区二区三区| 在线亚洲精品国产二区图片欧美| 欧美大码av| 亚洲七黄色美女视频|