• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Inverted V-shaped evolution of superconducting temperature in SrBC under pressure*

    2021-07-30 07:40:34RuYiZhao趙如意XunWangYan閆循旺andMiaoGao高淼
    Chinese Physics B 2021年7期

    Ru-Yi Zhao(趙如意) Xun-Wang Yan(閆循旺) and Miao Gao(高淼)

    1Department of Physics,School of Physical Science and Technology,Ningbo University,Ningbo 315211,China

    2College of Physics and Engineering,Qufu Normal University,Qufu 273165,China

    Keywords: SrBC,phonon-mediated superconductivity,anisotropic Eliashberg theory,first-principles calculation,maximally localized Wannier functions

    1. Introduction

    The outstanding superconductivity of MgB2stems from its unique electronic structure, whereas both theσ-bonding bands andπ-bonding band cross the Fermi level simultaneously.[1-3]The underlying superconducting mechanism in MgB2has been well understood by the strong-coupling anisotropic Migdal-Eliashberg theory. The consensus is that MgB2is a two-gap phonon-mediated superconductor.[4,5]Finding MgB2-type superconductor has drawn lots of attention both theoretically and experimentally.A fascinating analogue is hole-doped LiBC, namely, LixBC.By introducing Li vacancies, theσbands were predicted to be partially filled, leading to a highTcabout 100 K.[6]However, the Li vacancies cause significant lattice distortion,which impedes the metallization of theσbands.[7]As a result,no superconducting transition was observed in LixBC.[8-11]To avoid the formation of Li vacancies, introducing excess boron was proposed to be an alternative way to realize hole doping of LiBC, for example, Li2B3C, Li3B4C2,[12]and Li4B5C3.[13]We further systematically studied the electronphonon coupling (EPC) in free-standing and strained trilayer film LiB2C2.[14]It was found that the highestTccan be achieved is 125 K for LiB2C2film under biaxial tensile strain of 8%.

    In addition to doping holes, Haqueet al. suggested that doping electrons into LiBC by replacing Li with alkalineearth metalM(M=Mg, Ca, Sr, or Ba) may induce superconducting states.[15]For example, theTcwas estimated to be 51 K for MgBC with McMillan-Allen-Dynes formula.[15]It was shown by first-principles calculation thatMBC has two energy bands crossing the Fermi level, similar to the case in MgB2. Hence, it is necessary to determine theTcthrough self-consistently solving the anisotropic Eliashberg equations, rather than using the semi-empirical McMillan-Allen-Dynes formula. Very recently,utilizing the CALYPSO structure prediction method, SrBC was found to be stable at 50 GPa.[16]In particular,SrBC has been successfully synthesized in experiment.[16]It is thus quite interesting to accurately investigate the phonon-mediated superconductivity in SrBC and its evolution under pressure. Especially, whether the two metallic bands of SrBC can give rise to the high-Tctwo-gap superconductivity as in MgB2.

    In this work, the electronic structure, lattice dynamics,EPC,and superconductivity in SrBC are studied from ambient pressure to 100 GPa by means of the first-principles calculations. The lattice constants of SrBC show excellent isotropy during compression. This most likely originates from the appearance of interstitial electronic states between two boroncarbon sheets. B-2pzorbital and the interstitial states contribute mostly to the density of states around the Fermi level.We find that Sr phonons possess strong coupling with B-2pzorbital and interstitial states. Through Wannier interpolation technique, the EPC constantλis accurately calculated to be 0.709 at ambient pressure. Interestingly, there is a domelike feature forλwith the increase of the applied pressure.This can be explained by the competition between enhanced electron-phonon matrix element and hardened phonons. By solving the anisotropic Eliashberg equations, SrBC is determined to be a two-gap superconductor. TheTcshows an inverted V-shaped relationship with pressure. SrBC can achieve its maximalTcof 22 K under 50 GPa. Below 50 GPa,Tcalmost increases linearly, with a positive rate of 0.18 K/GPa.Contrarily,a negative slope of-0.08 K/GPa is found beyond 50 GPa. The slightly different pressure dependence forλandTcis due to the enlarged energy scale of electron pairing, as indicated by the characteristic phonon frequency.

