• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Strain-tunable electronic and optical properties of h-BN/BC3 heterostructure with enhanced electron mobility*

    2021-07-30 07:40:46ZhaoYongJiao焦照勇YiRanWang王怡然YongLiangGuo郭永亮andShuHongMa馬淑紅
    Chinese Physics B 2021年7期

    Zhao-Yong Jiao(焦照勇) Yi-Ran Wang(王怡然) Yong-Liang Guo(郭永亮) and Shu-Hong Ma(馬淑紅)

    1School of Physics,Henan Normal University,Xinxiang 453007,China

    2School of Science,Henan Institute of Technology,Xinxiang 453003,China

    Keywords: heterostructure,electronic and optical properties,first-principles calculation

    1. Introduction

    Since the advent of graphene, atomically thin twodimensional(2D)layered materials,such as insulating hexagonal boron nitride (h-BN), semiconducting molybdenum disulfide (MoS2), and conducting MXenes, have triggered world interest due to their superior properties[1,2]and the possibility of combining diverse atomic layers to create mechanically stacked heterostructures for manufacturing highperformance devices.[3-9]

    Owing to the atomically flat and inert surface, h-BN monolayer has proven to be beneficial to a variety of multifunctional devices consisting of graphene,[10-13]MoS2,[14-17]and others.[18-20]For example, the use of h-BN thin film as a substrate for monolayer MoS2can reduce the Coulombic charge scattering, lower the Schottky barrier height, and enhance the carrier mobility, showing excellent performance for optoelectronic device.[5,14,17,21]This has also been evidenced on another Gr/h-BN/MoSe2heterostructure by vertically stacking graphene (Gr) on the top of 2D h-BN and MoSe2.[3,22]

    Likewise, the semiconducting BC3monolayer, mimicking graphene in geometrical structure, has shown distinctive features such as a high elastic moduli (~256 N/m), an excellent thermal conductivity (~410 W/mK), a relatively high carrier mobility of hole (5.13×104cm2·V-1·s-1along the armchair direction), a favorable optical response to visible light,[23,24]and a strain-tunable electronic and optical properties,[23-26]improved optical responses via combining with C3N monolayer forming heterostructure,[27]which make it appealing to optoelectronic device design. Besides, the controllable properties via using an electric-field/strain have been predicted in a number of other van der Waals (vdW)heterostructures.[4,27-30]

    It is thus intriguing to make clear what the properties of the heterostructure vertically stacked by BC3and h-BN monolayers are,and how the heterostructure responds to an applied external electric field and strain. In this work, we study the feasibility of forming 2D heterostructure of h-BN/BC3,focusing on its stability,mechanical property,carrier mobility,electronic and optical properties, by performing first-principles calculation. Moreover, the electronic band structure of h-BN/BC3is evaluated under an applied electric field and external strain,and the optical properties are investigated as well.

    2. Computational details

    First-principles calculation was performed within the density functional theory (DFT) framework by using projector-augmented wave (PAW) pseudopotential, as implemented in VASP code,[31]in conjunction with the generalized gradient approximation (GGA) of the Perdew-Burke-Ernzerhof(PBE)functional.[32]A plane wave basis set with a kinetic energy cutoff of 500 eV and the van der Waals(vdW)interaction with the DFT-D2 correction[33]were considered in the calculations. The optimized structures were obtained by relaxing all atomic positions through using the conjugate gradient scheme until the energy and force converged to 10-5eV and 0.01 eV/?A,respectively.

    The optimized lattice parameters of freestanding h-BN and BC3monolayer were 2.51 ?A and 5.17 ?A, respectively,which together with the interatomic bond lengths are shown in Fig. 1(a). Figure 1(a) also shows the comparison between our results and previous results in the literature.[22,25]The unit cell of the h-BN/BC3heterostructure with a small lattice mismatch of about 2.9%, was prepared with different stacking patterns by using a 2×2 supercell of h-BN monolayer and a primitive cell of BC3monolayer(see Figs.1(b)-1(e)),consisting of six boron atoms, six carbon atoms, and four nitrogen atoms,and a vacuum layer of 16 ?A.The Brillouin zone[34]was sampled with 7×7×1 and 11×11×1k-points for structural relaxation and electronic property calculations, respectively,and the charge transfers were obtained by the Bader charge method.[35]

    3. Results and discussion

    3.1. Equilibrium geometrical structure and stability

    Fig.1. (a)Top views of h-BN and BC3 primitive unit cells with their lattice parameters(a1,a2)and(b1,b2),and hexagonal Brillouin zone and three high-symmetry points, Γ, M, and K in reciprocal space with basis vectors g1 and g2. (b)-(e)) Top and side views for optimized configurations of h-BN/BC3 heterostructure. Corresponding bond distances,interlayer distances,and formation energies are also shown.

