• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spectral polarization-encoding of broadband laser pulses by optical rotatory dispersion and its applications in spectral manipulation*

    2021-07-30 07:42:36XiaoweiLu陸小微CongyingWang王聰穎XuankeZeng曾選科JiaheLin林家和YiCai蔡懿QinggangLin林慶鋼HuangchengShangguan上官煌城ZhenkuanChen陳振寬ShixiangXu徐世祥andJingzhenLi李景鎮(zhèn)
    Chinese Physics B 2021年7期
    關(guān)鍵詞:選科上官林家

    Xiaowei Lu(陸小微) Congying Wang(王聰穎) Xuanke Zeng(曾選科) Jiahe Lin(林家和)Yi Cai(蔡懿) Qinggang Lin(林慶鋼) Huangcheng Shangguan(上官煌城)Zhenkuan Chen(陳振寬) Shixiang Xu(徐世祥) and Jingzhen Li(李景鎮(zhèn))

    1Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province,College of Physics and Optoelectronics Engineering,Shenzhen University,Shenzhen 518060,China

    2Collaborative Innovation Center for Optoelectronic Science and Technology,International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology(Ministry of Education),Institute of Microscale Optoelectronics,Shenzhen University,Shenzhen 518060,China

    Keywords: ultrafast optics,optical rotatory dispersion,spectral polarization-encoding,spectral manipulation

    1. Introduction

    It is well known that ul trashort light pulses have inherent broad spectral bandwidth, which provides us with great convenience to implement spectral manipulation or shaping.Consequently, femtosecond pulse shaping has attracted an increased interest due to its important applications in many fields including ultrahigh speed communications,[1,2]ultrafast optical signal processing and computing,[3]ultrafast nonlinear processes,[4,5]ultrafast optical imaging,[6,7]precise optical metrology,[8,9]quantum coherent control,[10]high efficient terahertz pulse generation,[11]and chirped-pulse amplification(CPA).[12,13]Until now,many methods for femtosecond pulse shaping have been reported. For example, spatial light modulator[14]and fiber Bragg grating[15]were used for ultrahigh speed communications,whereas etalons,[16]wavelengthdependent reflectors,[17]birefringent plates,[18]and acousticoptical programmable dispersive filters[19]were applied in CPA systems to alleviate spectral narrowing effects.

    This paper proposes a novel way to implement femtosecond pulse shaping, which, similar to the spectral timeencoding in CPA, is a kind of spectral polarization-encoding(SPE)for ultrashort light pulses. SPE can be realized simply by allowing a linearly polarized broadband light pulse through some optically active crystals to induce some optically rotatory dispersions(ORD).As a result,all spectral components of the ultrashort pulse are still linearly polarized but their polarization directions can be manipulated by controlling the ORD.This SPE can be decoded by compensating ORD,which is important for some of its applications,e.g.,broadband light pulse amplification,spectral shaping,and so on.

    2. Theory and proof-in-principle experiments

    An ultrashort light pulse has inherently very affluent spectral components. For a transform-limited pulse,when it propagates through a disperser,it becomes a chirped pulse,and its affluent spectrum allows its temporal duration to be stretched.As a result, in different temporal slices, one will “see” different frequencies inside the chirped pulse. This process can be regarded as a spectral time-encoding. Traditionally, these spectral components have an identical polarization. However,polarization is one of the most important freedoms of a light pulse,so it is very interesting to encode the polarization direction of all the spectral components of an ultrashort light pulse,which,fortunately,can be simply realized by inducing ORD.

    As we know,a linearly polarized light beam can be seen as the overlap of left circularly polarized and right circularly polarized components. When the beam goes through an ORD medium,the two components will travel with different velocities. Consequently,the output beam still keeps its linear polarization but rotates its polarization direction by a wavelengthdependent angle with regard to that of the input beam due to ORD. Consequently, we can actualize SPE for a broadband pulse. One of the simple ways to induce ORD is to allow a light pulse through some optically active substances.It is an entirely passive method and very easy to be aligned,meanwhile,unlike the magnetic ORD due to Faraday effect,it works without need of any applied fields.

    When a linearly polarized beam at wavelength ofλpasses through an optically active substance with thickness ofL,the rotating angle can be expressed as

    Hereα(λ)andη(λ)stand for rotating angle and rotation coefficient,respectively. Both of them are wavelength-dependent.One can see that ORD stems fromη(λ)is proportional to the thicknessL. Accordingly, if the input is a linearly polarized pulse with broad bandwidth, after through an ORD crystal,different spectral components of the pulse correspond to different polarizations,i.e., SPE. Obviously, we can manipulate SPE orα(λ)by changingη(λ)or/andLof an optically active crystal.

    The ORD generated by this way is compensable, so our SPE can be decoded,which is important in some applications,e.g.broadband pulse amplification. One way to compensate ORD is to allow the broadband pulses with ORD through another optically active substance which has a rotation coefficient of-η(λ) and an equal thickness of the crystal to generate ORD(Fig.1(a)). Fortunately,this compensation is practicable because some of the optically active substances,e.g.,quartz, have two mirror-symmetrical configurations: the lefthanded and the right-handed, which have opposite values ofη(λ) with each other. We call this decoding method as LR method. Another way to realize ORD compensation is shown in Fig.1(b)including only single crystal puls a mirror,which we call SCM method. There, the ORD is generated from the first pass through a piece of rotatory crystal,and can be compensated automatically to bounce the beam back through the same crystal again with a mirror.

