• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Non-Hermitian Kitaev chain with complex periodic and quasiperiodic potentials*

    2021-07-30 07:40:58XiangPingJiang蔣相平YiQiao喬藝andJunpengCao曹俊鵬
    Chinese Physics B 2021年7期

    Xiang-Ping Jiang(蔣相平) Yi Qiao(喬藝) and Junpeng Cao(曹俊鵬)

    1Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China 2

    School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    3Songshan Lake Materials Laboratory,Dongguan 523808,China

    4Peng Huanwu Center for Fundamental Theory,Xian 710127,China

    Keywords: non-Hermitian physics,Majorana zero modes,transfer matrix

    1. Introduction

    Exploring topological phases of matter in condensed matter physics has become an active topic of research over the last decade.[1-3]Among various novel phases, the topological superconducting phases (TSCs) characterized by bound Majorana edge modes have been intensively studied and been predicted in several compounds.[4,5]They are of great interest from the perspective of topological quantum computing because of their non-Abelian braiding statistics and the natural basis for topological qubits. The prototypical model for studying one-dimensional (1D) TSCs related with the effective spinless p-wave superconducting wire system is the Kitaev chain.[6]With the suitable model parameters, the Majorana zero modes(MZMs)arise at the ends of the chain under open boundary condition(OBC)and the system is in the topological nontrivial phase,which can be characterized by a bulk topological invariant. This is the result of bulk-edge correspondence which indicates that a nontrivial topological invariant in the bulk must correspond a localized edge mode that only appears at the boundaries in the thermodynamic limit.

    Beyond the topological aspects,the study of Anderson localization in the 1D systems is also an interesting topic.[7-12]Although the TSCs are protected by the particle-hole symmetry, the topological phases could be destroyed by the strong disorders and change into the topological trivial Anderson localized phases. Besides the random disorder, it is found that the quasiperiodic potentials or the incommensurate structures can also induce the Anderson localization.[13,14]In the 1D Anderson model,the infinitesimal random disorders can localize all the states.While in the 1D incommensurate Aubry-Andr′e-Harper(AAH)model,the Anderson localization requires that the strength of the quasiperiodic potential is finite which is a direct result of the self-duality of the system.

    After that, the competition between the Anderson localization and the topological superconducting phase draws many concerns.[15-20]For example, it is found that the MZMs are robust in the 1D p-wave SC systems with correlated or uncorrelated disorders. The transition from the TSC phase to the Anderson localized phase is obtained and the corresponding critical values are derived analytically. Meanwhile, the transition is also accompanied with the Anderson localizationdelocalization processes.

    Recently, there has been growing interest in the non-Hermitian(NH)topological phases.[21-25]Generally,the non-Hermiticity is achieved by introducing the nonreciprocal hopping processes or the gain and loss terms.The non-Hermiticity can induce many exotic phenomena such as the complexenergy gaps, non-Hermitian skin modes, and breakdown of the bulk-boundary correspondence based on the traditional Bloch band theory. All these pictures do not have the Hermitian counterparts. Moreover, when the non-Hermiticity is involved in the topological phases,the standard 10-fold Altland-Zirnbauer (AZ) symmetry class of the topological insulators and superconductors is generalized to the 38-fold Bernard-LeClair(BL)symmetry class.[22,23]These 38 BL symmetries can completely describe the intrinsic non-Hermitian topological phases. Obviously,it is very important to study the physics of non-Hermiticity meeting the 1D TSCs, and many interesting works such asPT-symmetric TSCs,[26,27]Kitaev chain with gain and loss terms,[28,29]nonreciprocal hopping and pwave pairing[30,31]have been done. All these results show that the MZMs in the topological phases are stable even for the NH systems.

    In this paper, we study the topological properties of the 1D NH Kitaev chain with either the periodic or the quasiperiodic potentials by using the transfer matrix derived from the equations of motion. We obtain the energy spectrum and the spatial distributions of the wavefunctions. Based on them,we obtain the phase transition from the TSCs to the topological trivial phase as well as the Anderson localization phase in this NH system and give the boundaries of different phases analytically. We also discuss the Majorana edge modes induced by the non-Hermiticity.

    The rest of the paper is organized as follows.In Section 2,we introduce the model Hamiltonian and calculate the transfer matrix. The definition of the related topological invariant is also given. In Section 3,we study the energy spectrum of the system with NH periodic potential under the OBC.The MZMs in the topological nontrivial phase are obtained explicitly. In Section 4,we consider the system with NH quasiperiodic potential. The topological phase and Anderson localization are investigated. The corresponding phase boundaries are computed. Section 5 devotes to a summary.