    2. Methods

    In our calculations, the first-principles package,Quantum-ESPRESSO, was adopted.[17]We calculated the electronic states and phonon perturbation potentials[18]using the generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhoff formula[19]and the optimized normconserving Vanderbilt pseudopotentials.[20]After convergence test, the kinetic energy cut-off and the charge density cutoff were chosen to be 80 Ry and 320 Ry, respectively. The charge densities were calculated on akmesh of 24×24×12 points in combination with a Methfessel-Paxton smearing[21]of 0.02 Ry. The dynamical matrices and the perturbation potentials were computed on a 8×8×4 mesh, based on the density-functional perturbation theory.[22]Ten randomlycentered s-type Gaussian functions were used as the initial guess to construct the maximally localized Wannier functions(MLWFs).[23]When checking the convergence of EPC constantλ,the phonon grid was fixed to 24×24×12 points,the electron grid was extended from 24×24×12,to 36×36×18,to 48×48×24, and finally to 72×72×36 points.[24]The Diracδ-functions for electrons and phonons were smeared out by a Gaussian function with the widths of 80 meV and 0.5 meV, respectively. An electron grid of 48×48×24 points was employed in solving the anisotropic Eliashberg equations.[24-26]The number of Matsubara frequency grid points was chosen to be 300. The highest temperature with non-zero superconducting gap corresponds to the transition temperature. In practice,the threshold value for nonvanishing gap was set to 0.01 meV during the numerical iterations.

    3. Results and discussion

    SrBC is isostructural to LiBC,in which the boron-carbon sheet forms a honeycomb lattice, while Sr atoms occupy the hollow sites between two adjacent boron-carbon sheets. At ambient pressure, the lattice constants are optimized asa=3.0122 ?A andc=8.9909 ?A,in excellent agreement with previous results.[15,16]The band structure of SrBC is shown in Fig. 1(a). Unlike semiconducting LiBC, SrBC is a metal, in which two bands crossing the Fermi level. Particularly, the energy gap that found in LiBC is absent near the Fermi level.Thus, the electronic structure of SrBC can not be simply regraded as the rigid shift of Fermi level of LiBC.There is strong hybridization among the 2pxand 2pyorbitals of boron and carbon atoms, as revealed by the peak of the orbital-resolved density of states (DOS) around-3.5 eV [Fig. 1(b)]. The hybridization that occurs in the two-dimensional honeycomb sheet will generate bondingσand antibondingσ*bands. The maximum of theσbands is about-1.4 eV,corresponding to the dispersionless bands alongΓ-Aline. While,the energy of theσ*bands is well above the Fermi level. As a consequence,the contribution toN(0) (DOS at the Fermi level) from 2pxand 2pyorbitals of boron and carbon atoms is tiny. The overlapping between the 2pzorbitals of carbon and boron atoms will engenderπandπ*bands. As we see, there is a pseudo gap for pz-related DOS, roughly around-1.5 eV [Fig. 1(b)].These bands can be respectively assigned toπandπ*bands below and above the pseudo gap. Therefore, theπ*bands(mainly from the B-2pzorbital) make a large contribution toN(0). Moreover,Sr-5s orbital occupies nonnegligible proportion ofN(0). These observations are different from the conclusion drawn in Ref.[15],in which the partially filled energy bands were assigned toσandπbands,respectively.

    Detailed analysis shows that the summation of orbitalresolved DOS does not match the total DOS near the Fermi level[Fig.1(c)]. Specifically,the orbital-resolved DOS is just about 58.8% of the total DOS. This indicates that there exist copious interstitial states.As confirmed by the integrated local DOS, abundant charge accumulation can be clearly observed in the middle region of two neighboring boron-carbon sheets[Fig.1(g)].We further project the weights of B-2pz,C-2pz,Sr-5s, and interstitial states onto the Fermi surfaces [Figs. 1(h)-1(k)]. The two incompletely filled energy bands yield two Fermi surfaces. The Fermi-surface states close to theKpoint mainly comprise of the B-2pzorbital [see the bottom panel of Fig. 1(h)]. Sr-5s orbital contributes mostly to the Fermi pocket surrounding theΓpoint. The interstitial states dominate the contribution to the hexagonal cylinder-like Fermi surface and states near theMpoint. We also map thek-resolved EPC constant,i.e.,λknon the Fermi surfaces. Obviously,the interstitial states on the hexagonal cylinder-like Fermi surface strongly couple with phonons[Fig.1(l)].