    Besides these two ways,we propose another way to compensate ORD, which, as shown in Fig. 1(c), includes double complete same ORD plates plus a broadband half-wave plate(BHW) between the two plates, and we call this decoding as DCW method. It is an all-transmission method which combines the advantages of the two other methods.Here the BHW is firstly aligned so that its fast or slow axis along with the polarization direction of input pulse without the ORD crystal(ORDC)there.Suppose the ORDC will rotate the polarization direction of its incident light pulse with an angle ofα(λ),the light beam will pass though the BHW following the ORDC with a cross angle ofα(λ)between its polarization direction and the fast or slow axis of the BHW.After passing through the BHW, the rotation angle becomes-α(λ) orπ-α(λ), which means that the ORD can be removed by inducing another rotatory angleα(λ),or passing through another complete same ORD crystal as the first one.If the fast axis of BHW is at an arbitrary angleθrelative to the input polarization,after passing through BHW,the polarization direction is 2θ-α(λ),SPE can also be decoded by the second ORDC,except the polarization direction rotates to 2θ.

    Fig.1. The ways to compensate ORD:(a)using another crystal with mirrorsymmetrical configuration(LR),(b)reflecting the light beam back to the substance(SCM),or(c)using two complete same ORD plates plus a broadband half-wave plate (DCW). ORDC: ORD crystal; ORDC+ and ORDC-: two ORD plates with the same ORD value but opposite signs;BHW:broadband half-wave plate;M:mirror;HR:0° high reflective mirror.

    Proof-in-principle experiments are implemented for three decoding methods as shown in Fig.1,using a commercial femtosecond laser oscillator(Mirca-5, Coherent Co.) as the light resource. The oscillator exports 80 MHz, 780 nm, 400 mW pulse chain with a tunable bandwidth from 60 nm to 100 nm.A piece of left-handed quartz with a thickness of 20 mm is used for encoding. The rotation coefficient of quartz at 0.78 μm is about 12 deg/mm,and the rotating angle at 0.78 μm isα(0.78 μm)=241 deg. After encoding, the wavelengthdependent rotating angle of the polarization is shown by the purple line in Fig. 2. When wavelength varies from 0.72 to 0.88 μm, the rotating angle decreases from 285.1 deg to 187.6 deg,close to a linear trend. Another 20-mm quartz with the opposite/same chirality is used for decoding in the configures of LR or DCW,respectively. All the elements,including the mirrors and the wave plate, are using broadband design.By applying a linear polarizer and a spectrograph (HR4000,Ocean Optics,Inc.) at the output side in the three designs respectively,the output spectra(solid lines)and the corresponding transmissions(dotted lines)are shown in Fig.2. The thick gray line stands for the input spectrum. It is obvious that the compensated spectra coincide well with the original one and their transmissions are nearly constant of 1(normalized),which shows that all three designs can operate well for SPE decoding.

    Fig. 2. Experimental ORD compensation results for LR (blue lines), SCM(red lines),and DCW(green lines),solid lines are spectra versus wavelength and dotted lines are transmission versus wavelength.

    3. Applications

    3.1. Spectra shaping

    It is well known the transmission of a linear polarizer is polarization-dependent, so SPE by the aid of a polarizer can work to manipulate wavelength-dependent transmission,thereby realize the spectra shaping of broadband pulses.

    As shown in Fig.3,when a linearly polarized broadband pulse passes through a BHW and an ORDC, each spectral component of the pulse has its own polarization direction due to ORD,thereby has its own transmission. Here the BHW before the ORDC is used to rotate the polarization directions of all input spectral components with an identical angle (-α0),thus the spectral component (λ0) with the maximal transmission can be chosen flexibly.The rotatory angle after the ORDC and BHW is

    Accordingly,the spectral/polarization-dependent transmission of the linear polarizer can be expressed as

    Figure 4(a) shows the transmission curvesT(λ) of the setup in Fig. 3versuswavelength (μm) by using a quartz plate as ORD crystal (black:L=5.0 mm; red:L=10.0 mm; blue:L= 15.0 mm; green:L= 20.0 mm; purple:L= 40 mm)when settingα0atλ=0.75 μm. We can see for a fixedα0,the transmission bandwidth decreases with the thickness of the quartz crystal. Accordingly, if using a wedge pair instead of the quartz plate to make the thickness to be alterable,the setup in Fig. 3 can work as a bandwidth-tunable filter. Figure 4(b)shows the shift of the transmission peaks by simply rotating the BHW at differentα0with a 40-mm-quartz as an encoding ORDC.It can be seen obviously that there are multiple transmission peaks in Fig.4(b),and for normal use of the filter,the adjacent interval should be larger than the pulse width. Applying such a spectra shaper to our laser, wavelength-tunable output can easily be realized. Confirmatory experiments are carried out where an 80-MHz, 2.5-nJ pulse with a tunable bandwidth from 60 nm to 100 nm is used as the input and the results are shown in Fig.4(c), where the experimental output spectra (dots) are consistent well with the calculative results(lines). Although the transmissions have multi-peak structure,however, the “free spectrum range”, or the interval between adjacent peaks,is up to 156 nm,which is much wider than the spectral width(72.1 nm)of the laser we used here. Therefore,output spectra present single-peak structures, and the bandwidth is as broad as about 43 nm.

    Fig. 3. The setup for spectral shaping. BHW: broadband half-wave plate;ORDC:optically rotatory dispersion crystal.