    2. The model Hamiltonian and transfer matrix approach

    Turning to our starting point, we consider a finite 1D wire of spinless electrons exhibiting p-wave superconductivity,which is described by the following Hamiltonian:[15,16]

    whereNis the number of sites,tis the nearest-neighbor hopping and set as 1 in this paper,fnandf?nare the annihilation and creation operators of electrons on the siten,respectively,Δis the superconducting pairing parameter,andμnis the onsite chemical potential. Ifμnis complex, Hamiltonian (1) is NH.The boundary condition is the open one.

    Obviously, in order to identify the MZMs, we only need to consider the case ofw=0,which leads to the fact that the equations in Eq. (2) are decoupled. Then the matrix form of Eq.(2)reads

    HereAnis the transfer matrix. The similar expressions can be obtained for the set of{βn}and the corresponding transfer matrixBnis related withAnasBn=A-1n. The existence of MZMs requires that theαn(orβn)should be normalizable,i.e., ∑n|αn|2(or ∑n|βn|2) should be finite. The behaviors of MZMs at the boundaries of a finite chain are determined by the full transfer matrixA=∏Nn=1An, which has two eigenvaluesλ1andλ2. If the periodicity of the system isp,then the properties of the edge modes are determined byA=ApAp-1···A1.Denote the number of eigenvalues of the matrixAless than 1 in the magnitude asnf. Ifnf=2, there will be an a-mode localized at the left end and a b-mode at the right end of the lattice. Ifnf=0,the two modes will be localized at the opposite ends. Ifnf=1,there do not exist the MZMs because theαn(orβn)can not be normalized.

    The topological invariant related with the system(1)is

    From the above discussions, we know that the system is in the topological phase (T phase) ifν=-1 while is in the nontopological phase (N phase) ifν=1. The topological invariant can also be given asν=-sgn[f(1)f(-1)], wheref(z) = det(A-zI) is the characteristic polynomial of full transfer matrixA. The topology of the system depends on the magnitude ofΔand we takeΔto be positive.From Eq.(3),we know that det|A|<1. Thus the two eigenvalues of the transfer matrixAsatisfy|λ1λ2|<1, which means that if|λ1|<|λ2|,then|λ1|<1 andnfis completely determined by the quantity|λ2|. This enable us to write the topological invariant (4) asν=sgn(ln|λ2|). Based on this topological invariant, we can study the topological properties of the NH Kitaev chain with complex periodic(Section 3)or quasiperiodic(Section 4)potentials.

    3. Non-Hermitian periodic potentials

    In this section, we focus on the Kitaev chain with NH periodic potentials. The non-Hermiticity is introduced by the complex chemical potentialμn. We consider following four typical patterns. (1)μn= iV, that is the chemical potential is pure imaginary. (2)μ2j-1= iVandμ2j=-iV,

    wherej=1,2,...,N/2 andNis even, which means that the chemical potential takes the alternate values and the corresponding period is 2. (3)μ4l-3=μ4l-2=μ4l-1= iVandμ4l=-iV. (4)μ4l-3=μ4l-2= iVandμ4l-1=μ4l=-iV.Herel=1,2,...,N/4 andNis the multiple of 4. Thus the period of the chemical potential in cases(3)and(4)is 4.

    We first consider theμn=iVpattern,where all the sites of the NH Kitaev chain are added with an uniform imaginary potential. Usually, the eigenenergies of the system are complex. The absolute values of eigenenergies|E| of the system withΔ=0.5 versus the strengthVof the NH potential are shown in Fig. 1(a). From it, we see that the MZMs denoted as the red points indeed exist in this NH system and the system is in the topological nontrivial phase when|V|<1. A pair of Majorana edge states emerges and satisfies the relations [H,?a]=[H,?b]=0. Due to the non-Hermiticity,??a/=?aand??b/=?b. These anomalous statistics contrast with the conventional ones for the Majorana fermions in the Hermitian counterpart,which are originated from the distinction between right and left eigenstates of the NH system.

    Fig.1.The absolute values of eigenenergies|E|of the system versus the strength V of NH potential. The red points represent the MZMs. The system is in the topological phase. (a)Uniform potential μn = iV. (b)Period-2 potential (iV,-iV). (c) Period-4 potential (iV,iV,iV,-iV).(d)Period-4 potential(iV,iV,-iV,-iV). Here N=100 and Δ =0.5.

