• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Linear and nonlinear optical response of g-C3N4-based quantum dots*

    2021-07-30 07:42:38JingZhiZhang張競(jìng)之andHongZhang張紅
    Chinese Physics B 2021年7期
    關(guān)鍵詞:張紅

    Jing-Zhi Zhang(張競(jìng)之) and Hong Zhang(張紅)

    1College of Physics,Sichuan University,Chengdu 610065,China

    2Key Laboratory of High Energy Density Physics and Technology of Ministry of Education,Sichuan University,Chengdu 610065,China

    Keywords: graphite carbon nitride,optical response,ultra-fast laser,plasmon

    1. Introduction

    Graphitic carbon nitride(g-C3N4)is a dazzling star in the field of semiconductor photocatalysis technology, which has become one of the most attractive research fields for removing organic pollutants and converting solar energy.[1,2]As a metal-free catalyst, g-C3N4has been widely used in photosplitting water to produce hydrogen,[3,4]photo-degrading organic pollutants,[5,6]and photo-catalytic CO2reduction.[7,8]It is the most stable allotrope among various carbonitrides under ambient conditions, with unique optical and electronic properties, high thermal and chemical stability, and low synthesis cost.[9-12]However, wide band gap~2.7 eV, small specific surface area, and high photo-generated hole recombination rate limit the application of g-C3N4.[13]

    With the deepening of theories and experiments,g-C3N4has gradually been applied to the field of optoelectronics as diodes,lithium batteries,storages,and photodetectors. Today with increasingly higher requirements for integration, to improve light utilization, theoretical research on g-C3N4-based quantum dots (QDs) is far from enough, which arouses our great interest. g-C3N4is generally synthesized by thermal condensation of nitrogen-rich precursors such as cyanamide,dicyandiamide,and melamine.[14]Yanget al.[15]have synthesized ultra-thin g-C3N4nanosheets with a thickness of about 2 nm. Research has focused on the modification of g-C3N4to obtain better performance.[16-18]The specific surface area of g-C3N4with a layered structure similar to graphite can be increased to as high as 2500 m2·g-1theoretically.[19]In addition,the morphology modulation of g-C3N4has been demonstrated as a successful method to endow it with large specific surface areas,abundant reaction sites for promoting lightharvesting,charge separation and transfer,and mass diffusion,all of which enhance the photocatalytic performance. For example, Zhanget al.[20]have fabricated g-C3N4with ordered mesopores and cylindrical channels to have a surface area up to 517 m2·g-1. At the atomic level, reasonable simulations and basic calculations help to design and synthesis g-C3N4.

    To improve light energy utilization of g-C3N4,this paper combines band gap engineering and other modification strategies to design QDs based on g-C3N4,and calculates the electronic and optical properties of each composite through firstprinciples theory. We first explore the optical response of QDs under basic control methods such as polarization direction,the number of layers and size,thus proves the adjustability of band gap and reveals the law of light absorption. Next, the use of precious metal chain coupling,functional group modification,etc. attempts to expand the visible light absorption of the g-C3N4composites.

    2. Computational details

    Calculations are performed based onab initiodensity functional theory (DFT) as implemented in the CASTEP[21]and OCTOPUS[22]codes. First, geometries are optimized by CASTEP using the gradient approximation(GGA)expressed by the Perdew-Burke-Ernzerhof (PBE)[23]function for the exchange-correlation. The energy band and density of states are calculated using HSEO6 hybrid functional.

    The central tenet is that all physical properties of an interacting many-electron system can be determined from its timedependent density.[24,25]We numerically propagate Eq.(1)in real time and real space using the OCTOPUS code. Carbon, nitrogen, hydrogen, copper, silver, and gold atoms are described by the Hartwigsen-Goedecker-Hutter pseudopotentials. We perform calculations in a 7 ?A radius spherical box and discretize the problem on a Cartesian grid with spacing 0.2 ?A. In real-time propagation, an approximated enforced time-reversal symmetry(AETRS)algorithm is used to approximate the evolutionary operator. The motion equation of the system is the time-dependent Kohn-Sham equation

    that the electron wave functionψi(r,t)obeys,evolved for typically 6000 steps with a time step of Δt=0.003ˉh/eV.The system is excited by a functional pulse that describes the perturbation of the total density of the system to obtain a linear optical absorption spectrum in a particular direction. At timet=0,all the wave functions have an instantaneous phase shift

    wherek0is the perturbation of the external field momentum along thezdirection. Then, the time-dependent dipole momentd(t) can be obtained from the time evolution of the Kohn-Sham wave function. The dynamic polarizabilityα(ω)is derived by using the Fourier transform of the dipole moment and the induced charge density distribution is extracted accordingly. The absorption spectrum is expressed as a dipole intensity functionS(ω), and its relation with polarizability isS(ω)=(2ω/π)Imα(ω).

    We simulate the laser-atom interaction with the dipole approximation using an external potential defined as

    wheref(x,y,z) is defined by a field type and polarization or a scalar potential, cosine controls the waveform,ωcontrols the frequency, andφis the time-dependent phase. Theg(t)function centered aroundt0describes the waveform of the ultrafast laser. For the time evolution, we use a time step of 0.003ˉh/eV≈0.0020 fs.