    Under 50 GPa, the lattice constants of SrBC are calculated to bea=2.7900 ?A andc=8.3331 ?A.Interestingly,aandcshrink about 7.38%and 7.32%,respectively,compared with the data obtained at ambient pressure.This means that SrBC is almost isotropic in compressibility. The isotropy of compressibility can at least retain to 100 GPa, under which the lattice constants are compressed by 11.2%and 11.1%alongaandcaxes,respectively. It is known that layered compounds always exhibit large anisotropy in compressibility, which reflects the bonding nature along different directions in the material. For instance,the compressibility along thecaxis is five times that along theaaxis for LiBC.[27]Similar situation was also reported in MgB2, where the lattice constantcdecreases faster with pressure thana.[28]The greater stiffness along thecaxis of SrBC compared to LiBC is closely related to the presence of interstitial states between boron-carbon sheets. After applying pressure,the band becomes more dispersive[Fig.1(d)]. Consequently, the sharp peaks in DOS are broadened [Fig. 1(e)].There still exist substantial interstitial states,which contribute 38.0% ofN(0) [Fig. 1(f)]. Due to the enlarged band widths,the Fermi pocket around theΓpoint disappears. The weights of B-2pz,C-2pz,Sr-5s,and interstitial states on the Fermi surfaces behavior similarly to the case under ambient pressure[Figs. 1(m)-1(p)]. Remarkably, the EPC is enhanced significantly[Fig.1(q)].

    Fig. 1. Electronic structure for SrBC. (a) Band structure under ambient pressure. The red lines and blue circles denote the bands obtained by first-principles calculation and interpolating the real-space Hamiltonian, respectively. The Fermi level is set to zero. (b) Orbital-resolved DOS.(c)Total DOS.(d)Band structure under 50 GPa. (e)Orbital resolved and(f)total DOS under 50 GPa. (g)Isosurface of integrated local density of states from -0.1 eV to 0.1 eV under ambient pressure. The isovalue is selected as 1.0×10-3 e/Bohr3. (h)-(q) The weights of B 2pz, C 2pz, Sr 5s,interstitial states,and momentum-resolved EPC constants on the Fermi surfaces. Here(h)-(l)correspond to the results under ambient pressure,(m)-(q)stand for the datum of 50 GPa.

    Figure 2 shows the lattice dynamics of SrBC. Although,SrBC was proved to be stable above 50 GPa,there is no imaginary phonon frequency under ambient pressure[Fig.2(a)]. A small frequency gap at about 25 meV is found. Below the gap,there are six branches of phonons, which can be assigned to the vibration of Sr,due to its greater atomic mass than those of boron and carbon. This is confirmed by the projected phonon DOSF(ω) [Fig. 2(b)]. As reflected byλqν, Sr-associated phonons have strong coupling with electrons, especially the interstitial states. Under 50 GPa,the phonons show markedly hardening[Fig.2(c)],owing to the enhanced interatomic force constants. For example,the highest frequency is amplified by 36.5% with respect to the ambient pressure. Similar to the electronic DOS,the peaks of projectedF(ω)are evidently reduced[Fig.2(d)].The number of Sr-associated phonon modes with sizeableλqνincreases. This will lead to enlarged EPC constant,self-consistent with Fig.1(q).

    The Eliashberg spectral functionα2F(ω), totalF(ω),and accumulatedλ(ω)are shown in Fig.3. At ambient pressure,α2F(ω) displays multi-peak characteristics [Fig. 3(a)].Two peaks locate below the frequency gap. By integratingα2F(ω), the EPC constantλis accurately determined to be 0.709. Under 50 GPa, all these peaks ofα2F(ω) are blueshifted, combined with obvious broadening [Fig. 3(b)]. Suppose that the phonon linewidth is unaffected by pressure,thenλqν∝ω-2qν, thus the hardened phonons will cause abatement of EPC. Surprisingly, the heights of the low-frequency peaks abnormally increase. As a result, the EPC constantλis boosted to 0.783,slightly larger than that in MgB2acquired by Wannier interpolation technique.[26,29,30]The low-frequency two peaks dominate the EPC process,since Sr-related phonons already take 80.7% and 86.1% of the totalλunder ambient pressure and 50 GPa,respectively,as marked by the black arrows(Fig.3).

    Fig. 2. Lattice dynamics of SrBC. (a) Phonon spectrum with a color representation of λqv and (b) projected phonon DOS generated by quasiharmonic approximation,under ambient pressure. (c)Phonon spectrum and(d)projected phonon DOS under 50 GPa.

    Fig. 3. The Eliashberg spectral function α2F(ω), total F(ω), and accumulated λ(ω) under ambient p?ressure (a) and 50 GPa (b). Here λ(ω) is computed using the formula 2α2F(ω′)dω′. Black arrows roughly point out the highest frequencies of Sr phonons under different pressures.