    Meanwhile, the most favorable configuration S1is also determined by the increased energy(ΔE)relative to the equilibrium configuration of h-BN/BC3as indicated in Fig. 2(a),which are obtained by examining the lateral displacements of the h-BN monolayer along the in-planexandydirections (δxy) in the h-BN/BC3interface, respectively. In the case of configuration S1, the binding energy (Ebind) defined byEbind= (Etotalh-BN-Etotalh-BN+BC3)/S, whereEtotalh-BN+BC3denotes the sum of the total energy of freestanding h-BN and BC3monolayer fixed in their corresponding heterostructure lattice,Sis the sectional area of h-BN/BC3, theEbindis estimated to be-22.04 meV/?A2,quite close to the C3N/graphene(-20.72 meV/?A2).[36]Besides,the excellent structural stability of configuration S1is shown in Fig. 2(b) by varying its binding energy with vertical interlayer spacing (d) between the h-BN sheet and BC3sheet. In the equilibrium geometry,the vertical interlayer distanced=3.15 ?A implies the absence of chemical bonds between the h-BN and BC3sheets, thus confirming the vdW interaction at the h-BN/BC3interface.

    Fig.2. (a)Evolution of total energy difference with displacement δxy of the BC3 layer relative to h-BN, with origin taken at the lowest energy confgiuration. (b) Binding energy per unit cell versus interlayer spacing d of h-BN/BC3 heterostructure. [(c),(d)]Molecular dynamics simulations for fnial structural confgiuration after 3000 fs and total energy fluctuations with time for h-BN/BC3 at T =300 K,respectively.

    Additionally,the good thermal stability of h-BN/BC3heterostructure at 300 K is verified by the slight energy fluctuation in a period of 3 ps in time steps of 1 fs and the well-retained final structure shown in Figs. 2(c) and 2(d), obtained by performing theab initiomolecular dynamics (AIMD) simulations with the constant particle number-volume-temperature(NVT)canonical ensemble.[37]All the features manifest a stable equilibrium geometry of configuration S1 for the vdW h-BN/BC3heterostructure.

    3.2. Mechanical properties

    According to the calculations in Table 1,the four independent elastic constants:C11,C22,C12, andC44(1.18 N/m)and the others fit well with Born’s mechanical stability criteria:[41]C44>0,C11>|C12|, and (C11+2C22)C33>2C213, displaying a good mechanical stability of the h-BN/BC3heterostructure. Moreover,the nearly identical elastic constants(C11(22)),the Young’s moduli, and the Poisson’s ratios along different directions show an isotropic behavior of the h-BN/BC3heterostructure, as well as similar compressibility, stretchability to its components due to the quite similar elastic constants. In contrast, the stiffness of the h-BN/BC3nanohybrid is greatly improved by nearly twice larger in elastic constants(C11=583.454 N/m andC22=580.59 N/m)and the Young’s moduli than its two isolated components. In comparison with the C3N/graphene heterostructure,[36]the h-BN/BC3is predicted to have a slightly less stiffness and a quite close Poisson’s ratio.

    Table 1. Calculated elastic constants Cxx(yy/xy) (N/m)(x=1,y=2),Young’s modulus Y2D x(y) (N/m),and Poisson’s ratio ν2Dx(y) for h-BN/BC3 nanohybrid in comparison with those of monolayer h-BN,BC3 and graphene.

    3.3. Electronic properties

    To gain more knowledge of the h-BN/BC3heterostructure,we calculate the electronic properties such as the electrostatic potential, electron charge redistribution and electronic band alignment. As shown in Fig. 3(a), the electrostaticpotential-well depths of its two isolated components are almost identical, giving rise to a rather weak electron charge redistribution occurring in the vdW gap.This is in good accordance with the plot of the three-dimensional(3D)charge density difference (CDD) and plot of thexy-plane average CDDversus zshown in Fig.3(b). A small number of 0.02 electrons are predicted to flow from h-BN side to BC3sheet. It is notable that all the band structures are calculated at GGA-PBE level and the obtained band-gaps are 4.65 eV and 0.67 eV for the freestanding h-BN and BC3sheet,respectively,which are in good agreement with other calculations.[27]In Fig.3(c),the projected band structures on h-BN(black dots)and BC3(red dots) monolayer display that the electronic states of h-BN in the h-BN/BC3composite are far from the Fermi level and that the electronic states of BC3monolayer are preserved as well as those of single-layer BC3. In other words,neither the conduction band minimum (CBM) nor the valence band maximum(VBM) of h-BN/BC3is disturbed by h-BN. The band-gap of h-BN/BC3gets narrower slightly down to 0.56 eV at PBE level(1.70 eV at HSE06 level) relative to that of monolayer BC3(0.67 eV at PBE level). Like h-BN/InSe,[42]the h-BN/BC3heterojunction exhibits type-I band alignment (see Fig. 3(d))due to the large band-gap discrepancy between the h-BN and BC3, which is useful for light-emitting diodes (LEDs) and optoelectronic devices requiring a quantum well structure.Meanwhile,the work function(Φ)defined byΦ=Evac-EF,withEvacandEFdenoting the vacuum level and Fermi level,respectively, is obtained to be 5.21 eV for h-BN/BC3, which is between those of monolayer h-BN (6.19 eV) and monolayer BC3(4.85 eV). All these characteristics show a weaker vdW interaction on forming the h-BN/BC3heterostructure and its electronic structure is mainly predominated by monolayer BC3.