    3. Results and discussion

    3.1. Geometry and electronic structure of the monolayer g-C3N4

    The pristine g-C3N4structure is a two-dimensional framework of tri-s-triazine (tri-ring of C6N7) subunits linked by tertiary amines. The optimized monolayer g-C3N4reference structure is displayed in Fig. 1, with lattice constants ofa1=a2= 6.95 ?A. The calculation results of the electronic properties(see Fig.2),containing the band structure and density of states,show that monolayer g-C3N4is a large direct-gap semiconductor with a bandgap of 2.925 eV.The energy distribution of the conduction band is between 2.4 eV and 10.4 eV,mainly including two density peaks of states,which are mostly contributed by the p orbitals of nitrogen and carbon atoms.The valence band near the Fermi level is mainly contributed by the p orbitals of nitrogen atoms. It corresponds to the fact that in photocatalysis, nitrogen atoms provide oxidation and reduction active sites, while carbon atoms provide reduction active sites.[26]

    Fig.1. (a)Side,(b)top,and(c)front views of optimized monolayer g-C3N4.Silver and blue atoms sand for carbon and nitrogen,respectively.

    Fig. 2. (a) Electronic band structure, (b) density of states (DOS) and partial densities of states(PDOSs)of monolayer g-C3N4.

    3.2. Linear optical response of g-C3N4 quantum dots

    3.2.1. Adjustment of polarization direction, number of layers, and size

    The properties of nanostructures and macroscopic materials are completely different due to quantum confinement effects. In order to design kinds of gCNQDs, we selected the periodic minimum unit structure of g-C3N4containing 10 nitrogen atoms and 6 carbon atoms. Because it is like but not synthetic precursor melem unit. The dangling bonds at the edges are passivated by hydrogen atoms, as shown in the inset in Fig.3(a). Figure 3(a)displays the results of optical responses when perturbation pulses with different polarization directions are applied to gCNQDs. It shows that gCNQDs have high responsivity in the ultraviolet region, revealing its application potential in the field of thin-film solar cells, photosensitive detectors, optical switches, and photoelectric converters. When the angle of the excitation direction relative to theXaxis is between-30°and 90°,the difference in the absorption spectrum is mainly reflected in the highest peak(approximately at 4.8 eV) intensity, where 0°(parallel to theXaxis)has the highest photoresponse.Besides,we find effective optical transitions for the first pair of valence and conduction bands(approximately at 3 eV)in low-energy regions that are magnified in the inset. Although the difference is subtle, we find that-30°and 60°have better performance.

    To explore the mechanism,we analyze the planar discrete Fourier transform of the induced-charge density distribution at respective energy resonance points displayed in Fig. 3(b).The distance from the upper surface of gCNQDs to the induced density plane is 0.9 ?A. Most of the induced electrons and holes are distributed on the edges of the nanostructures,with antisymmetric characteristics, presenting a dipole distribution,which is an antiphase double dipole mode of plasmons excitation. Because of the extendedπbond in g-C3N4,under the external field induction and electronic screening,the phenomenon of electron aggregation excitation and long-range charge transfer occur. Comparing the induced-charge at the intrinsic absorption peak, the electron-hole density at 0 excitation direction is concentrated with more obvious bilateral symmetry,followed by 60°. This is reflected in their stronger peaks in Fig. 3(a), revealing the advantage of plasmon resonance when excited parallel to the edge of the structure due to the long-distance transfer of electrons to the terminal nitrogen atoms. However, the regularity differs in the low energy region (2 eV-4 eV), which is affected by the original wave configuration of g-C3N4according to our conjecture.

    Fig. 3. Optical absorption of (a) g-C3N4 as a function of the polarization angle relative to the X axis (θ =-30°, 0°, 60°, 90°) and (b)monolayer gCNQDs(1g-C3N4),bilayer gCNQDs(2g-C3N4),and trilayer gCNQDs(3g-C3N4). Panels(b)and(d)are Fourier transformations of the induced-charge density distribution at energy resonance points.

    Figure 3(c) shows the light absorption of few-layer gCNQDs stacked in ABA with pulses in theXdirection, corresponding to 1g-C3N4(monolayer), 2g-C3N4(bilayer), and 3g-C3N4(trilayer). The layer spacing is 3.3 ?A.[27]As the number of layers increases, the peak value increases nonlinearly. It can be attributed to the formation of an electric field due to the excited state charge transfer caused by light absorption, which impairs the dipole response of the adjacent layer. The corresponding energy gap decreases as the number of layers increases shown in the enlarged part of Fig.3(c).As seen in Fig. 3(d), the induced charge density distributions at two energy resonance points of different layers have dipole oscillation characteristics,although the charge distribution in the high-energy region is more scattered. Especially for the electron-hole pairs of 3g-C3N4at 3.99 eV and 4.89 eV,we point out that there is a high energy mode of plasmons excitation[28-30]different from long-range charge transfer. It confirms that the interlayer interaction weakens the double dipole response.

    Fig.4. Optical absorption of three kinds of gCNQDs when the impulse excitation polarized along the X-axis (a) and Y-axis (b), respectively.Structural diagrams are displayed in legends.

    For comparison, we add two quantum dots polymerized in perpendicular directions shown in legends of Fig. 4.Spectra indicate that the width of the quantum dots increases along the polarization direction, the absorption peak of the low-energy region is red-shifted and the intensity increases,while the widening of the size along the vertical polarization direction only increases the absorption intensity. It is related to the in-plane electron confinement effect of the small two-dimensional nanostructure.[31]Quantum size effect affects dipole response. Besides, similar to the result of layer number control, the size widening gives rise to a decrease in the band gap along the polarization direction,as low as 2 eV.The widening of the band gap of gCNQDs indicates that the dielectric is enhanced.