    Fig. 4. (a) The transmission versus wavelength (in unit μm) by using a piece of quartz as ORD crystal (black: L=5.0 mm; red: L=10.0 mm; blue:L=15.0 mm; green: L=20.0 mm; purple: L=40.0 mm) for a fixed α0 =α (0.75 μm); and (b) by using a 40-mm-thick quartz for different α0: α(0.800 μm),α (0.791 μm),α (0.765 μm),α (0.781 μm)or α (0.774 μm);(c)theoretical and experimental results of the spectrum versus wavelength(μm).

    In addition, the ORD profile can be altered by combination of multiple ORD crystals. The black line in Fig. 5 presents the spectral-dependent rotatory angle of a quartz plate with a thickness of 4.5 mm. One can see that from visible to near-infrared(near-IR),as those of many optically active substances, the|α(λ)| of quartz decreases with wavelength.However,this monotonous trend can be changed by using the combination of multiple ORD crystals. For example, if the combination consists of an AgGaS2plate and a quartz plate with a thickness ratio of 1:5.1,the ORD will exhibit paraboliclike profile(the green line in Fig.5). The blue or red line corresponds to a thickness ratio of 1:4.0 or 1:6.0. Obviously,the ORD profile can be altered by changing the thickness ratio.

    Fig.5.The ORD α(λ)of a piece of quartz crystal(black line),a combination consisting of an AgGaS2 and a quartz plate with different thickness ratios of the AgGaS2 to quartz: 1:5.1(green line),1:6.0(red line)or 1:4.0(blue line).

    Fig.6.The transmission versus wavelength(in unit μm)by using a combination of an AgGaS2 plate and a quartz plate for(a)different α0: 0.50(purple),0.94 (red), 3.5 (blue) or 0.0 (dark cyan) with fixed LA: LQ (1:5.1) and LA(2.0 mm), and (b) for different LA: LQ: 1:4.0 (black), 1:4.5 (red) or 1:10.0(blue)when α0=0.0.

    In Fig. 6(a), for a given thickness ratio of the AgGaS2to the quartz plates (LA:LQ=1:5.1), the parabolic ORD profile(black line)can be used to achieve not only a flat(purple line,α0=0.5)or saddle shaped(blue line,α0=3.5),but also upward(dark cyan line,α0=0.0)or downward(red line,α0=0.94)parabolic transmission from 0.6 μm to 1.0 μm by tuningα0. For a givenα0,e.g.α0=0.0 as shown in Fig.6(b),the black, red or blue line corresponds to the different thickness ratio of the AgGaS2to the quartz plates:LA:LQ=1:4.0,1:4.5 or 1:10.0(blue),respectively,which means the transmission can also be altered by changingLA:LQ.

    From the above discussions,one can see SPE allows us to flexibly manipulate spectral shaping by inducing some spectral polarization-dependent loss,which can be realized through choosing a proper combination of multi-ORD crystals, their thicknesses (the thickness ratio), and a broadband half-wave plate.

    3.2. Polarization-encoded chirped pulse amplification

    SPE can also help us to manipulate laser gain spectra by the aid of polarization-dependent gain. As we know, some laser crystals have broad polarization-dependent gain spectra,so SPE can be used to control the output spectrum from some lasers. It motivates us to use SPE to suppress efficiently spectral narrowing which is one of the most important but challenging works for a CPA system. Until now,the most popular laser crystal used to boost ultrashort pulse power is Ti:S whose fluorescence bandwidth is broader than 0.2 μm.[20]Even so,the serious spectral narrowing still occurs for a seed with fewcycle pulse duration. Fortunately, the Ti:S has polarizationdependent gain, which allows us to flexibly control amplified spectrum by SPE.As is known,the gain cross-section of Ti:S crystal for theπ-polarized beam is about 2.4 times as large as that for theσ-polarized. Traditionally,the Ti: S amplifiers are designed to amplify their seed pulses withπ-polarization for maximizing laser gain. In order to avoid the spectral narrowing,efforts are usually made to suppress the laser gain for the spectral components around the central wavelength of the seeded pulses, meanwhile, to increase the gain for those far away from the central wavelength. Correspondingly,by use of a BHW and a block of quartz crystal,we applied our SPE to a Ti:S regenerative amplifier[21]where the seed pulses are amplified withσ-polarization for the spectral components around the central wavelength, and withπ-polarization for those far away from the central wavelength.

    Figure 7(a)presents our calculations according to Eqs.(1)and (2) and Table 1 of Ref. [21] when using an 11-mmthick quartz plate and setting theσ-polarization wavelengthλσ=0.82 μm. As shown by the blue solid-triangle marks,the amplified pulse bandwidth is initially 44.1 THz,and increases to 49.1 THz with the pass numberNup to 30. In spite that it decreases slightly to 48.1 THz whenNrises to 40,the spectral narrowing is efficiently avoided in the regenerative amplification with an output pulse energy of~3.24 mJ. However,σpolarization amplification for the spectral components around the central wavelength implies some sacrifices of amplification efficiency. Consequently,amplification saturation occurs at pass numberN ≈40 as shown by the black marks.