    Further considering a heterostructure as an electronic device, we evaluate the electronic band structure of h-BN/BC3heterostructure under external electric field (E-field). As shown in Fig. 4, the appliedE-field has a slight effect on the electronic band structure, which retains an indirect semiconducting band. For instance,the tiny upshift(less than 0.1 eV)of the conductive band minimum, combining with a nearly constant valence band maximum, gives rise to the band-gap ranging from 0.51 eV to 0.61 eV under anE-field. What is notable is that the valence band edge atKpoint moves downward with the positiveE-field increasing,while under the action of a negativeE-field it shifts to higher energy and this upshift becomes more prominent withE-field turns more negative,finally the VBM moves away fromΓto K point under anE-field strength of-0.5 V/?A,quite approaching to the Fermi level (EF). Meanwhile, the further increasing of negativeEfield strength can narrow the band-gap to 0.28 eV under anEfield strength of-0.7 V/?A,by downshifting the CBM.Overall,the electronic band structure of h-BN/BC3heterostructure exhibits a slight variation under the appliedE-field with its strength less than 0.5 V/?A.

    Fig. 3. (a) Average electrostatic potential of h-BN/BC3 heterostructure versus z. (b) Planar average charge density difference (CDD) versus z of heterostructure,with insert showing 3D isosurface of CDD and the cyan/yellow region representing electron depletion/accumulation with an isosurface value of 0.0004 e/?A3. (c)Band structures(at PBE level)of monolayer h-BN,monolayer BC3, and h-BN/BC3 heterostructures, with Fermi level(EF)set to be zero. Contributions of BC3 and h-BN to the projected band structure are represented in red and black, respectively. (d) Band alignments of monolayer h-BN,monolayer BC3,and h-BN/BC3 heterostructures with respect to the vacuum level.

    Fig.4. Variation of(a)band-gap,(b)band-edge,and(c)electronic band structures of h-BN/BC3 heterostructure with external electric fields(E-field).(d)EF being set to be zero and applied E-field being defined,with the arrow indicating the forward direction.

    3.4. In-plane strain effect on heterostructure

    3.4.1. Carrier mobility under uniaxial strains

    Fig. 5. (a) Orthogonal supercell of h-BN/BC3 heterostructure, (b) band structure of h-BN/BC3 heterostructure, (c) band energies of the VBMs and CBMs versus uniaxial strain along armchair and zigzag direction for h-BN/BC3,and(d)total energy with respect to uniaxial strain relationship along x direction and y direction of h-BN/BC3.

    As displayed in Fig. 5(a), the orthogonal supercell of h-BN/BC3is used to calculate the carrier mobilities along thexdirection andydirection, and the related results are given in Table 2. Firstly, the effective mass in h-BN/BC3is predicted to be 0.18mefor electrons and 0.90mefor holes along thexdirection,1.68mefor electrons and 0.72mefor holes along theydirection in our studies. As for other two elements related to the carrier mobility, the DP constantE1is a parameter of the coupling strength of electron or hole to the acoustic phonon,which can be calculated by linearly fitting the data of compressing and stretching the lattice constants along thexdirection andydirection in Fig.5(d).Meanwhile,the mobile carries of monolayer BC3are listed in Table 2,which have a slight difference with previous calculations,[26]the possibility may be the PBE functional considered in our calculation while HSE06 functional employed in the work of Zhanget al. It can be seen that the calculated values ofE1along thex/ydirection for hole/electron in Table 2 for h-BN/BC3are different from those for the monolayer BC3.In particular,for the h-BN/BC3the absolute value ofE1along thexdirection for electron is nearly doubled and inversely, that of hole along the same direction is considerably lowered to 0.80. And the elastic modulusCis estimated at 583.45 N/m and 580.59 N/m along thexdirection andydirection for h-BN/BC3, nearly twice as much as that of monolayer BC3.[26]Comparing with BC3monolayer,the enhanced mobile carries in h-BN/BC3correspond to the narrower band-gap.

    Table 2. Calculated deformation potential constant E1,in-plane stiffness C,effective mass m*,and electron and hole mobility μ in x direction and y direction of h-BN/BC3 heterostructure at 300 K.

    Based on the above calculations, the carrier mobilities of h-BN/BC3at room temperature (300 K) are given in Table 2, which shows an anisotropic behavior and is nearly ten times larger than that of monolayer BC3, except for the lowered hole mobility along thexdirection. The obtained mobility for electrons is 4.86×103cm2·V-1·s-1and 1.07×103cm2·V-1·s-1along thexdirection andydirection, respectively, while that for holes along thexdirection goes up to 16.09×103cm2·V-1·s-1, twice as large as that along theydirection. The enhanced carrier mobility is quite vital for high-performance optoelectronic devices.