    3.2.2. Metal/gCNQDs composites

    Recently, the exploration of g-C3N4-based composite photocatalysts has attracted widespread attention. In a tentative work,we select three kinds of metal nanochains as representatives to compound with gCNQDs. Metal/gCNQDs composites are expected to be widely used as a photosensitizerin vivo.[32]The gCNQDs is inserted into metal nanochains composed of 8 copper, silver, and gold atoms respectively along theX-axis direction, and the interatomic distances of these metal atoms are taken as experimental values of 2.55 ?A,2.89 ?A, and 2.89 ?A, respectively. The distance between the terminal metal atom and its nearest hydrogen atom is 2.89 ?A as well.[33]We denote these composites as Cu/g-C3N4,Ag/g-C3N4,and Au/g-C3N4. The impulse excites along theX-axis.

    Figures 5(a)-5(c)present the absorption spectrum of the composites (Cu/g-C3N4, Ag/g-C3N4, and Au/g-C3N4), the separate gCNQDs(g-C3N4),and the isolated metal nanowires(Cu, Ag, and Au). Surprisingly, strong significant absorption peaks with higher intrinsic intensity and red-shift energy appear in the visible light region, compared with metal nanochains. The most pronounced effects are found for Au/g-C3N4and Ag/g-C3N4,where the light absorption strength exceeds 30 eV-1and the light absorption limit is extended to 2.11 eV. It demonstrates the existence of collective plasmon excitation in the composites, that is, coherent resonance. It can be analyzed by the insets of the induced charge density distribution shown in Fig.5. When the excitation direction is parallel to the metal nanochain,the dipole interaction between noble metal atoms appears as an attraction, which could lead to such as redshift away from the excimer resonant frequency according to the theory of dipole interaction.[34]But there are different phenomena in the higher energy region(4 eV-6 eV).Compared to the g-C3N4, the optical absorption of the composites decreases instead.

    Furthermore, as the metal nanochains changes from Cu to Ag and then to Au,the optical absorption of the composite increases respectively, and the resonance frequency is related to the eigenfrequency of the corresponding metal nanochains.It suggests that a host-guest interaction between gCNQDs and the metal nanochains introduces a certain amount of free electrons to gCNQDs. Metal nanochains as electronic conductive channels,transfer light energy to the reaction system,thus lead to carrier concentration increase. It plays a leading role to separate photoinduced electron-hole pairs efficiently and further enhance the visible-light photocatalytic.Pristine gCNQDs can recombine with electron-rich systems through charge-transfer complexation to form nanocomposites, resulting in a rearrangement of the electron density. Owing to composition with metal nanochains, especially gold, composites expand light absorption into the near-infrared region of g-C3N4from the ultraviolet region. It does not require the high cost of pure metal but exhibits stronger light absorption, which improves its application potential in wide-light photosensitive detectors and photocatalytic.

    Fig.5. Optical absorption of(a)Cu/g-C3N4, g-C3N4, Cu nanochains, (b)Ag/g-C3N4, g-C3N4, Ag nanochains, (c)Ag/g-C3N4, g-C3N4 and Au nanochains. Illustrations are Fourier transform of the induced charge density distribution of(a)Cu/g-C3N4 at 2.34 eV,(b)Ag/g-C3N4 at 2.11 eV,and(c)Au/g-C3N4 at 2.33 eV.

    3.2.3. Functional group modification of gCNQDs

    Since carbon nitride itself is metal-free,it can also tolerate functional groups. Another approach for modification of the textural structure of g-C3N4is the introduction of other organic additives during the polymerization process of the nitrogen precursor. So the modified tri-s-triazine ring with specific anchoring groups may enhance its light-harvesting ability and be suitable for multipurpose applications in biosensors and biomass conversion. Schwinghammeret al.[35]fabricated an amorphous variant of poly (triazine imide) exhibiting an extended better hydrogen evolution activity due to light absorption up to 800 nm. We still focus on monomer gCNQDs and replace its three bridging nitrogen atoms with amino(-NH2),hydroxyl(-OH),and methyl(-CH3). In Fig.6,the absorption peaks of CNNH2, CNOH, and CNCH3(structures shown in Figs. 7(b)-7(d) respectively) sequentially blue shift, which is conducive to the application of deep ultraviolet photoelectric detection.

    Fig.6. Optical absorption of CNNH2,CNOH,and CNCH3.

    Fig. 7. (a) Structure of minimum periodic unit of monolayer g-C3N4 and QDs modified with amino groups (CNNH2), hydroxyl groups(CNOH), and methyl groups (CNCH3). Fourier transformations of induced-charge density distribution at energy resonance points for (e)CNNH2, (f) CNOH, and (g) CHCH3. Selected bond lengths: N-H =1.01 ?A; O-H =2.28 ?A; C-H =1.09 ?A. White, silver, blue, and red atoms sand for hydrogen,carbon,nitrogen,and oxygen,respectively.