    From the analysis of the eigenvalues of the transfer matrixAn(3) and according to the topological invariant (4), we obtain that the system is in the topological nontrivial phase when the strength of the NH potential satisfies|V|<2Δ, while the system is in the topological trivial phase and the boundary localized MZMs disappear if|V|>2Δ. The phase diagram is shown in Fig.2(a). The critical value of the topological phase transition is|Vc|=2Δ. The MZMs appear if the p-wave pairingΔ/=0.

    Fig. 2. Phase diagrams of the system, where T means the topological nontrivial phase and N means the topological trivial phase. (a)Uniform potential iV. (b) Period-2 potential (iV,-iV). (c) Period-4 potential (iV,iV,iV,-iV). (d) Period-4 potential (iV,iV,-iV,-iV).The topological phase boundaries are (a) Δ =|V|/2, (b) |V|=2, (c)Δ2=V2/2-1,(d)Δ =V2/4.

    For the period-2 NH potential (iV,-iV), the gain and loss in the system are balanced because the chemical potential takes the alternative values. From the transfer matrixA=A2A1, whereA1andA2take the forms of Eq. (3)with the replacing ofμnby iVand-iVfor the first matrix element, respectively, we obtain the topological invariant asν=-sgn(4-V2). The system is in the topological phase and the corresponding topological invariant isν=-1 if|V|<2 for arbitraryΔ/=0. The absolute values of the eigenenergies of the system withΔ=0.5 are shown in Fig.1(b)and the phase diagram is shown in Fig. 2(b). These results are consist with the previous ones obtained by using different methods.[27,29]

    Next, we consider the more complicated pattern(iV,iV,iV,-iV), where the period of the NH potential is 4.The absolute values of the energy spectrum are shown in Fig. 1(c) and the corresponding phase diagram is shown in Fig.2(c). From them,we see that the MZMs exist in the topological phase. The full transfer matrix isA=A4A3A2A1,

    where the value of chemical potential inA1=A2=A3is iVand that inA4is-iV. According to the above discussion in Section 2,the topological invariant isν=-sgn(4(1+Δ2)2-V4). Then the regime of the topological phase is determined from the full transfer matrix in one period and the result isΔ2>V2/2-1. The transition from the topological nontrivial phase to the normal phase happens at the critical valuesΔ2=V2/2-1. Thus,the strong non-Hermiticity will destroy the MZMs.

    For the pattern (iV,iV,-iV,-iV), the absolute values of the energy spectrum are shown in Fig. 1(d) and the corresponding phase diagram is shown in Fig. 2(d). The full transfer matrix isA=A4A3A2A1,where the value of chemical potential inA1=A2is iVand that inA3=A4is-iV. Thus the topological invariant isν=-sgn(16Δ2-V4). The topological regime isΔ2>V2/4 and the boundaries of different phases areΔ2=V2/2-1. The above results are summarized in Table 1.

    Table 1. Criteria for the topological phases for a given NH periodic potential,where Δ >0.

    4. Non-Hermitian quasiperiodic potential

    Now,we consider the Kitaev chain with the NH quasiperiodic potential

    The absolute values of the eigenenergies|E|of the system versus different potential strengthVwith the model parametersΔ=0.5,h=1,andN=100 are shown in Fig.3(a). We see that the MZMs indeed exist and the system is in the topological non-trivial phase in the regime ofV <Vc. Thus the MZMs are robust against the existence of the NH quasiperiodic potential in certain parameter regime. The distributions of right and left MZM wavefunctions in the topological phase withV=0.5 are shown in Fig.3(b). From it,we see that the Majorana edge states are located at the ends of the chain. IfVis larger than the critical valueVc,the MZMs disappear and the system is in the Anderson localization phase. At the critical pointVc, the topological phase transition from the superconducting to the Anderson localization arises. The boundaries of different phases can be analytically calculated from the introduced transfer matrix as well as the topological invariant.

    Fig.3. (a)The absolute values of eigenenergies|E|versus the strengths of quansiperiodic potential V. The MZMs denoted by the red points exist in the topological nontrivial phase regime V <Vc,where Vc is the critical value. If V >Vc, the MZMs vanish and the system enters into the topological trivial phase. (b)The spatial distributions of wavefunctions ? for the MZMs in the topological phase with V =0.5. We see that the Majorana edge states are located at the ends of the chain. Here N=100,Δ =0.5,and h=1.

    The transfer matrixAngiven by Eq.(3)with the constraint 0<Δ <1 can be written as

    Ifγ(V,h,Δ)>0,the system is localized and in the topological trivial phase while ifγ(V,h,Δ)=0,the system is extended and in the topological nontrivial phase.[36,37]Thus the topological properties of the system can be characterized by the Lyapunov exponent(9).