    3.4.2. Electronic and optical properties under biaxial strains

    A number of previous theoretical and experiment research studies show that the use of external strain is an effective method to modulate the electronic and optical properties of the 2D materials.[25,46]Hence, we also examine the effect of in-plane biaxial strain (ε‖) ranging from-6% to 6% as proposed previously[25]on the electronic and optical properties of h-BN/BC3,with the definitionε‖=(l-l0)/l0,withlandl0corresponding to the lattice constant with and without strain.At zero strain,a band-gap of 1.70 eV obtained at HSE06 level enable the h-BN/BC3heterostructure to be a promising photocatalyst with a visible-light absorption. Like the bilayer BC3,[25]an external strain is used to modify the electronic band structure of h-BN/BC3,i.e., band-gap expands with the tensile strain increasing due to an upshift of CBM at a high symmetryMpoint together with the almost unchanged VBM atΓpoint, and an inverse case under the compressive strains as shown in Fig. 6(a). A nearly linear increase of the bandgap with strain varying from-6% to 6% is observed from Fig. 6(b), except for a slight deviation under a compressive strain of 4%. Thus, it is feasible to moderately modulate the band gap of h-BN/BC3via applying an external strain. To evaluate the thermal stability,ab initiomolecular dynamics(AIMD) simulations are conducted for h-BN/BC3under 6%and-6%strains at 300 K.Figure 7 shows that the energy oscillates within a small range for h-BN/BC3during the period of AIMD simulation,and the final relaxed configuration has a slight deformation compared with the initial structure. Hence,it is confirmed that the h-BN/BC3possesses good stability under strain.

    The optical absorption properties are further evaluated by the complex dielectric functionε(ω)=ε1(ω)+iε2(ω). The imaginary partε2(ω)is obtained from the electronic structures by using the joint density of states and the optical matrix overlap,and the real partε1(ω)follows the Kramers-Kroning relationship. The obtained dielectric constants (see Fig. 6(c))show an optical gap of 2.05 eV for h-BN/BC3, confirming the visible-light absorption. Meanwhile, one can observe an enhanced intensity of peak and a prominent red shift in the imaginary part of dielectric function spectrum for h-BN/BC3under zero strain as compared with those for BC3monolayer.Especially, there are two absorption regions for h-BN/BC3,i.e., the high absorption region from 1.5 eV to 5.0 eV, and the low absorption region between 5.0 eV and 10.0 eV. The large area under theε2curve in the visible-light region from 1.5 eV to 5.0 eV with the highest peak of absorption spectrum at 2.73 eV, implies a high efficiency visible-light absorption and high absorption coefficient at these frequencies for h-BN/BC3. Additionally, under an applied tensile strain this heterostructure shows an optical response quite similar to pristine h-BN/BC3. In contrast, the applying of compressive strain(i.e.,-6%)can redshift the optical spectrum,with bandgap reducing 0.68 eV, and the peak intensity lowering about 3.80 eV.

    Fig. 6. Calculated results for h-BN/BC3 heterostructure under applied in-plane biaxial strain (ε‖). (a) Electronic band structure (at PBE level), (b)band-gap(at PBE/HSE06 level),and(c)imaginary part of dielectric function.

    Fig.7. Variations of energy with AIMD simulation time for h-BN/BC3 heterostructure under 6%and-6%strains with simulation lasting 5 ps at 300 K.And resulting structure is in the middle of the image.

    4. Conclusions

    By using first-principles calculation, we have studied the structural, mechanical and electronic properties of the h-BN/BC3heterostructure. The results indicate that the electronic properties of BC3monolayer are well preserved and the electron mobilities are enhanced by around ten times in the ultrahigh stiff van der Waals heterostructure. Moreover,the applying of an external electric field only induces its electronic band structure to be modified slightly, while an applied external strain can manipulate the electronic and optical properties of h-BN/BC3,especially under compressive strain. These findings manifest that the h-BN/BC3heterostructure can be used in BC3-based optoelectronic devices.