    The advantages of the group to electronic modification in gCNQDs are different from those in periodic g-C3N4. Figures 7(e)-7(g) reveal that the reason for the difference is the change of the oscillation mode, which manifests as the electron transfer from long range to short range. Although the dipole response still exists, the electron-hole pairs gradually disperse from the structure boundary. In fact, the replacement of bridging nitrogen atoms changes the nitrogen-rich environment for the smallest gCNQDs. It is also attributed to the boundary effect on the nanometer scale, which can be observed directly with STM and scanning tunneling spectroscopy experiments.[36]

    3.3. Nonlinear optical response of gCNQDs

    Recently,the g-C3N4QDs have been used as fluorescent probes for HeLa cell imaging.[37]Its application is extended to the fields ofin vitrobioimaging,[38]biological analysis,and photodynamic therapy.[39,40]Increasing researches have been devoted to the nonlinear optical properties of QDs, attracting people’s interest from the perspective of basic science to study various potential applications.[41,42]The external field effect is an effective tool for studying the carrier dynamics of organic semiconductors.[43,44]Herein, gCNQDs mentioned above are selected to study the change of electron occupancy state over time by calculating the highest electron level(HEL)and density of states (DOS) of QDs under the ultrafast laser. The wavelength range of the incident lasers is from 194 nm to 900 nm,covering common ultraviolet lasers to infrared lasers.Figures 8(a)-8(c)show an experimental model equipped with a linearly polarized incident laser to illuminate the waveguide and laser detector of gCNQDs.

    Fig. 8. (a) Schematic demonstration of proposed experimental geometry. The incident laser is emitted along (b) x direction parallel to the upper surface of(c)gCNQDs.

    We explore the interaction between ultrafast laser and gCNQDs and study the time-dependent HEL under different wavelength lasers with intensities of 5 eV/?A as shown in Fig.9(a). The ultrafast laser lasts 6 fs, but we investigate the interaction till 8 fs owing to the laser delay effect.[45]We find that HELs amplitude is significantly reduced when the laser incident time reaches 4.5 fs. HELs in final states increase first and then decrease with the decrease of the incident laser wavelength. Notably, when the wavelength decreases to 337 nm(the ultraviolet region), the HEL crosses the Fermi level unexpectedly. However, when the wavelength decreases below 337 nm,the HEL drops sharply to an insulating state.

    The main reason for this phenomenon is that the 337 nm closer to the intrinsic frequency of gCNQDs allows optical carriers to obtain higher resonance energy. The shorter the laser wavelength,the higher the energy. When the energy exceeds the potential to bind the electrons, the outermost electrons are destroyed after absorbing laser energy. Therefore,the HEL exceeds the Fermi level and photoelectric conversion makes gCNQDs realize the transition to the metallic state and the state lasts to 8 fs.But in the case of wavelengths of 250 nm and 190 nm, the HEL of gCNQDs crosses the Fermi level at around 1.75 fs. A brief metallic state appears, but eventually the electronic level collapse occurs. The higher energy speeds up the electronic oscillation and brings electrons closer to the nucleus in the scattering process.[46]

    Fig. 9. (a) HEL in gCNQDs with intensity of incident ultrafast laser being 5.0 eV/A? for various wavelengths of 194 nm, 250 nm, 337 nm,514 nm, 720 nm, and 900 nm. (b) DOS of gCNQDs at 0 fs and 9 fs with intensity of incident ultrafast laser being 5.0 eV/A? for wavelength of 337 nm.

    In Fig.9(b),the change of intrinsic DOS from the initial to final state visually shows the electronic occupied state and the electrons across the Fermi level. Electron-electron interaction can insulate conductive materials,and insulating-metal phase transition is a typical expression of the competition between charge-carrier itinerancy and localization.[47]

    To further explore the interaction of gCNQDs with the 600 nm wavelength laser, we adopt an intensity range from 4.5 eV/?A to 5.5 eV/?A with an interval of 0.25 eV/?A as shown in Fig. 10(a). The influence of the electric field intensity is non-negligible. In Fig. 10(b), the degree of HEL fluctuation increases as the electric field intensity increases and is inseparable from the laser waveform. When the laser intensity exceeds 5 eV/?A,HELs cross the Fermi level,which verifies the above phenomenon of transition to metal. It reflects from the side that,like the two-dimensional g-C3N4,[48]gCNQDs also exhibit excellent stability.

    Fig.10. (a)Laser oscillograph and(b)HEL in gCNQDs under 337 nm incident ultrafast laser with various intensities of 4.5 eV/?A,4.75 eV/?A,5.0 eV/?A,5.25 eV/?A,and 5.5 eV/?A.

    We explore the conditions for laser-induced changes in the structure and physical properties of gCNQDs. The critical external field condition for the transition to the metallic state is about 337 nm wavelength laser and 5 eV electric field intensity. The results laid a theoretical foundation for the experimental preparation of gCNQDs and the research in the field of laser surface modification.

    4. Conclusion

    We studied the linear and nonlinear optical response of gCNQDs, based on time-dependent density functional theory. Under the control of direction,the number of layers,and size, the light absorption and dipole response of each gCNQDs exhibit different characteristics, which could engineer the band gap of gCNQDs. Through the design of sophisticated gCNQDs composited with noble metal nanochains, we improved the absorption and utilization in the visible light region of gCNQDs significantly. Metal/gCNQDs composites may be used as metalloenzymes in future. For nonlinear response, gCNQDs display high stability overall. Lone pair electrons provided by it facilitate its electronic coupling with non-metal electrodes, thus making it useful in metalfree high-performance storage devices. Depending on the successful combination of theoretical prediction and experimental technique for g-C3N4in the field of quantum devices, plenty of other capacities should be explored to develop commonly available materials across the areas of heterogeneous catalysis,biosensors, and nano-plasma devices. The further theoretical calculation is still on its way.