    Furthermore,if a combination consisting of a quartz plate and an AgGaS2plate is used instead of a single quartz plate as the optically rotatory disperser, the ORD profile can become parabolic,so we can set two wavelengths on the opposite sides relative to the wavelength withπ-polarization and the spectral components around the central wavelengths to be amplified away fromπ-polarization. In Fig.7(b),we make numerical simulation basing on the layout in Fig. 1(a) of Ref. [21]with the same equations and initial specifications of Fig.7(a).The thicknesses of the used AgGaS2plate and quartz plate are 8 mm and 47 mm respectively, and the twoπ-polarized wavelengths are set at 0.69 μm and 0.95 μm by rotating the BHW.Figure 7(b)shows the amplifier can still boost the output pulses up to 3.28 mJ without spectral narrowing, butNreduces to 30 for amplification saturation, which means the amplification efficiency has been greatly improved compared with that of Fig.7(a).

    Fig. 7. The evolutions of the amplified bandwidth and pulse energy versus pass number N of the seed through Ti:S regenerative amplifier shown in Fig.1 of Ref.[18]with(a)an 11 mm-thick quartz plate and λσ =0.82 μm,and with(b) an 8 mm AgGaS2 plate plus a 47 mm quartz plate and λπ1 =0.69 μm,λπ2=0.95 μm.

    In a Ti:S multi-pass amplifier, we have also set twoπpolarized wavelengths (λπ1andλπ2) by using a block of quartz plate to induce ORD,[22]where theπ-polarized wavelengthλπ1for the odd-numbered amplification is different fromλπ2that for the even-numbered amplification, andλπ1andλπ2are on the opposite sides relative to the wavelength with maximal gain.Calculations show our design can also amplify a 0.8-μm,10-fs seed pulse from sub-nJ to more than 3 mJ without spectral narrowing.What is more,proper ORD allows the setup to output its spectrum to be as broad as 0.149 μm.

    The validity of our SPE to manipulate laser gain spectra was experimentally confirmed in a multi-pass[23]and a regenerative[24]amplification systems, where nearly 90-nm broadband amplification was achieved. According to the results described above,our SPE may open a promising way to few-cycle PW-class laser system.

    3.3. Application in tunable mid-IR lasers

    Obviously, SPE, which can be used to manipulate laser gain/loss,can be also applied for laser tunning.In recent years,3 μm-5 μm mid-IR lasers begin to draw considerable attention due to a variety of important applications in biomedical, material processing, remote sensing, target detection, and other fields. However, compared with those in near-IR and visible regions,the components,e.g.,grating and prism in mid-IR region are much more immature and expensive which are dragging the development of mid-IR tunable laser. Fortunately,SPE allows us to realize the wavelength tunability for a mid-IR laser by just a piece of ORD with good transmission in mid-IR region.

    Fig.8. (a)The transmission of quartz and AgGaS2 in 0 μm-5 μm;[25,26] (b)The transmission versus 1/wavelength(1/μm)by using a 15-cm AgGaS2 as ORD crystal.

    According to the data from Terahertzlabs,Inc.,[25,26]figure 8(a)presents the transmittance of quartz and AgGaS2with a thickness of 2 mm. We can see the transmittance curve of AgGaS2almost kept a constant of~97%ranging from 3 μm to 5 μm without consideration of Fresnel loss. By contrast,the transmittance of the quartz begins to decrease, and drops to 50%at 4.0 μm.

    Similar to the calculations in Fig. 4, figure 8(b) shows the polarization-dependent transmission of a setup according to Fig. 3 with a 15-cm AgGaS2as the ORDC for different maximal transmission wavelengths: 3.6,3.7,3.8,3.9,4.0,and 4.1 μm, which can be tuned by adjusting the angle of halfwave plate as mentioned above. From Fig. 8, AgGaS2is expected to be a promising candidate for wavelength tunning in mid-IR laser.

    4. Conclusions

    In this paper, a kind of spectral polarization-encoding,or SPE, is proposed for ultrashort light pulses by inducing ORD from some optically active crystals. SPE encodes all the spectral components of a linearly polarized ultrashort pulse with different polarization directions, and can decoded by compensating the corresponding ORD, which is easily realized not only by using a double-pass design, two optically rotatory dispersers with mirror-symmetrical configurations,but also by a combination of another same optically rotatory disperser plus a broadband half-wave plate. By using some ORD crystals plus a linear polarizer, SPE can work to manipulate polarization-dependent transmission for central wavelength or bandwidth-tunable filtering through inducing spectral polarization-dependent loss. SPE can also induce polarization-dependent gain by the aid of some broad polarization-dependent laser media. Applying our SPE to a Ti:S amplifier,we can boost a 0.8-μm nJ-pulse up to mJ level with a bandwidth to support few-cycle pulse duration. This SPE is entirely passive thus very simple to design and align,so it can be used to realize flexibly mid-IR tunable laser beyond 3 μm by using an ORD crystal with a good transmission,e.g.AgGaS2,where the tunning devices are rather under developed compared with those in visible and near-infrared region.