    在线a可以看的网站| 九色成人免费人妻av| 欧美成人a在线观看| 久久精品夜色国产| 国产一区有黄有色的免费视频 | 人人妻人人澡欧美一区二区| 久久久久久久久久黄片| 欧美zozozo另类| 欧美3d第一页| a级一级毛片免费在线观看| 最近中文字幕2019免费版| 国产精品福利在线免费观看| 成人特级av手机在线观看| 2021少妇久久久久久久久久久| 亚洲美女搞黄在线观看| 日韩国内少妇激情av| 男人舔奶头视频| 亚洲精品乱久久久久久| av国产久精品久网站免费入址| 如何舔出高潮| 十八禁网站网址无遮挡 | 男女边吃奶边做爰视频| 午夜福利视频1000在线观看| 中文字幕免费在线视频6| 欧美高清成人免费视频www| 纵有疾风起免费观看全集完整版 | 久热久热在线精品观看| 99re6热这里在线精品视频| 午夜福利在线在线| 国国产精品蜜臀av免费| 国产人妻一区二区三区在| 亚洲天堂国产精品一区在线| 99久久九九国产精品国产免费| 亚洲精品,欧美精品| 精品一区在线观看国产| 51国产日韩欧美| 亚洲丝袜综合中文字幕| 91久久精品电影网| 午夜激情久久久久久久| 国产精品嫩草影院av在线观看| 乱码一卡2卡4卡精品| 久久久精品免费免费高清| 国产毛片a区久久久久| 亚洲第一区二区三区不卡| 汤姆久久久久久久影院中文字幕 | 精品亚洲乱码少妇综合久久| 三级男女做爰猛烈吃奶摸视频| 国内揄拍国产精品人妻在线| 毛片一级片免费看久久久久| 午夜福利成人在线免费观看| 内射极品少妇av片p| 中文欧美无线码| 我要看日韩黄色一级片| 麻豆精品久久久久久蜜桃| 国产精品人妻久久久久久| 精品人妻偷拍中文字幕| 综合色av麻豆| 国产乱来视频区| 国产精品人妻久久久久久| 亚洲精品久久久久久婷婷小说| a级毛片免费高清观看在线播放| av女优亚洲男人天堂| 国产淫语在线视频| 天天躁夜夜躁狠狠久久av| 国产一区二区亚洲精品在线观看| 水蜜桃什么品种好| 国产伦精品一区二区三区四那| 中文天堂在线官网| 国产一区二区亚洲精品在线观看| 久久精品国产亚洲网站| 久久亚洲国产成人精品v| 日日啪夜夜撸| 深爱激情五月婷婷| 国产一级毛片在线| 国产精品一区二区三区四区免费观看| 久久精品夜夜夜夜夜久久蜜豆| 在线观看免费高清a一片| 亚洲久久久久久中文字幕| 看十八女毛片水多多多| 国产伦精品一区二区三区视频9| 色播亚洲综合网| 丝瓜视频免费看黄片| 三级经典国产精品| 国产精品国产三级国产av玫瑰| 婷婷色综合www| 亚洲人成网站高清观看| 亚洲欧美精品自产自拍| 国产国拍精品亚洲av在线观看| 亚洲精品日本国产第一区| 亚洲丝袜综合中文字幕| 只有这里有精品99| 最近视频中文字幕2019在线8| 日韩一区二区三区影片| 欧美激情国产日韩精品一区| 看非洲黑人一级黄片| 丝袜美腿在线中文| 国产 一区 欧美 日韩| 全区人妻精品视频| 亚洲内射少妇av| 亚洲人与动物交配视频| 国产精品99久久久久久久久| 国内揄拍国产精品人妻在线| 99久久精品国产国产毛片| 中文字幕久久专区| 久久久亚洲精品成人影院| 国产高清国产精品国产三级 | 久久久久精品性色| kizo精华| 日本午夜av视频| 69av精品久久久久久| 亚洲图色成人| 夜夜看夜夜爽夜夜摸| 亚洲国产欧美在线一区| 人妻系列 视频| 国产精品99久久久久久久久| 亚洲国产av新网站| 好男人在线观看高清免费视频| 99久久精品一区二区三区| 2021天堂中文幕一二区在线观| 啦啦啦中文免费视频观看日本| 99久久人妻综合| 美女脱内裤让男人舔精品视频| 亚洲自偷自拍三级| 久久人人爽人人片av| 久久精品国产亚洲av涩爱| 国产不卡一卡二| 亚洲婷婷狠狠爱综合网| 欧美97在线视频| 国内少妇人妻偷人精品xxx网站| av在线天堂中文字幕| 欧美 日韩 精品 国产| 日本熟妇午夜| 一区二区三区高清视频在线| 看免费成人av毛片| 又爽又黄无遮挡网站| 男女那种视频在线观看| 国产伦一二天堂av在线观看| 亚洲av二区三区四区| 黄色一级大片看看| 国产探花极品一区二区| 熟妇人妻久久中文字幕3abv| 亚洲性久久影院| 日日摸夜夜添夜夜添av毛片| 久久精品熟女亚洲av麻豆精品 | 国产精品麻豆人妻色哟哟久久 | 中文资源天堂在线| 午夜久久久久精精品| 尤物成人国产欧美一区二区三区| 乱系列少妇在线播放| 一二三四中文在线观看免费高清| 热99在线观看视频| 亚洲精品日韩av片在线观看| 中文欧美无线码| 亚洲国产精品sss在线观看| 街头女战士在线观看网站| 国产亚洲5aaaaa淫片| 亚洲精品久久久久久婷婷小说| 亚洲精品久久久久久婷婷小说| 国产亚洲5aaaaa淫片| 亚洲自拍偷在线| 国产一区二区三区av在线| 深夜a级毛片| 看非洲黑人一级黄片| 最新中文字幕久久久久| 美女主播在线视频| 久久久午夜欧美精品| 国产极品天堂在线| 国产午夜精品久久久久久一区二区三区| 国产亚洲5aaaaa淫片| 国产一区二区三区av在线| 欧美日韩在线观看h| 91av网一区二区| 日韩伦理黄色片| www.