    猜你喜歡
    張紅
    Core level excitation spectra of La and Mn ions in LaMnO3
    Theoretical study of M6X2 and M6XX'structure(M =Au,Ag;X,X'=S,Se): Electronic and optical properties,ability of photocatalytic water splitting,and tunable properties under biaxial strain
    貓一直在
    貓一直在
    Stability,electronic structure,and optical properties of lead-free perovskite monolayer Cs3B2X9(B=Sb,Bi;X =Cl,Br,I)and bilayer vertical heterostructure Cs3B2X9/Cs3X9(B,B′=Sb,Bi;X =Cl,Br,I)
    First-principles study of plasmons in doped graphene nanostructures?
    Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays*
    我愛(ài)你,中國(guó)
    2015年高考英語(yǔ)最可能考的短語(yǔ)
    15 Neurological Disorder
    国产成人精品福利久久| 一区二区av电影网| 哪个播放器可以免费观看大片| 女人精品久久久久毛片| 91午夜精品亚洲一区二区三区| 最新中文字幕久久久久| 人人妻人人澡人人看| 亚洲av欧美aⅴ国产| 人成视频在线观看免费观看| 99re6热这里在线精品视频| 亚洲经典国产精华液单| 美女视频免费永久观看网站| 国产 精品1| av国产久精品久网站免费入址| 免费久久久久久久精品成人欧美视频 | 91久久精品电影网| 最近中文字幕2019免费版| 在线观看免费视频网站a站| 中文字幕免费在线视频6| 五月天丁香电影| 大香蕉97超碰在线| 99九九在线精品视频| 最近中文字幕高清免费大全6| a级毛片黄视频| 晚上一个人看的免费电影| 国产精品99久久99久久久不卡 | 在线亚洲精品国产二区图片欧美 | 美女国产视频在线观看| 免费观看无遮挡的男女| av女优亚洲男人天堂| 99热这里只有是精品在线观看| 午夜影院在线不卡| 日韩,欧美,国产一区二区三区| 一级毛片黄色毛片免费观看视频| 黑人高潮一二区| 成人18禁高潮啪啪吃奶动态图 | 三上悠亚av全集在线观看| 国产在线一区二区三区精| 国产伦理片在线播放av一区| 大香蕉久久成人网| 18禁裸乳无遮挡动漫免费视频| 在线观看美女被高潮喷水网站| 99热6这里只有精品| 97在线人人人人妻| 中国美白少妇内射xxxbb| 成人毛片60女人毛片免费| 美女主播在线视频| 97在线视频观看| 欧美日韩av久久| 国产视频内射| 91久久精品国产一区二区成人| 男女无遮挡免费网站观看| 久久久久人妻精品一区果冻| 99热网站在线观看| 欧美日韩一区二区视频在线观看视频在线| 五月天丁香电影| 免费黄色在线免费观看| 国产精品女同一区二区软件| 丰满迷人的少妇在线观看| 边亲边吃奶的免费视频| 中文字幕人妻丝袜制服| 赤兔流量卡办理| 久久久久久久大尺度免费视频| 99热6这里只有精品| 热re99久久精品国产66热6| 日韩 亚洲 欧美在线| 国产亚洲精品久久久com| 欧美日韩国产mv在线观看视频| 国产精品久久久久成人av| 久久99热6这里只有精品| 午夜视频国产福利| 日日摸夜夜添夜夜添av毛片| 久久久久久久亚洲中文字幕| 精品99又大又爽又粗少妇毛片| 曰老女人黄片| 2021少妇久久久久久久久久久| 亚洲高清免费不卡视频| 简卡轻食公司| 欧美亚洲日本最大视频资源| 欧美xxxx性猛交bbbb| 精品少妇久久久久久888优播| 日韩伦理黄色片| 欧美日韩成人在线一区二区| videosex国产| 全区人妻精品视频| 插逼视频在线观看| 亚洲人成77777在线视频| 人妻制服诱惑在线中文字幕| 成年人免费黄色播放视频| 精品少妇黑人巨大在线播放| 伦精品一区二区三区| 丰满饥渴人妻一区二区三| 国产黄色视频一区二区在线观看| 久久久久久久大尺度免费视频| 久久久国产欧美日韩av| 亚洲第一av免费看| 国产深夜福利视频在线观看| 午夜福利在线观看免费完整高清在| 久久精品国产亚洲av涩爱| 两个人免费观看高清视频| 最新的欧美精品一区二区| 边亲边吃奶的免费视频| 亚洲av国产av综合av卡| 国产黄色免费在线视频| 亚洲精品自拍成人| 日本与韩国留学比较| 只有这里有精品99| 