    The Lyapunov exponents of the system withΔ=0.5 versus the different values of NH phase factorhare shown in Fig.4. From it,we see that the Lyapunov exponent is zero and the system is in the topological phase ifV <Vc. Meanwhile,with the increase ofh,the values of the phase transition pointVcare decreased. These results are consist with those obtained from Fig.3.the system. There exists a phase transition from the topological non-trivial state to the topological trivial state. The boundaries of different phases are determined analytically. For the NH incommensurate quasiperiodic potential, the topological phase transition is accompanied by the Anderson localizationdelocalization transition.

    Fig.4. The Lyapunov exponent γ(V,h,Δ)of the system with Δ =0.5.

    Next, we shall determine the boundaries of different phases. From Eq. (10) and according to the above analysis,we obtain the critical values of phase transition as

    The Lyapunov exponent and topological properties of the system withΔ >1 can be obtained by taking the transformationμn →(-1)nμn/ΔandΔ →1/Δ.[15]Thus,we obtain the complete phase diagram of the systems and show it in Fig.5.The topological phase is in the regime ofΔ >Veh/2-1 while the localization phase is in the regime ofΔ <Veh/2-1.

    Fig. 5. The phase diagram of the Kitaev chain with NH quasiperiodic potential. Here h=1 and the phase boundaries are determined by Eq.(11).

    5. Summary

    In summary, we investigate the topological properties of the 1D Kitaev model with NH periodic and quasiperiodic potentials. From the analysis of the energy spectrum and using the transfer matrix method,we find that the MZMs indeed exist in the system within certain model parameter regimes and are robust against the NH potentials. With the help of the distribution of the wavefunctions, we obtain that the Majorana edge states are located at the ends of the chain. We also calculate the topological invariant and obtain the phase diagram of