    猜你喜歡
    選科上官林家
    林家陽作品
    上官米良藝術(shù)簡介
    價值工程(2023年6期)2023-03-13 12:10:18
    長春外國語學(xué)校新高考選科走班先行先試探索成功
    上官文露 行走的名著
    海峽姐妹(2020年2期)2020-03-03 13:36:34
    上官蓮花 珠寶因用心而珍貴
    海峽姐妹(2019年8期)2019-09-03 01:00:48
    新高考綜合改革下選科走班的思考
    新高考改革選科制下功利取向分析
    活力(2019年22期)2019-03-16 12:46:44
    嘗試課前隨機提問,應(yīng)對生物選科重壓
    林家琪、李鴻禹作品
    Development of novel microsatellite markers for Holothurian scabra (Holothuriidae), Apostichopus japonicas(Stichopodidae) and cross-species testing in other sea cucumbers*
    深爱激情五月婷婷| 亚洲电影在线观看av| 日韩欧美在线乱码| 国产免费福利视频在线观看| 精品一区二区免费观看| 国产免费视频播放在线视频 | av女优亚洲男人天堂| 亚洲人成网站在线播| 久久亚洲国产成人精品v| 欧美三级亚洲精品| 欧美精品国产亚洲| 熟女人妻精品中文字幕| 国产日韩欧美在线精品| 色网站视频免费| 日韩精品有码人妻一区| 狂野欧美激情性xxxx在线观看| 成人av在线播放网站| 观看免费一级毛片| .国产精品久久| 男女啪啪激烈高潮av片| 婷婷色综合大香蕉| 亚洲精品日韩在线中文字幕| 汤姆久久久久久久影院中文字幕 | 国产亚洲精品av在线| 亚洲欧美日韩东京热| 国产老妇女一区| 日本黄大片高清| 神马国产精品三级电影在线观看| 欧美日韩在线观看h| 在线观看一区二区三区| 少妇人妻一区二区三区视频| 国产精品久久久久久精品电影| 久久久久久国产a免费观看| 日本av手机在线免费观看| 人妻少妇偷人精品九色| 国产成人午夜福利电影在线观看| av播播在线观看一区| 色哟哟·www| 精品一区二区三区视频在线| 亚洲丝袜综合中文字幕| 国产av在哪里看| 男女边吃奶边做爰视频| 麻豆成人午夜福利视频| 亚洲三级黄色毛片| 亚洲精品亚洲一区二区| 一级毛片久久久久久久久女| 亚洲av不卡在线观看| 免费看光身美女| 日本午夜av视频| 九色成人免费人妻av| 好男人在线观看高清免费视频| 国产av一区在线观看免费| 国产精品1区2区在线观看.| 久久亚洲精品不卡| 欧美xxxx黑人xx丫x性爽| 欧美高清性xxxxhd video| 免费看光身美女| 欧美日韩在线观看h| 在线观看美女被高潮喷水网站| 中文字幕精品亚洲无线码一区| 可以在线观看毛片的网站| 边亲边吃奶的免费视频| 九色成人免费人妻av| 麻豆成人午夜福利视频| 日日摸夜夜添夜夜添av毛片| 3wmmmm亚洲av在线观看| 能在线免费看毛片的网站| 国产在线一区二区三区精 | 国产亚洲最大av| 久99久视频精品免费| 国产探花在线观看一区二区| 麻豆久久精品国产亚洲av| 日韩三级伦理在线观看| 成人性生交大片免费视频hd| 国产又色又爽无遮挡免| 91av网一区二区| 日日干狠狠操夜夜爽| 国产精品蜜桃在线观看| 三级男女做爰猛烈吃奶摸视频| 亚洲综合色惰| 亚洲国产色片| 97超碰精品成人国产| 汤姆久久久久久久影院中文字幕 | 美女内射精品一级片tv| 国产又黄又爽又无遮挡在线| 国产极品精品免费视频能看的| 国产精品人妻久久久影院| 亚洲最大成人手机在线| 少妇的逼水好多| 午夜福利在线在线| 天美传媒精品一区二区| 一卡2卡三卡四卡精品乱码亚洲| 欧美不卡视频在线免费观看| 日本wwww免费看| 能在线免费看毛片的网站| 一级爰片在线观看| 欧美又色又爽又黄视频| 99国产精品一区二区蜜桃av| 成人美女网站在线观看视频| 亚洲av中文av极速乱| 国产亚洲最大av| 干丝袜人妻中文字幕| 欧美人与善性xxx| www日本黄色视频网| 丝袜美腿在线中文| 啦啦啦观看免费观看视频高清| 永久免费av网站大全| 男女边吃奶边做爰视频| 如何舔出高潮| 欧美日韩一区二区视频在线观看视频在线 | 女人十人毛片免费观看3o分钟| 成人二区视频| 中文亚洲av片在线观看爽| 国产精品人妻久久久影院| 99在线视频只有这里精品首页| 午夜精品一区二区三区免费看| 国产午夜福利久久久久久| 亚洲av.av天堂| 男插女下体视频免费在线播放| 国产成人a区在线观看| 日本黄大片高清| 精品久久国产蜜桃| 欧美高清性xxxxhd video| 欧美区成人在线视频| 