日韩中字成人| 日本vs欧美在线观看视频| 亚州av有码| 男男h啪啪无遮挡| 成年人午夜在线观看视频| 狠狠精品人妻久久久久久综合| 两个人免费观看高清视频| 晚上一个人看的免费电影| 波野结衣二区三区在线| 亚洲美女视频黄频| 王馨瑶露胸无遮挡在线观看| 欧美精品高潮呻吟av久久| 国产成人精品福利久久| 草草在线视频免费看| 伦理电影免费视频| 免费黄色在线免费观看| 久久这里有精品视频免费| 性高湖久久久久久久久免费观看| 五月玫瑰六月丁香| 丝袜美足系列| 亚洲图色成人| 中文字幕人妻丝袜制服| 国产成人精品婷婷| 国产精品久久久久久av不卡| 91成人精品电影| 大陆偷拍与自拍| 免费播放大片免费观看视频在线观看| 亚洲四区av| 亚洲少妇的诱惑av| 久久女婷五月综合色啪小说| 国产精品国产三级国产av玫瑰| av国产久精品久网站免费入址| 欧美成人午夜免费资源| 欧美日本中文国产一区发布| 久久久久久久久久久久大奶| 日韩一本色道免费dvd| 91久久精品国产一区二区成人| 青青草视频在线视频观看| xxxhd国产人妻xxx| 亚洲四区av| 国产老妇伦熟女老妇高清| 精品卡一卡二卡四卡免费| 一级毛片我不卡| 少妇熟女欧美另类| 欧美成人精品欧美一级黄| 18禁观看日本| 男的添女的下面高潮视频| 岛国毛片在线播放| 欧美亚洲 丝袜 人妻 在线| 一本色道久久久久久精品综合| 啦啦啦中文免费视频观看日本| 亚洲国产精品国产精品| 日韩一本色道免费dvd| 人人妻人人添人人爽欧美一区卜| 亚洲av在线观看美女高潮| 寂寞人妻少妇视频99o| 国产视频首页在线观看| 一个人免费看片子| www.av在线官网国产| 亚洲国产av新网站| 日韩亚洲欧美综合| 九草在线视频观看| 日韩大片免费观看网站| 人妻人人澡人人爽人人| 国产色婷婷99| 男女边摸边吃奶| 五月玫瑰六月丁香| 久久精品久久久久久久性| 国产又色又爽无遮挡免| 欧美日韩在线观看h| 亚洲婷婷狠狠爱综合网| 久久精品国产亚洲av天美| 女人久久www免费人成看片| 免费不卡的大黄色大毛片视频在线观看| 国模一区二区三区四区视频| 精品人妻一区二区三区麻豆| 国产亚洲精品第一综合不卡 | 国产色婷婷99| 国产黄色免费在线视频| 国内精品宾馆在线| 亚洲人成网站在线观看播放| 成人亚洲欧美一区二区av| 一边亲一边摸免费视频| 三级国产精品片| 亚洲三级黄色毛片| 只有这里有精品99| 在线观看美女被高潮喷水网站| 国产亚洲一区二区精品| 欧美三级亚洲精品| av播播在线观看一区| 一区二区三区精品91| 亚洲三级黄色毛片| 亚洲欧美色中文字幕在线| 精品一品国产午夜福利视频| 99re6热这里在线精品视频| 精品少妇黑人巨大在线播放| 亚洲国产精品一区二区三区在线| 欧美精品一区二区免费开放| 久久ye,这里只有精品| 插阴视频在线观看视频| 人妻少妇偷人精品九色| 欧美 日韩 精品 国产| 黄色欧美视频在线观看| 欧美激情 高清一区二区三区| 成人亚洲精品一区在线观看| 久久免费观看电影| 少妇人妻久久综合中文| 成人18禁高潮啪啪吃奶动态图 | kizo精华| 18禁观看日本| 新久久久久国产一级毛片| 欧美老熟妇乱子伦牲交| 国产成人精品在线电影| 午夜福利网站1000一区二区三区| 亚洲激情五月婷婷啪啪| 国产精品国产三级国产av玫瑰| 视频中文字幕在线观看| 亚洲四区av| 黑人巨大精品欧美一区二区蜜桃 | 亚洲国产欧美日韩在线播放| 美女中出高潮动态图| 不卡视频在线观看欧美| 亚洲激情五月婷婷啪啪| 亚洲精品色激情综合| 在现免费观看毛片| 亚洲久久久国产精品| 亚州av有码| 在线免费观看不下载黄p国产| 伦精品一区二区三区| 亚洲综合色网址| 国产精品一区www在线观看| 国产午夜精品一二区理论片| 22中文网久久字幕| 久久99热这里只频精品6学生| 久久久久久人妻| 亚洲精品自拍成人| 嫩草影院入口| 国产高清三级在线| 日本色播在线视频| 久久久久网色| 两个人免费观看高清视频| 中文欧美无线码| 午夜久久久在线观看| 狂野欧美激情性bbbbbb| 亚洲国产毛片av蜜桃av| 永久网站在线| 亚洲精品456在线播放app| 2021少妇久久久久久久久久久| 99热6这里只有精品| 国产免费又黄又爽又色| 久久精品人人爽人人爽视色| 日韩伦理黄色片| 国产成人免费无遮挡视频| 蜜桃久久精品国产亚洲av| 少妇被粗大的猛进出69影院 | 99久久综合免费| 人妻系列 视频| 人妻 亚洲 视频| 我的老师免费观看完整版| 亚洲精品日韩av片在线观看| 69精品国产乱码久久久| 精品午夜福利在线看| av卡一久久| 国产精品久久久久久精品电影小说| 人妻系列 视频| 老女人水多毛片| 亚洲精品美女久久av网站| 亚洲精品乱码久久久久久按摩| 各种免费的搞黄视频| 观看美女的网站| 