    天堂av国产一区二区熟女人妻| 中文资源天堂在线| 97超级碰碰碰精品色视频在线观看| 在线免费十八禁| 精品午夜福利在线看| 国内揄拍国产精品人妻在线| 日本与韩国留学比较| 亚洲av中文av极速乱| 久久精品人妻少妇| 亚洲中文字幕日韩| 国产乱人视频| 日产精品乱码卡一卡2卡三| 1000部很黄的大片| 色哟哟哟哟哟哟| 亚洲精品日韩在线中文字幕 | 免费无遮挡裸体视频| 天天一区二区日本电影三级| 中文资源天堂在线| 波多野结衣巨乳人妻| 赤兔流量卡办理| 国产精品一区二区免费欧美| 国产v大片淫在线免费观看| 国产视频内射| 欧美成人精品欧美一级黄| 欧美丝袜亚洲另类| 亚洲成人久久爱视频| 国产日本99.免费观看| a级毛色黄片| 色视频www国产| 特大巨黑吊av在线直播| 女人被狂操c到高潮| 中国美女看黄片| 天堂√8在线中文| 91久久精品国产一区二区三区| 亚洲精品成人久久久久久| 在线天堂最新版资源| 99精品在免费线老司机午夜| 久久久精品大字幕| 久久久久久久亚洲中文字幕| 亚洲丝袜综合中文字幕| 可以在线观看毛片的网站| 联通29元200g的流量卡| 日韩大尺度精品在线看网址| 国产av麻豆久久久久久久| 国产一区二区三区在线臀色熟女| 精品久久久久久久久av| 久久久久久国产a免费观看| 麻豆国产97在线/欧美| 久久久久久大精品| 激情 狠狠 欧美| 观看美女的网站| 免费搜索国产男女视频| 嫩草影院入口| 亚洲精品久久国产高清桃花| 69av精品久久久久久| 99久久无色码亚洲精品果冻| 18禁裸乳无遮挡免费网站照片| 男女视频在线观看网站免费| videossex国产| 99riav亚洲国产免费| av卡一久久| 亚洲精品影视一区二区三区av| 天天躁日日操中文字幕| 亚洲欧美日韩卡通动漫| 91久久精品国产一区二区成人| 欧美激情在线99| 一区二区三区免费毛片| 69av精品久久久久久| 亚洲高清免费不卡视频| 18禁裸乳无遮挡免费网站照片| 日韩亚洲欧美综合| 亚洲欧美日韩高清专用| 99热这里只有是精品在线观看| 老司机福利观看| 午夜福利成人在线免费观看| 亚洲人成网站在线播| 久久久久久久久久久丰满| 午夜久久久久精精品| 精品一区二区三区av网在线观看| 啦啦啦韩国在线观看视频| 亚洲中文日韩欧美视频| 中文资源天堂在线| 熟女电影av网| 三级经典国产精品| 国产伦在线观看视频一区| 内射极品少妇av片p| 精品不卡国产一区二区三区| 精品熟女少妇av免费看| 中文字幕av成人在线电影| 国产不卡一卡二| 国产私拍福利视频在线观看| 精品久久国产蜜桃| 嫩草影院新地址| 一级毛片我不卡| 亚洲成人久久爱视频| 男人狂女人下面高潮的视频| 精品99又大又爽又粗少妇毛片| 亚洲国产精品国产精品| 真实男女啪啪啪动态图| 国产亚洲精品av在线| 日韩在线高清观看一区二区三区| 亚洲精华国产精华液的使用体验 | 日韩成人伦理影院| 久久久久免费精品人妻一区二区| .国产精品久久| 女同久久另类99精品国产91| 亚洲精品亚洲一区二区| 无遮挡黄片免费观看| 国内揄拍国产精品人妻在线| 亚洲av免费在线观看| 一级毛片电影观看 | 午夜福利成人在线免费观看| 久久久a久久爽久久v久久| 免费看光身美女| 国产视频一区二区在线看| 日韩一本色道免费dvd| 男女做爰动态图高潮gif福利片| 国产精品一及| 麻豆国产97在线/欧美| 亚洲七黄色美女视频| 麻豆成人午夜福利视频| 国产v大片淫在线免费观看| 大又大粗又爽又黄少妇毛片口| 欧美日本视频| 亚洲色图av天堂| 身体一侧抽搐| 91av网一区二区| 99在线人妻在线中文字幕| 在线观看美女被高潮喷水网站| 性插视频无遮挡在线免费观看| 男人和女人高潮做爰伦理| 18禁在线播放成人免费| 亚洲性夜色夜夜综合| 亚洲国产欧洲综合997久久,| 欧美性猛交╳xxx乱大交人| 高清毛片免费观看视频网站| 一级黄片播放器| 中文字幕人妻熟人妻熟丝袜美| 成人永久免费在线观看视频| 亚洲一区二区三区色噜噜| 国产真实伦视频高清在线观看| 99热只有精品国产| 超碰av人人做人人爽久久| 麻豆国产av国片精品| 免费黄网站久久成人精品| 小蜜桃在线观看免费完整版高清| 伦理电影大哥的女人| 一区二区三区高清视频在线| 国产亚洲av嫩草精品影院| 白带黄色成豆腐渣| 波多野结衣高清无吗| 九色成人免费人妻av| 美女xxoo啪啪120秒动态图| 人妻少妇偷人精品九色| 精品久久久噜噜| 国产精品1区2区在线观看.