国产精品人妻久久久影院| 水蜜桃什么品种好| 国产精品乱码一区二三区的特点| 亚洲综合色惰| 国产精品一二三区在线看| 久久亚洲国产成人精品v| 亚洲国产精品sss在线观看| 免费搜索国产男女视频| 中文字幕久久专区| 夜夜看夜夜爽夜夜摸| 国产亚洲午夜精品一区二区久久 | 春色校园在线视频观看| 久久久欧美国产精品| 国产三级中文精品| 国产黄色小视频在线观看| 亚洲av不卡在线观看| 三级男女做爰猛烈吃奶摸视频| 亚洲av福利一区| 欧美xxxx性猛交bbbb| 精品久久久久久久人妻蜜臀av| 欧美日韩在线观看h| 国国产精品蜜臀av免费| 久久精品久久精品一区二区三区| 男人的好看免费观看在线视频| 国国产精品蜜臀av免费| 偷拍熟女少妇极品色| 国产成人福利小说| 欧美激情在线99| 水蜜桃什么品种好| 午夜久久久久精精品| 搞女人的毛片| 精品一区二区三区人妻视频| 精品久久久久久久久亚洲| 亚洲精品国产成人久久av| 午夜免费激情av| 蜜桃亚洲精品一区二区三区| 天堂av国产一区二区熟女人妻| 全区人妻精品视频| 最新中文字幕久久久久| 欧美性感艳星| 51国产日韩欧美| 久久久久久久亚洲中文字幕| 日日摸夜夜添夜夜添av毛片| 天堂√8在线中文| 能在线免费看毛片的网站| 亚洲人成网站在线播| 岛国毛片在线播放| 日本与韩国留学比较| 免费看美女性在线毛片视频| 久久久国产成人免费| 亚洲图色成人| 麻豆成人av视频| 国产免费一级a男人的天堂| 亚洲美女视频黄频| 亚洲精品国产成人久久av| 久久99热这里只频精品6学生 | 99热网站在线观看| 在线免费观看的www视频| 国产精品精品国产色婷婷| 久久久久网色| 国产精品麻豆人妻色哟哟久久 | 天天躁夜夜躁狠狠久久av| 久久久久久久久大av| 国产免费视频播放在线视频 | 精品久久久久久久人妻蜜臀av| 天天躁夜夜躁狠狠久久av| 亚洲av成人av| 亚洲欧美清纯卡通| 国产高清三级在线| 中文亚洲av片在线观看爽| 在线观看一区二区三区| 校园人妻丝袜中文字幕| 最近的中文字幕免费完整| 欧美97在线视频| 欧美三级亚洲精品| 久久久久久伊人网av| 18禁在线播放成人免费| 久久久久网色| 亚洲人成网站高清观看| 国产老妇女一区| 热99在线观看视频| 国产精品日韩av在线免费观看| av卡一久久| 麻豆av噜噜一区二区三区| 国产欧美日韩精品一区二区| 日本黄色视频三级网站网址| 亚洲av成人精品一二三区| 亚洲av熟女| 国产亚洲一区二区精品| 午夜精品一区二区三区免费看| 欧美日韩国产亚洲二区| 我的老师免费观看完整版| 国产黄a三级三级三级人| 国产精华一区二区三区| 精品久久久久久久久久久久久| 国产伦在线观看视频一区| 久久久午夜欧美精品| 九色成人免费人妻av| 18禁在线无遮挡免费观看视频| 老司机福利观看| 国产午夜精品论理片| 波多野结衣高清无吗| 99在线人妻在线中文字幕| 春色校园在线视频观看| 最近最新中文字幕大全电影3| 日本-黄色视频高清免费观看| 亚洲18禁久久av| 免费观看的影片在线观看| 日本一本二区三区精品| 亚洲国产高清在线一区二区三| 日本wwww免费看| 偷拍熟女少妇极品色| 久热久热在线精品观看| 91狼人影院| 女人被狂操c到高潮| 九九爱精品视频在线观看| 国产成人一区二区在线| 国内精品美女久久久久久| 亚州av有码| 国产精品爽爽va在线观看网站| 插阴视频在线观看视频| a级毛色黄片| 尾随美女入室| 我的老师免费观看完整版| 国产私拍福利视频在线观看| 两个人视频免费观看高清| 麻豆av噜噜一区二区三区| 熟妇人妻久久中文字幕3abv| 欧美日本亚洲视频在线播放| 69人妻影院| 日本黄色片子视频| 亚洲成av人片在线播放无| 纵有疾风起免费观看全集完整版 | 久久久a久久爽久久v久久| 看十八女毛片水多多多| 91av网一区二区| 亚洲av电影在线观看一区二区三区 | 人妻系列 视频| 十八禁国产超污无遮挡网站| 人人妻人人澡人人爽人人夜夜 | 99久久精品一区二区三区| 国内少妇人妻偷人精品xxx网站| 亚洲国产欧洲综合997久久,| 国产老妇伦熟女老妇高清| av专区在线播放| 三级国产精品欧美在线观看| 在线免费观看的www视频| 成人无遮挡网站| 99热这里只有精品一区| 日韩在线高清观看一区二区三区| 亚洲中文字幕一区二区三区有码在线看| 日韩中字成人| 少妇裸体淫交视频免费看高清| 久久精品夜色国产| 亚洲三级黄色毛片| 寂寞人妻少妇视频99o| 国产精品人妻久久久影院| 99在线视频只有这里精品首页| 久久久精品大字幕| 国语自产精品视频在线第100页| 亚洲美女视频黄频| 亚洲va在线va天堂va国产| 国产色爽女视频免费观看| 中文亚洲av片在线观看爽| 国产精品人妻久久久影院| 日韩 亚洲 欧美在线| 