亚洲国产成人一精品久久久| 欧美+日韩+精品| 这个男人来自地球电影免费观看 | 精品国产乱码久久久久久小说| 久久久久人妻精品一区果冻| 99久国产av精品国产电影| 成人午夜精彩视频在线观看| 成人国产av品久久久| 久久久久网色| 岛国毛片在线播放| 啦啦啦中文免费视频观看日本| 少妇精品久久久久久久| av在线观看视频网站免费| 国产精品熟女久久久久浪| 亚洲无线观看免费| 国产男人的电影天堂91| 人妻少妇偷人精品九色| 女性生殖器流出的白浆| 久久ye,这里只有精品| 国产日韩欧美在线精品| 欧美日韩在线观看h| 亚洲精品国产色婷婷电影| 色婷婷久久久亚洲欧美| 午夜91福利影院| 少妇熟女欧美另类| 亚洲不卡免费看| 在线播放无遮挡| 最近中文字幕2019免费版| 少妇被粗大猛烈的视频| 免费大片18禁| 麻豆精品久久久久久蜜桃| tube8黄色片| 天天操日日干夜夜撸| 久久久久久伊人网av| av国产久精品久网站免费入址| 精品亚洲乱码少妇综合久久| 欧美+日韩+精品| 又大又黄又爽视频免费| 一级二级三级毛片免费看| 在线免费观看不下载黄p国产| 精品人妻在线不人妻| 亚洲欧美一区二区三区黑人 | av免费观看日本| √禁漫天堂资源中文www| av电影中文网址| 久久精品国产自在天天线| 日本-黄色视频高清免费观看| 亚洲图色成人| 久久这里有精品视频免费| 晚上一个人看的免费电影| 毛片一级片免费看久久久久| 久久影院123| 久久午夜福利片| 秋霞在线观看毛片| 中文字幕久久专区| 麻豆精品久久久久久蜜桃| 少妇 在线观看| 欧美激情 高清一区二区三区| 在线观看免费日韩欧美大片 | 亚洲四区av| 国产色婷婷99| 欧美精品一区二区免费开放| 免费大片18禁| 狠狠精品人妻久久久久久综合| 制服丝袜香蕉在线| 国产亚洲午夜精品一区二区久久| 国产69精品久久久久777片| 人人妻人人爽人人添夜夜欢视频| av播播在线观看一区| 一区二区三区四区激情视频| 久久久久久久久久久丰满| 美女脱内裤让男人舔精品视频| 国产精品免费大片| 亚洲精品456在线播放app| 国产熟女欧美一区二区| 精品国产乱码久久久久久小说| 少妇 在线观看| 日韩熟女老妇一区二区性免费视频| 欧美少妇被猛烈插入视频| 内地一区二区视频在线| 九九久久精品国产亚洲av麻豆| a级毛色黄片| 插逼视频在线观看| 2021少妇久久久久久久久久久| 欧美日本中文国产一区发布| 日日爽夜夜爽网站| 欧美变态另类bdsm刘玥| 亚洲精品乱久久久久久| 精品亚洲成国产av| 亚洲欧洲国产日韩| 久久久久网色| 人妻夜夜爽99麻豆av| av卡一久久| .国产精品久久| 天堂8中文在线网| 蜜桃久久精品国产亚洲av| 亚洲欧洲国产日韩| 国产亚洲一区二区精品| av网站免费在线观看视频| 日韩亚洲欧美综合| 波野结衣二区三区在线| 亚洲av电影在线观看一区二区三区| 少妇的逼水好多| av免费在线看不卡| 欧美成人午夜免费资源| 亚洲国产av影院在线观看| 久久精品久久久久久久性| 免费高清在线观看日韩| 亚洲国产最新在线播放| 人妻制服诱惑在线中文字幕| 在线观看免费高清a一片| 久久亚洲国产成人精品v| 欧美精品国产亚洲| 午夜视频国产福利| 午夜激情久久久久久久| 日韩电影二区| 亚洲精品色激情综合| 精品一区二区三卡| 97超视频在线观看视频| 97精品久久久久久久久久精品| 欧美xxⅹ黑人| 王馨瑶露胸无遮挡在线观看| 插逼视频在线观看| 国产精品久久久久久av不卡| av在线app专区| 亚州av有码| 亚洲精品乱码久久久v下载方式| 亚洲伊人久久精品综合| 内地一区二区视频在线| 久久久久久久久久久免费av| 高清不卡的av网站| 久久精品国产亚洲av涩爱| xxxhd国产人妻xxx| 不卡视频在线观看欧美| 在线观看美女被高潮喷水网站| 国产一区二区三区综合在线观看 | 久久精品久久精品一区二区三区| 国产又色又爽无遮挡免| 色视频在线一区二区三区| 少妇被粗大的猛进出69影院 | 亚洲精品久久成人aⅴ小说 | 亚洲精品久久午夜乱码| 热99久久久久精品小说推荐| 日韩三级伦理在线观看| 亚洲丝袜综合中文字幕| 黑人高潮一二区| 久久国产精品男人的天堂亚洲 | 国产欧美日韩综合在线一区二区| 午夜免费鲁丝| 成人亚洲精品一区在线观看| 日日摸夜夜添夜夜爱| 五月开心婷婷网| 免费观看性生交大片5| 熟女av电影| 色视频在线一区二区三区| 国产伦理片在线播放av一区| a级毛片免费高清观看在线播放| tube8黄色片| 亚洲伊人久久精品综合| 美女视频免费永久观看网站| 亚洲av男天堂| 亚洲图色成人| 日韩三级伦理在线观看| 免费黄频网站在线观看国产| 亚洲天堂av无毛| 欧美日韩亚洲高清精品| 婷婷色综合大香蕉| 久久精品国产a三级三级三级| av福利片在线| 97精品久久久久久久久久精品| 