| 成人毛片a级毛片在线播放| 国产一区二区在线观看日韩| av在线天堂中文字幕| 国产精品久久视频播放| 国产亚洲欧美98| 国内久久婷婷六月综合欲色啪| av在线亚洲专区| 久久久久久九九精品二区国产| 亚洲成人中文字幕在线播放| 天天躁夜夜躁狠狠久久av| 成年av动漫网址| 99精品在免费线老司机午夜| 一个人看视频在线观看www免费| 在线天堂最新版资源| 村上凉子中文字幕在线| 最新中文字幕久久久久| a级毛片a级免费在线| 91久久精品国产一区二区成人| 久久精品夜色国产| 国产大屁股一区二区在线视频| 国产成人一区二区在线| 日韩人妻高清精品专区| 久久精品国产清高在天天线| 日本免费a在线| 在线免费十八禁| 国产在视频线在精品| 少妇熟女aⅴ在线视频| 又粗又爽又猛毛片免费看| 国产黄a三级三级三级人| 国产精品久久视频播放| 如何舔出高潮| a级一级毛片免费在线观看| 在线观看66精品国产| 18禁黄网站禁片免费观看直播| 一级毛片电影观看 | 久久天躁狠狠躁夜夜2o2o| 在线看三级毛片| 一级毛片aaaaaa免费看小| 99视频精品全部免费 在线| 一级a爱片免费观看的视频| 久久久精品94久久精品| 亚洲电影在线观看av| 亚洲成人精品中文字幕电影| 精品久久国产蜜桃| 国内精品宾馆在线| 精品人妻一区二区三区麻豆 | www日本黄色视频网| 有码 亚洲区| 久久九九热精品免费| 别揉我奶头 嗯啊视频| 少妇人妻精品综合一区二区 | 亚洲成a人片在线一区二区| 国产精品电影一区二区三区| 你懂的网址亚洲精品在线观看 | 天堂av国产一区二区熟女人妻| 婷婷精品国产亚洲av| 精华霜和精华液先用哪个| 男女边吃奶边做爰视频| 日韩欧美精品免费久久| 成年av动漫网址| 黄色配什么色好看| 欧美日韩在线观看h| 深爱激情五月婷婷| 国产成人aa在线观看| 国产色婷婷99| 在线观看免费视频日本深夜| avwww免费| 免费观看人在逋| 欧美色视频一区免费| 99热这里只有是精品50| 高清午夜精品一区二区三区 | 日韩三级伦理在线观看| 欧美+亚洲+日韩+国产| 五月玫瑰六月丁香| 夜夜爽天天搞| 老司机午夜福利在线观看视频| 免费av观看视频| 男人舔奶头视频| a级毛片免费高清观看在线播放| 国产亚洲精品久久久com| 极品教师在线视频| 亚洲国产日韩欧美精品在线观看| 日日啪夜夜撸| 91久久精品国产一区二区三区| 欧美xxxx性猛交bbbb| 少妇的逼水好多| 午夜福利高清视频| 女生性感内裤真人,穿戴方法视频| 日本欧美国产在线视频| 国产成人a区在线观看| 精品熟女少妇av免费看| 日韩三级伦理在线观看| 99久国产av精品国产电影| 老女人水多毛片| 一个人看的www免费观看视频| av国产免费在线观看| 久久午夜福利片| 色尼玛亚洲综合影院| 少妇高潮的动态图| eeuss影院久久| 欧美激情在线99| 亚洲人成网站在线播| 亚洲精品一卡2卡三卡4卡5卡| 看非洲黑人一级黄片| 国产av一区在线观看免费| 国产激情偷乱视频一区二区| 一区二区三区四区激情视频 | 亚洲成人中文字幕在线播放| 亚洲电影在线观看av| 欧美bdsm另类| 搡老妇女老女人老熟妇| 精品人妻熟女av久视频| 成人欧美大片| 99久久久亚洲精品蜜臀av| 亚洲性夜色夜夜综合| 免费看日本二区| 亚洲经典国产精华液单| 91麻豆精品激情在线观看国产| 国产欧美日韩一区二区精品| 99热精品在线国产| 精品一区二区三区人妻视频| a级毛片免费高清观看在线播放| 97超级碰碰碰精品色视频在线观看| 91狼人影院| 精品久久久久久久久亚洲| av视频在线观看入口| 色av中文字幕| 国产精品1区2区在线观看.| 高清日韩中文字幕在线| 亚洲婷婷狠狠爱综合网| 国产在视频线在精品| 国产一级毛片七仙女欲春2| 久久久久久久久久黄片| 毛片女人毛片| 国产探花在线观看一区二区| 亚洲激情五月婷婷啪啪| 日韩欧美免费精品| 校园春色视频在线观看| .