日韩欧美在线乱码| 亚洲欧美精品专区久久| 欧美一区二区亚洲| 国产v大片淫在线免费观看| 熟女电影av网| 亚洲欧洲日产国产| 久久人人爽人人片av| 18+在线观看网站| 国产精品福利在线免费观看| 亚洲精品乱码久久久v下载方式| 日本免费在线观看一区| 国产私拍福利视频在线观看| 国产精品久久久久久精品电影小说 | 好男人在线观看高清免费视频| 五月伊人婷婷丁香| 91久久精品国产一区二区三区| 干丝袜人妻中文字幕| 亚洲综合精品二区| 国产一级毛片在线| 特级一级黄色大片| 2022亚洲国产成人精品| 有码 亚洲区| 欧美zozozo另类| 亚洲精品国产av成人精品| 亚洲国产精品成人久久小说| 18禁动态无遮挡网站| 国产又色又爽无遮挡免| 亚洲中文字幕日韩| 精品久久久久久久久亚洲| 一级毛片久久久久久久久女| 日本欧美国产在线视频| 波野结衣二区三区在线| 深爱激情五月婷婷| 精品99又大又爽又粗少妇毛片| 日韩一本色道免费dvd| 97热精品久久久久久| 国产成人午夜福利电影在线观看| 国产成人福利小说| 中文字幕制服av| 日本黄色视频三级网站网址| 国产精品三级大全| 一级av片app| 在线观看66精品国产| 我的女老师完整版在线观看| 热99re8久久精品国产| 国产成人freesex在线| 国内揄拍国产精品人妻在线| 精品欧美国产一区二区三| 中文字幕av在线有码专区| www日本黄色视频网| 欧美成人一区二区免费高清观看| 精品国内亚洲2022精品成人| 2022亚洲国产成人精品| 18禁在线无遮挡免费观看视频| 久久人妻av系列| 国内精品美女久久久久久| 亚洲国产欧洲综合997久久,| 亚洲五月天丁香| 99热精品在线国产| eeuss影院久久| 亚洲四区av| 麻豆一二三区av精品| 欧美一区二区精品小视频在线| 成年女人永久免费观看视频| 国产亚洲精品久久久com| 人妻少妇偷人精品九色| 干丝袜人妻中文字幕| 成人美女网站在线观看视频| av福利片在线观看| 亚洲精品久久久久久婷婷小说 | 免费av毛片视频| 欧美丝袜亚洲另类| 欧美日韩综合久久久久久| 搡老妇女老女人老熟妇| 久久精品国产亚洲av涩爱| 狂野欧美激情性xxxx在线观看| 成人综合一区亚洲| 亚洲国产欧洲综合997久久,| 国产大屁股一区二区在线视频| 精华霜和精华液先用哪个| 非洲黑人性xxxx精品又粗又长| 熟女电影av网| 男女视频在线观看网站免费| 亚洲国产精品合色在线| 日日干狠狠操夜夜爽| 蜜桃久久精品国产亚洲av| 国产精品1区2区在线观看.| 26uuu在线亚洲综合色| 亚洲欧洲日产国产| 午夜老司机福利剧场| 日韩一区二区三区影片| 亚洲人成网站在线观看播放| 你懂的网址亚洲精品在线观看 | 久久久色成人| 国产人妻一区二区三区在| 国产v大片淫在线免费观看| 国产伦精品一区二区三区四那| 日本黄色视频三级网站网址| 午夜精品在线福利| av在线蜜桃| 国语对白做爰xxxⅹ性视频网站| 九草在线视频观看| 卡戴珊不雅视频在线播放| 欧美人与善性xxx| 男女国产视频网站| 久久久欧美国产精品| 国产av不卡久久| 国产高清三级在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美一区二区亚洲| av在线亚洲专区| 亚洲最大成人手机在线| 成人二区视频| 久久久久久久久久久免费av| 亚洲av电影在线观看一区二区三区 | 国内揄拍国产精品人妻在线| 亚洲精品一区蜜桃| 精品久久久久久电影网 | 久久久久久久久久黄片| 一级爰片在线观看| 国产成人精品婷婷| 啦啦啦韩国在线观看视频| 中文精品一卡2卡3卡4更新| 国产大屁股一区二区在线视频| 国产伦精品一区二区三区视频9| 女的被弄到高潮叫床怎么办| www日本黄色视频网| 如何舔出高潮| 婷婷色综合大香蕉| 一级毛片我不卡| 国产精品电影一区二区三区| 91aial.com中文字幕在线观看| 欧美色视频一区免费| 日本-黄色视频高清免费观看| 春色校园在线视频观看| 精品熟女少妇av免费看| 男人和女人高潮做爰伦理| 欧美日韩一区二区视频在线观看视频在线 | 波野结衣二区三区在线| 日韩高清综合在线| 亚洲中文字幕一区二区三区有码在线看| 亚洲欧美清纯卡通| 午夜福利在线观看免费完整高清在| 久久国内精品自在自线图片| 国产一级毛片七仙女欲春2| 在现免费观看毛片| 精品人妻偷拍中文字幕| 韩国高清视频一区二区三区| 看非洲黑人一级黄片| 老司机福利观看| 欧美日韩精品成人综合77777| 嘟嘟电影网在线观看| 欧美日韩精品成人综合77777| 亚洲国产成人一精品久久久| 久久婷婷人人爽人人干人人爱| 国产在视频线在精品| 国产精品,欧美在线| 老女人水多毛片| 国产精品人妻久久久影院| 青春草视频在线免费观看| 国产亚洲91精品色在线| 