男的添女的下面高潮视频| av国产精品久久久久影院| 国产毛片在线视频| 亚洲精品av麻豆狂野| 伊人久久精品亚洲午夜| 久久久国产一区二区| 国产精品麻豆人妻色哟哟久久| 桃花免费在线播放| 午夜视频国产福利| a级毛片免费高清观看在线播放| 99国产精品免费福利视频| 亚洲欧洲精品一区二区精品久久久 | 好男人视频免费观看在线| 99九九在线精品视频| 蜜桃久久精品国产亚洲av| 成人毛片60女人毛片免费| 18禁在线播放成人免费| 飞空精品影院首页| 全区人妻精品视频| 精品99又大又爽又粗少妇毛片| 免费大片黄手机在线观看| 日韩不卡一区二区三区视频在线| 国产亚洲精品久久久com| 九九在线视频观看精品| 一二三四中文在线观看免费高清| 国产av一区二区精品久久| 亚洲综合色网址| 午夜影院在线不卡| 日日撸夜夜添| 久久久久久久大尺度免费视频| 人妻系列 视频| 久久精品国产亚洲av涩爱| 久久久久人妻精品一区果冻| 蜜桃国产av成人99| 纯流量卡能插随身wifi吗| 成人毛片60女人毛片免费| 国产av国产精品国产| 久久这里有精品视频免费| 日本vs欧美在线观看视频| 一边摸一边做爽爽视频免费| 欧美日韩综合久久久久久| 国产亚洲最大av| 老熟女久久久| 只有这里有精品99| 久久久久国产精品人妻一区二区| 久久精品国产亚洲av涩爱| 亚洲综合色网址| 午夜福利视频精品| 欧美一级a爱片免费观看看| 国产黄色免费在线视频| videossex国产| 中国美白少妇内射xxxbb| 美女国产视频在线观看| 欧美日韩av久久| 国产精品国产av在线观看| 99热网站在线观看| 97精品久久久久久久久久精品| 天天躁夜夜躁狠狠久久av| 久久人人爽人人片av| 日韩人妻高清精品专区| 亚洲四区av| 亚洲经典国产精华液单| av不卡在线播放| 久久人妻熟女aⅴ| 免费观看的影片在线观看| 成年美女黄网站色视频大全免费 | 蜜桃国产av成人99| 亚洲成色77777| 国产精品一区二区三区四区免费观看| 精品久久久久久电影网| 一区二区三区免费毛片| 亚洲美女搞黄在线观看| 交换朋友夫妻互换小说| 成人影院久久| 女的被弄到高潮叫床怎么办| 欧美日韩综合久久久久久| 黄片播放在线免费| 日韩视频在线欧美| 国产欧美日韩综合在线一区二区| 国产成人aa在线观看| 看十八女毛片水多多多| 极品人妻少妇av视频| 日日啪夜夜爽| 只有这里有精品99| av不卡在线播放| 人妻一区二区av| 国产伦精品一区二区三区视频9| 国产精品蜜桃在线观看| 日韩av不卡免费在线播放| 亚洲高清免费不卡视频| 精品人妻熟女毛片av久久网站| 九色成人免费人妻av| 蜜桃久久精品国产亚洲av| 美女主播在线视频| 九色亚洲精品在线播放| 久久久国产精品麻豆| 午夜91福利影院| 日本免费在线观看一区| 国产视频内射| 日韩中字成人| 亚洲av综合色区一区| 亚洲一级一片aⅴ在线观看| 久久精品熟女亚洲av麻豆精品| 爱豆传媒免费全集在线观看| 国产成人一区二区在线| 啦啦啦视频在线资源免费观看| 国产成人一区二区在线| av国产久精品久网站免费入址| 天堂中文最新版在线下载| 丝袜在线中文字幕| 亚洲国产av影院在线观看| 亚洲精品国产av蜜桃| 一本—道久久a久久精品蜜桃钙片| 久久国产精品男人的天堂亚洲 | 亚洲av二区三区四区| av女优亚洲男人天堂| 蜜臀久久99精品久久宅男| av女优亚洲男人天堂| 91国产中文字幕| 亚洲精品国产av蜜桃| av一本久久久久| 精品人妻熟女毛片av久久网站| 曰老女人黄片| 91国产中文字幕| 亚洲av成人精品一区久久| 多毛熟女@视频| 久热久热在线精品观看| 极品人妻少妇av视频| 亚洲美女搞黄在线观看| 亚洲欧洲精品一区二区精品久久久 | 久久久久久久亚洲中文字幕| 日韩大片免费观看网站| 午夜免费男女啪啪视频观看| 国产一区二区在线观看日韩| 日韩欧美一区视频在线观看| 校园人妻丝袜中文字幕| 久久久久久久久久人人人人人人| 亚洲五月色婷婷综合| 日韩精品有码人妻一区| 中文字幕久久专区| 人人澡人人妻人| .国产精品久久| 妹子高潮喷水视频| 国产极品粉嫩免费观看在线 | 国产黄色免费在线视频| 婷婷色av中文字幕| 天天躁夜夜躁狠狠久久av| 日本vs欧美在线观看视频| 日日撸夜夜添| 久久久精品区二区三区| 乱人伦中国视频| 亚洲av中文av极速乱| 99久国产av精品国产电影| 内地一区二区视频在线| 极品人妻少妇av视频| 免费黄频网站在线观看国产| 亚洲一级一片aⅴ在线观看| 大又大粗又爽又黄少妇毛片口| 国产成人av激情在线播放 | 人体艺术视频欧美日本| 国产精品久久久久久精品电影小说| 2022亚洲国产成人精品| 女的被弄到高潮叫床怎么办| 成人国语在线视频| 亚洲精品一二三| 18禁在线无遮挡免费观看视频| 欧美精品一区二区大全| 妹子高潮喷水视频|