色视频.com| 国产精品一及| 国产一区亚洲一区在线观看| 久久人人爽人人爽人人片va| 搡老妇女老女人老熟妇| 国产精品嫩草影院av在线观看| 内地一区二区视频在线| 99久久精品一区二区三区| 午夜福利在线观看免费完整高清在| 日日撸夜夜添| 男插女下体视频免费在线播放| 久久久久久久久久久丰满| h日本视频在线播放| 久久久久精品久久久久真实原创| 丝袜美腿在线中文| 久久久久久久国产电影| 亚洲av中文字字幕乱码综合| 久久精品人妻少妇| 97在线视频观看| 水蜜桃什么品种好| 国产午夜精品一二区理论片| 日韩精品青青久久久久久| 色哟哟·www| 精品一区二区三区视频在线| 国产伦精品一区二区三区四那| 91午夜精品亚洲一区二区三区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 深夜a级毛片| 激情 狠狠 欧美| 亚洲国产色片| 伊人久久国产一区二区| 国产精品一区二区三区四区免费观看| 亚洲国产精品sss在线观看| 欧美日韩视频高清一区二区三区二| 最近手机中文字幕大全| 精品99又大又爽又粗少妇毛片| 三级国产精品片| 啦啦啦啦在线视频资源| 99re6热这里在线精品视频| 日韩一本色道免费dvd| 视频中文字幕在线观看| 欧美成人午夜免费资源| 欧美xxⅹ黑人| 丰满人妻一区二区三区视频av| 国产黄色小视频在线观看| 精品一区二区三区视频在线| 成人美女网站在线观看视频| 男女啪啪激烈高潮av片| 亚洲精品久久午夜乱码| 亚洲国产精品国产精品| 国产老妇女一区| 美女国产视频在线观看| 国产精品女同一区二区软件| 国产精品一区www在线观看| 日韩欧美国产在线观看| 国产av码专区亚洲av| 久久久久久久久久黄片| av女优亚洲男人天堂| 波多野结衣巨乳人妻| 亚洲精品亚洲一区二区| 偷拍熟女少妇极品色| 成人鲁丝片一二三区免费| 不卡视频在线观看欧美| 精华霜和精华液先用哪个| 国产黄色小视频在线观看| 欧美极品一区二区三区四区| 国内精品一区二区在线观看| 国内揄拍国产精品人妻在线| 国模一区二区三区四区视频| 国产精品麻豆人妻色哟哟久久 | 国产视频首页在线观看| 青春草国产在线视频| 麻豆成人av视频| 精华霜和精华液先用哪个| 18禁裸乳无遮挡免费网站照片| 在线播放无遮挡| 我的女老师完整版在线观看| 色视频www国产| 人妻夜夜爽99麻豆av| 少妇猛男粗大的猛烈进出视频 | 日韩人妻高清精品专区| 亚洲va在线va天堂va国产| 伦精品一区二区三区| 久久久国产一区二区| 免费黄网站久久成人精品| 日韩av在线免费看完整版不卡| 美女内射精品一级片tv| 熟妇人妻久久中文字幕3abv| 精品久久久久久久久av| 真实男女啪啪啪动态图| 免费播放大片免费观看视频在线观看| 国产精品一区二区三区四区久久| 国产v大片淫在线免费观看| av网站免费在线观看视频 | 久久精品国产亚洲av涩爱| 床上黄色一级片| 精品亚洲乱码少妇综合久久| 五月伊人婷婷丁香| 国产精品一二三区在线看| 看十八女毛片水多多多| 天美传媒精品一区二区| 80岁老熟妇乱子伦牲交| 国产亚洲91精品色在线| 丝袜喷水一区| 又大又黄又爽视频免费| 超碰97精品在线观看| 精品人妻偷拍中文字幕| 五月天丁香电影| 亚洲成色77777| 国产黄色小视频在线观看| 赤兔流量卡办理| 久久久久久久久久黄片| 精品人妻一区二区三区麻豆| 在线观看一区二区三区| 国产单亲对白刺激| 人人妻人人澡欧美一区二区| 午夜激情福利司机影院| av网站免费在线观看视频 | 免费无遮挡裸体视频| 嫩草影院精品99| 一级毛片aaaaaa免费看小| 免费电影在线观看免费观看| 熟妇人妻不卡中文字幕| 日本色播在线视频| 麻豆乱淫一区二区| 久久久久久九九精品二区国产| 一级毛片我不卡| 少妇熟女aⅴ在线视频| 色综合站精品国产| 精品一区二区三卡| av又黄又爽大尺度在线免费看| 直男gayav资源| 美女大奶头视频| 人妻系列 视频| 22中文网久久字幕| 精品欧美国产一区二区三| 