国产精品久久| 高清日韩中文字幕在线| 俺也久久电影网| 99热精品在线国产| 日韩精品青青久久久久久| 18禁在线播放成人免费| 精品日产1卡2卡| 大香蕉久久网| 99热网站在线观看| 一本一本综合久久| 啦啦啦韩国在线观看视频| 色在线成人网| 舔av片在线| 亚洲av第一区精品v没综合| 夜夜夜夜夜久久久久| 免费看光身美女| 丰满人妻一区二区三区视频av| 最近在线观看免费完整版| 18+在线观看网站| 看非洲黑人一级黄片| 一边摸一边抽搐一进一小说| 国产在线精品亚洲第一网站| 国产高清视频在线播放一区| 国产成人福利小说| 亚洲一区高清亚洲精品| 又黄又爽又免费观看的视频| 亚洲av.av天堂| 国产片特级美女逼逼视频| 亚洲欧美成人精品一区二区| 亚洲美女黄片视频| 欧美成人一区二区免费高清观看| 精品久久久久久久久久免费视频| 人人妻,人人澡人人爽秒播| 狠狠狠狠99中文字幕| 久久久久久久久久久丰满| 成人毛片a级毛片在线播放| 乱人视频在线观看| 欧美另类亚洲清纯唯美| av.在线天堂| 欧美一区二区国产精品久久精品| 国产亚洲欧美98| 女同久久另类99精品国产91| 九色成人免费人妻av| 欧美丝袜亚洲另类| 亚洲欧美日韩东京热| 国内揄拍国产精品人妻在线| 一边摸一边抽搐一进一小说| 国产在线精品亚洲第一网站| 中文字幕av成人在线电影| 亚洲av第一区精品v没综合| 中文在线观看免费www的网站| 老熟妇仑乱视频hdxx| 国产一区二区三区在线臀色熟女| 干丝袜人妻中文字幕| 在线观看66精品国产| 99热只有精品国产| 日日摸夜夜添夜夜爱| 卡戴珊不雅视频在线播放| 亚洲av.av天堂| 老熟妇仑乱视频hdxx| 国产老妇女一区| 天天一区二区日本电影三级| 天堂网av新在线| 久久人妻av系列| 国产乱人视频| 舔av片在线| 亚洲精品乱码久久久v下载方式| 国产成人精品久久久久久| 国产精品日韩av在线免费观看| 久久精品夜色国产| 国产 一区 欧美 日韩| 国产三级中文精品| 哪里可以看免费的av片| 精品无人区乱码1区二区| 人人妻人人澡人人爽人人夜夜 | 亚洲图色成人| ponron亚洲| 亚洲av第一区精品v没综合| 老女人水多毛片| 日日啪夜夜撸| 嫩草影院入口| 免费一级毛片在线播放高清视频| 国产真实伦视频高清在线观看| 国产精华一区二区三区| 内射极品少妇av片p| 亚洲精品色激情综合| 成人鲁丝片一二三区免费| 欧美区成人在线视频| 一个人免费在线观看电影| 国产高清三级在线| 深夜a级毛片| 久久九九热精品免费| 日韩国内少妇激情av| 欧美精品国产亚洲| 91精品国产九色| 亚洲中文字幕日韩| 一级黄片播放器| 中文在线观看免费www的网站| 嫩草影院入口| 看片在线看免费视频| 村上凉子中文字幕在线| 99riav亚洲国产免费| 在现免费观看毛片| 少妇人妻精品综合一区二区 | 中文字幕精品亚洲无线码一区| 亚洲最大成人中文| 有码 亚洲区| 老司机福利观看| 日韩人妻高清精品专区| 欧美在线一区亚洲| 久久久久免费精品人妻一区二区| 丰满的人妻完整版| 久久99热6这里只有精品| av.在线天堂| 日日干狠狠操夜夜爽| 国产激情偷乱视频一区二区| 国产伦精品一区二区三区视频9| 国产视频内射| 免费在线观看影片大全网站| 少妇猛男粗大的猛烈进出视频 | 成人午夜高清在线视频| 亚洲欧美日韩高清在线视频| 成人三级黄色视频| 一本一本综合久久| 国产午夜精品论理片| 精品午夜福利在线看| 蜜桃久久精品国产亚洲av| 日日啪夜夜撸| 久久久久九九精品影院| 不卡视频在线观看欧美| 国产男人的电影天堂91| 欧美中文日本在线观看视频| 在线天堂最新版资源| 欧美性猛交╳xxx乱大交人| 真实男女啪啪啪动态图| 亚洲国产精品sss在线观看| 亚洲欧美日韩高清专用| 欧美不卡视频在线免费观看| 深爱激情五月婷婷| 欧美最黄视频在线播放免费| 久久精品久久久久久噜噜老黄 | eeuss影院久久| 少妇人妻精品综合一区二区 | 欧美高清成人免费视频www| 久久中文看片网| 91精品国产九色| 免费在线观看影片大全网站| av视频在线观看入口| 少妇的逼水好多| 日韩欧美三级三区| 午夜福利成人在线免费观看| 久久久午夜欧美精品| 午夜福利视频1000在线观看| 午夜日韩欧美国产| 国产精品一区二区三区四区久久| 女的被弄到高潮叫床怎么办| 男人舔奶头视频| 亚洲最大成人手机在线| 国产精品国产高清国产av| 九九热线精品视视频播放| 日韩欧美国产在线观看| 91av网一区二区| 日本撒尿小便嘘嘘汇集6| 22中文网久久字幕| 亚洲欧美清纯卡通| 伊人久久精品亚洲午夜| 九色成人免费人妻av| 国产综合懂色| 国产 一区精品| 一级黄片播放器| 国产午夜福利久久久久久| 