1024手机看黄色片| 天天一区二区日本电影三级| 日日干狠狠操夜夜爽| 大香蕉久久网| 亚洲婷婷狠狠爱综合网| 高清午夜精品一区二区三区| 国产亚洲av嫩草精品影院| av在线蜜桃| 国产中年淑女户外野战色| 人人妻人人澡欧美一区二区| 国产v大片淫在线免费观看| 亚洲伊人久久精品综合 | 少妇丰满av| 午夜精品国产一区二区电影 | 国产高清不卡午夜福利| 亚洲综合精品二区| 亚洲精品自拍成人| 中文字幕制服av| 我的女老师完整版在线观看| 夜夜爽夜夜爽视频| 亚洲欧洲日产国产| 国产伦一二天堂av在线观看| 一二三四中文在线观看免费高清| 国产老妇女一区| 亚洲精品国产av成人精品| 国产精品综合久久久久久久免费| 韩国av在线不卡| 日本色播在线视频| 亚洲国产精品国产精品| 国产男人的电影天堂91| 午夜视频国产福利| 一级二级三级毛片免费看| 久久久久国产网址| 亚洲va在线va天堂va国产| 午夜福利在线观看免费完整高清在| 狂野欧美白嫩少妇大欣赏| 亚洲欧美精品专区久久| 国产精品永久免费网站| 亚洲内射少妇av| 日韩欧美在线乱码| 日本爱情动作片www.在线观看| 精品酒店卫生间| 亚洲va在线va天堂va国产| 1000部很黄的大片| 99热全是精品| 久久久久精品久久久久真实原创| 久久人妻av系列| 国产亚洲午夜精品一区二区久久 | 精品国内亚洲2022精品成人| 噜噜噜噜噜久久久久久91| 亚洲欧美日韩东京热| 午夜福利在线观看吧| 国产精品一区二区性色av| 一级黄片播放器| 精华霜和精华液先用哪个| 又黄又爽又刺激的免费视频.| 久久精品影院6| 久久久久久久久中文| 超碰av人人做人人爽久久| 国产精品国产高清国产av| 久久久久九九精品影院| 22中文网久久字幕| 啦啦啦啦在线视频资源| 国产私拍福利视频在线观看| 一级毛片aaaaaa免费看小| 最近视频中文字幕2019在线8| 伊人久久精品亚洲午夜| 一本久久精品| 精品人妻偷拍中文字幕| 国产v大片淫在线免费观看| 久久久久久久久久黄片| 国产精品不卡视频一区二区| 国产精品久久久久久av不卡| 天天躁夜夜躁狠狠久久av| 午夜福利成人在线免费观看| av又黄又爽大尺度在线免费看 | 爱豆传媒免费全集在线观看| 欧美高清成人免费视频www| 最近中文字幕高清免费大全6| 国产熟女欧美一区二区| 欧美xxxx性猛交bbbb| 久久精品夜夜夜夜夜久久蜜豆| 国产日韩欧美在线精品| 欧美一区二区亚洲| 天堂中文最新版在线下载 | 校园人妻丝袜中文字幕| 小说图片视频综合网站| 亚洲成人久久爱视频| 欧美日韩在线观看h| 久久久久久久久久久丰满| 日本猛色少妇xxxxx猛交久久| 黄色配什么色好看| 中文乱码字字幕精品一区二区三区 | 欧美日韩在线观看h| 99久久成人亚洲精品观看| 国产一区二区亚洲精品在线观看| 国内精品一区二区在线观看| 国内精品宾馆在线| 黄片wwwwww| 国产高清三级在线| 午夜亚洲福利在线播放| 日本免费在线观看一区| 2021少妇久久久久久久久久久| 你懂的网址亚洲精品在线观看 | 亚洲av熟女| 国产在线男女| 又粗又硬又长又爽又黄的视频| 国产成人精品一,二区| 九九久久精品国产亚洲av麻豆| 18禁动态无遮挡网站| 国产精品福利在线免费观看| 秋霞在线观看毛片| 成人毛片a级毛片在线播放| 精品一区二区三区视频在线| 三级国产精品欧美在线观看| 在线免费十八禁| 边亲边吃奶的免费视频| 麻豆成人午夜福利视频| 我的老师免费观看完整版| 男插女下体视频免费在线播放| 亚洲欧美日韩无卡精品| 麻豆乱淫一区二区| av播播在线观看一区| 久久久国产成人精品二区| 日本色播在线视频| 欧美极品一区二区三区四区| 亚洲欧美成人综合另类久久久 | 日本与韩国留学比较| 久久精品国产亚洲av天美| 高清av免费在线| 岛国毛片在线播放| 欧美色视频一区免费| 精品久久久久久久久亚洲| 国产淫语在线视频| 日日摸夜夜添夜夜爱| 国产女主播在线喷水免费视频网站 | 日韩 亚洲 欧美在线| 亚洲精品成人久久久久久| 国产淫语在线视频| 亚洲精品影视一区二区三区av| 日韩一本色道免费dvd| 亚洲精品一区蜜桃| 一级二级三级毛片免费看| 日本黄色视频三级网站网址| 麻豆av噜噜一区二区三区| 日日撸夜夜添| 尾随美女入室| 18禁裸乳无遮挡免费网站照片| 婷婷色麻豆天堂久久 | 国产精品爽爽va在线观看网站| 一个人看的www免费观看视频| 热99re8久久精品国产| 久久精品国产自在天天线| 国产伦精品一区二区三区四那| 亚洲国产最新在线播放| av播播在线观看一区| 99热精品在线国产| 亚洲国产最新在线播放| 村上凉子中文字幕在线| 精品久久久噜噜| 日日摸夜夜添夜夜爱| 91午夜精品亚洲一区二区三区| av黄色大香蕉| 少妇裸体淫交视频免费看高清|