欧美日韩综合久久久久久| 久久99热这里只频精品6学生| 日韩在线高清观看一区二区三区| 丰满乱子伦码专区| 日韩欧美一区视频在线观看 | 亚洲欧美成人精品一区二区| 亚洲精品国产成人久久av| 国产免费又黄又爽又色| 国产 亚洲一区二区三区 | 国产精品伦人一区二区| 国产黄频视频在线观看| 久久99热6这里只有精品| 欧美精品一区二区大全| 国产精品熟女久久久久浪| 精品国产露脸久久av麻豆 | 不卡视频在线观看欧美| 一个人免费在线观看电影| 亚洲欧美成人精品一区二区| 激情 狠狠 欧美| 午夜视频国产福利| 国国产精品蜜臀av免费| 亚洲人成网站在线观看播放| 一级a做视频免费观看| 又黄又爽又刺激的免费视频.| 亚洲欧美成人综合另类久久久| 欧美 日韩 精品 国产| 亚洲成人精品中文字幕电影| 久久99热6这里只有精品| 午夜日本视频在线| 三级毛片av免费| 久久热精品热| 熟女人妻精品中文字幕| 中文字幕av成人在线电影| 在线 av 中文字幕| 国产精品一区二区性色av| 国产亚洲av嫩草精品影院| .国产精品久久| 久久韩国三级中文字幕| 国产白丝娇喘喷水9色精品| 日本av手机在线免费观看| 日韩在线高清观看一区二区三区| 亚洲av电影在线观看一区二区三区 | 亚洲精品日本国产第一区| 免费观看在线日韩| 最近手机中文字幕大全| 国产成人精品久久久久久| 国语对白做爰xxxⅹ性视频网站| 久久久久久久久久久免费av| 久久午夜福利片| 夫妻性生交免费视频一级片| 能在线免费看毛片的网站| 大陆偷拍与自拍| 日韩欧美精品免费久久| 插逼视频在线观看| 男插女下体视频免费在线播放| 九九在线视频观看精品| 一级毛片我不卡| 国产有黄有色有爽视频| 日韩欧美精品免费久久| 天堂中文最新版在线下载 | 亚洲一区高清亚洲精品| 欧美日韩在线观看h| 婷婷色av中文字幕| 亚洲精品成人久久久久久| 如何舔出高潮| 亚洲美女视频黄频| av黄色大香蕉| 亚洲精品乱久久久久久| 免费人成在线观看视频色| 国产av不卡久久| 精品一区二区三卡| 丰满乱子伦码专区| 麻豆成人av视频| 亚洲精品久久午夜乱码| 国产白丝娇喘喷水9色精品| 性插视频无遮挡在线免费观看| 白带黄色成豆腐渣| 午夜福利在线观看吧| 精品国产一区二区三区久久久樱花 | 亚洲精品aⅴ在线观看| 国产精品久久久久久精品电影小说 | 国产色爽女视频免费观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 少妇的逼水好多| 久久精品综合一区二区三区| 亚洲人成网站在线观看播放| 青青草视频在线视频观看| 特级一级黄色大片| 日本免费a在线| 一个人看视频在线观看www免费| 国产综合精华液| 日韩国内少妇激情av| 国产黄片视频在线免费观看| 三级男女做爰猛烈吃奶摸视频| 国语对白做爰xxxⅹ性视频网站| 免费观看av网站的网址| 亚洲国产精品成人久久小说| 人人妻人人澡欧美一区二区| 亚洲精品国产av蜜桃| 久久久成人免费电影| 国产在视频线在精品| 日韩欧美三级三区| 免费人成在线观看视频色| 一级毛片电影观看| 国产探花极品一区二区| videossex国产| 日本-黄色视频高清免费观看| 国产亚洲精品久久久com| 中文天堂在线官网| 少妇熟女欧美另类| av国产免费在线观看| 亚洲不卡免费看| 国产精品久久久久久精品电影| 又黄又爽又刺激的免费视频.| 日韩av免费高清视频| 精品久久久久久久人妻蜜臀av| 成人漫画全彩无遮挡| 国产探花极品一区二区| 国模一区二区三区四区视频| 日韩欧美 国产精品| 亚洲欧美一区二区三区国产| 91av网一区二区| 国产久久久一区二区三区| 在线免费观看的www视频| 成人一区二区视频在线观看| 国产亚洲最大av| 欧美激情国产日韩精品一区| 美女cb高潮喷水在线观看| 精品国产一区二区三区久久久樱花 | 国产精品综合久久久久久久免费| 成人性生交大片免费视频hd| 免费高清在线观看视频在线观看| 欧美日韩亚洲高清精品| 亚洲一级一片aⅴ在线观看| 日韩视频在线欧美| 美女xxoo啪啪120秒动态图| www.av在线官网国产| 国产精品久久视频播放| 精品熟女少妇av免费看| 韩国av在线不卡| 亚洲精品成人久久久久久| 精品久久久久久久久久久久久| 我的女老师完整版在线观看| 成人午夜精彩视频在线观看| 日日干狠狠操夜夜爽| 国产高清不卡午夜福利| 在线 av 中文字幕| 亚洲成人精品中文字幕电影| 精品人妻一区二区三区麻豆| 国国产精品蜜臀av免费| 久久久久国产网址| 2021少妇久久久久久久久久久| 91午夜精品亚洲一区二区三区| 女人被狂操c到高潮| 精品久久久久久电影网| 久久精品熟女亚洲av麻豆精品 | 美女被艹到高潮喷水动态| 久久久精品欧美日韩精品| 大香蕉久久网| 国产亚洲精品久久久com| 亚洲av中文av极速乱| 又爽又黄无遮挡网站| www.