成人无遮挡网站| 日韩,欧美,国产一区二区三区 | 亚洲av二区三区四区| 舔av片在线| 欧美一级a爱片免费观看看| 九九久久精品国产亚洲av麻豆| 成人鲁丝片一二三区免费| 国产精品久久久久久亚洲av鲁大| 久久人妻av系列| 搡老岳熟女国产| 久久久久久久久久黄片| 国产69精品久久久久777片| 免费av不卡在线播放| 日韩成人av中文字幕在线观看 | 国产午夜精品论理片| 欧美绝顶高潮抽搐喷水| 97在线视频观看| 日韩大尺度精品在线看网址| 成人国产麻豆网| 中出人妻视频一区二区| 国产午夜精品久久久久久一区二区三区 | 尾随美女入室| 国产欧美日韩精品亚洲av| 老师上课跳d突然被开到最大视频| 久久精品夜夜夜夜夜久久蜜豆| 在线看三级毛片| 一进一出抽搐gif免费好疼| 最近手机中文字幕大全| av天堂中文字幕网| 天美传媒精品一区二区| 欧洲精品卡2卡3卡4卡5卡区| 午夜福利高清视频| 久久九九热精品免费| 国产亚洲精品久久久久久毛片| 校园人妻丝袜中文字幕| 国产精品人妻久久久久久| 九色成人免费人妻av| 精品久久久久久久久久免费视频| 国产精品一及| 日本在线视频免费播放| 日本色播在线视频| a级毛色黄片| 亚洲av中文av极速乱| 国产欧美日韩一区二区精品| 亚洲国产高清在线一区二区三| 午夜福利在线观看吧| 老熟妇乱子伦视频在线观看| av在线播放精品| 久久鲁丝午夜福利片| 午夜亚洲福利在线播放| 国产精品不卡视频一区二区| 国产一区二区亚洲精品在线观看| 大又大粗又爽又黄少妇毛片口| 我的女老师完整版在线观看| 亚洲精品乱码久久久v下载方式| 少妇人妻一区二区三区视频| 人妻少妇偷人精品九色| 国产精品久久久久久久电影| av在线天堂中文字幕| 午夜视频国产福利| 国产亚洲91精品色在线| 国产综合懂色| 色综合亚洲欧美另类图片| 99热这里只有精品一区| 日本色播在线视频| 成年女人毛片免费观看观看9| 村上凉子中文字幕在线| 久久久久性生活片| 婷婷精品国产亚洲av在线| 99热全是精品| 亚洲精品日韩在线中文字幕 | 秋霞在线观看毛片| 大型黄色视频在线免费观看| 成人性生交大片免费视频hd| 12—13女人毛片做爰片一| 亚洲四区av| 三级国产精品欧美在线观看| 欧美色视频一区免费| 国产精品综合久久久久久久免费| 国产片特级美女逼逼视频| 1000部很黄的大片| 国产成人aa在线观看| 日韩精品青青久久久久久| 麻豆乱淫一区二区| 免费看a级黄色片| 国产69精品久久久久777片| 深夜a级毛片| 中文字幕免费在线视频6| 国内揄拍国产精品人妻在线| 99热这里只有精品一区| 菩萨蛮人人尽说江南好唐韦庄 | 99国产极品粉嫩在线观看| 韩国av在线不卡| 久久国产乱子免费精品| 老司机午夜福利在线观看视频| 欧美bdsm另类| 亚洲美女搞黄在线观看 | 免费黄网站久久成人精品| 国产精品av视频在线免费观看| 亚洲图色成人| 在线免费观看的www视频| 午夜精品一区二区三区免费看| 国产高清视频在线观看网站| 人妻丰满熟妇av一区二区三区| 哪里可以看免费的av片| 免费一级毛片在线播放高清视频| 狂野欧美激情性xxxx在线观看| 国产精品99久久久久久久久| 亚洲av熟女| 国产老妇女一区| 1024手机看黄色片| 午夜福利在线在线| 精品午夜福利视频在线观看一区| 99久久精品热视频| 亚洲在线自拍视频| 97在线视频观看| 国产探花极品一区二区| 天美传媒精品一区二区| 久久久久国产网址| 久久天躁狠狠躁夜夜2o2o| 亚洲第一区二区三区不卡| 在线免费十八禁| 99国产极品粉嫩在线观看| 国产v大片淫在线免费观看| 亚洲成人中文字幕在线播放| 国产精品永久免费网站| 亚洲av美国av| 麻豆一二三区av精品| 国产一区二区三区在线臀色熟女| 内射极品少妇av片p| 国产成人a∨麻豆精品| 欧美日韩综合久久久久久| 99久国产av精品国产电影| 天天躁夜夜躁狠狠久久av| 国产精品一二三区在线看| 男女下面进入的视频免费午夜| 在线播放国产精品三级| 日韩欧美三级三区| 天堂av国产一区二区熟女人妻| av在线天堂中文字幕| 久久久久国产网址| 最后的刺客免费高清国语| 悠悠久久av| 非洲黑人性xxxx精品又粗又长| 精品人妻视频免费看| 校园春色视频在线观看| 免费电影在线观看免费观看| 国产av麻豆久久久久久久| 成人特级av手机在线观看| 国产伦在线观看视频一区|