色视频.com| 成人一区二区视频在线观看| 嫩草影院新地址| av天堂中文字幕网| 简卡轻食公司| 精品久久久久久久久亚洲| 尤物成人国产欧美一区二区三区| 有码 亚洲区| 日韩国内少妇激情av| 一区二区三区乱码不卡18| 中文字幕av成人在线电影| 欧美成人精品欧美一级黄| 亚洲一级一片aⅴ在线观看| 国产欧美日韩精品一区二区| 天美传媒精品一区二区| 精品熟女少妇av免费看| 韩国高清视频一区二区三区| 婷婷六月久久综合丁香| 欧美97在线视频| 一级毛片久久久久久久久女| 国产av码专区亚洲av| 97精品久久久久久久久久精品| 亚洲成人中文字幕在线播放| 亚洲在线自拍视频| 狂野欧美激情性xxxx在线观看| 成年版毛片免费区| 乱系列少妇在线播放| 美女主播在线视频| 亚洲三级黄色毛片| 国产高清有码在线观看视频| 亚洲av日韩在线播放| 成年免费大片在线观看| 日韩大片免费观看网站| 国产午夜精品论理片| 好男人视频免费观看在线| 在线观看av片永久免费下载| 熟妇人妻不卡中文字幕| 夫妻午夜视频| 国产精品一区二区三区四区免费观看| 在线 av 中文字幕| 欧美日韩精品成人综合77777| 国产成人a区在线观看| 免费大片18禁| 亚洲国产高清在线一区二区三| 三级毛片av免费| 热99在线观看视频| 欧美变态另类bdsm刘玥| 性插视频无遮挡在线免费观看| 22中文网久久字幕| 欧美成人午夜免费资源| 丰满乱子伦码专区| 欧美最新免费一区二区三区| 国产中年淑女户外野战色| 热99在线观看视频| 波多野结衣巨乳人妻| 欧美成人a在线观看| 日韩av不卡免费在线播放| 熟妇人妻不卡中文字幕| 一级毛片电影观看| 老司机影院毛片| 秋霞在线观看毛片| 色综合亚洲欧美另类图片| 久久久精品免费免费高清| 国精品久久久久久国模美| 纵有疾风起免费观看全集完整版 | 亚洲精品久久久久久婷婷小说| 久久精品国产亚洲av天美| 激情五月婷婷亚洲| 一个人看的www免费观看视频| 国产黄色视频一区二区在线观看| 久久精品夜夜夜夜夜久久蜜豆| 久久这里有精品视频免费| 毛片一级片免费看久久久久| 纵有疾风起免费观看全集完整版 | 黄片无遮挡物在线观看| 成人美女网站在线观看视频| 国产高清有码在线观看视频| 国产女主播在线喷水免费视频网站 | 91午夜精品亚洲一区二区三区| 亚洲精品乱码久久久v下载方式| 国产黄a三级三级三级人| 白带黄色成豆腐渣| 国产中年淑女户外野战色| 日日撸夜夜添| 欧美激情国产日韩精品一区| 老司机影院成人| 男人舔女人下体高潮全视频| 看黄色毛片网站| 18禁裸乳无遮挡免费网站照片| 亚洲自拍偷在线| 欧美97在线视频| 亚洲国产精品成人综合色| 亚洲精品亚洲一区二区| 中文在线观看免费www的网站| 免费大片18禁| 麻豆久久精品国产亚洲av| 久久久久久久大尺度免费视频| 国产精品一区二区三区四区久久| www.av在线官网国产| 亚洲人与动物交配视频| 七月丁香在线播放| 日韩国内少妇激情av| 久久久久网色| 亚洲国产av新网站| 国产亚洲精品av在线| 国内精品宾馆在线| 婷婷色综合大香蕉| 久久这里有精品视频免费| 欧美xxxx黑人xx丫x性爽| 亚洲乱码一区二区免费版| 精品一区二区三卡| 大片免费播放器 马上看| 国产精品国产三级专区第一集| 观看免费一级毛片| 最近中文字幕高清免费大全6| 在线观看av片永久免费下载| 又爽又黄a免费视频| 一个人免费在线观看电影| 午夜福利高清视频| 内地一区二区视频在线| av在线天堂中文字幕| av在线蜜桃| 欧美高清性xxxxhd video| 国产亚洲最大av| 成年女人看的毛片在线观看| 欧美成人精品欧美一级黄| 男女边吃奶边做爰视频| 美女脱内裤让男人舔精品视频| 蜜桃亚洲精品一区二区三区| 色哟哟·www| 国产有黄有色有爽视频| 亚洲av不卡在线观看| 欧美另类一区| 插逼视频在线观看| 午夜精品国产一区二区电影 | 在线观看免费高清a一片| 国产亚洲5aaaaa淫片| 国产探花在线观看一区二区| 毛片一级片免费看久久久久| 黄片无遮挡物在线观看| 国产伦精品一区二区三区四那| 亚洲精品国产av成人精品| 久久精品久久久久久噜噜老黄| 免费av观看视频|