    To clarify the physical reason for abnormal rise ofλunder 50 GPa,we calculated the Fermi surface nesting functionξ(q), EPC matrix element weighted nesting functionγ(q),andq-resolved EPC constantλ(q).ξ(q) andγ(q) are computed through

    Firstly,we can rule out the nesting functionξ(q)as the main factor that causes amplifiedλ, sinceξ(q) shows overall reduction with the increase of pressure[Fig.4(a)]. Interestingly,γ(q)is significantly improved,especially under 50 GPa,compared with that at ambient pressure [Fig. 4(b)]. It has been demonstrated that the phonons are hardened under pressure.This is harmful to the enlargement of EPC constantλ,according to Eq.(3), whereasωqνis the denominator. As shown in Fig.4(c), the preponderance inγ(q)under pressure is gradually condensed inλ(q).However,the EPC strength ofλunder 50 GPa still overwhelms that under ambient pressure. Hence,the increase ofλunder 50 GPa can be attributed to the enhancement of EPC matrix elements close to the Fermi level,i.e.,γ(q). While, the maximal phonon frequency reaches 159.0 meV under 100 GPa. This means that there will be a drop inλat higher pressure, due to the competition between increscentγ(q) and diminished[see Eqs. (2) and (3)].This is just the case for 100 GPa. The detailed change rule ofλis given in Fig.6.

    Fig. 4. Comparisons of nesting function ξ(q), EPC matrix element weighted nesting function γ(q), and q-resolved EPC constant λ(q) under different pressures.

    By solving the anisotropic Eliashberg equations, we can obtain the superconducting transition temperature and the distribution of superconducting gaps on the Fermi surfaces[Fig. 5]. Here, the Coulomb pseudopotentialμ*was set to a standard value of 0.10.[31,32]SrBC is a two-gap superconductor,whoseTcis about 13 K under ambient pressure[Fig.5(a)].At 5 K,the average values for these two superconducting gaps are computed to be 1.98 meV and 1.14 meV,respectively. The higher superconducting gap mainly locates on the hexagonal cylinder-like Fermi surface [Fig. 5(c)]. While, the lower gap stems from the Fermi surface close to the boundaries of the Brillouin zone [Fig. 5(d)]. The distributions of Δknare in agreement with the weights ofλkn[Fig.1(l)]. Under 50 GPa,these two gaps are enlarged to 3.79 meV and 2.38 meV, respectively [Fig. 5(b)], resulting in a boostedTcof 22 K. The distributions of Δknare similar to those under ambient pressure[Figs.5(e)and 5(f)].

    Fig. 5. Temperature dependence of gap values Δkn on the Fermi surface for SrBC under ambient pressure (a) and 50 GPa (b). The distribution of superconducting gaps on the Fermi surfaces at 5 K for SrBC under ambient pressure(c)-(d)and 50 GPa(e)-(f).

    Fig. 6. Calculated superconducting transition temperatures of SrBC under different pressures. Here and represent the critical temperatures determined by solving the anisotropic Eliashberg equations and the McMillan-Allen-Dynes formula,respectively. The pressure dependence of EPC constant λ is also given.

    The pressure dependence ofTcfor SrBC is infrequent among phonon-mediated superconductors. For MgB2,Tcdecreases quasi-linearly under low pressure with solpe dTc/dPbetween-0.8 K/GPa and-2.0 K/GPa.[34-37]Under higher pressure, it was found that theTcfollows a purely quadratic drop.[34]Especially, theTcof MgB2has already been reduced to 20.9 K at 19.2 GPa.[38]The physical reason for degressiveTccan by explained by a combination of hardened phonons and depressedN(0), particularly the phonons.[39]In contrast, an enhancement ofTcwas reported in MgB2due to phonon softening under tensile strain.[40]The transition temperatures of elemental superconductors,examplified by Al[41]and Pb,[42]also decrease monotonically with pressure. Ca and Y are not superconductive under ambient pressure. While,superconducting transitions in Ca and Y show positive dependence on high pressure. In particular, the transition temperatures can achieve 19.5 K[43]and 25 K,[44]under 115 GPa and 161 GPa,respectively.The superconductivity of rare-earth metals under high pressure has also been extensively studied,such as in La. Under ambient pressure,La takes either double hexagonal-close-packed (dhcp) phase or face-centered cubic(fcc) phase, withTcbeing 5 K and 6 K.[45,46]However, the behavior ofTcis more complicated under pressure,closely related to the phase transition. For example,theTcis firstly enhanced after the occurrence of structural phase transition into a distorted fcc structure near 5.4 GPa. Notable oscillation inTccan be observed for the distorted fcc phase,with the highestTcbeing about 13 K.[47,48]Further increasing the pressure,La undergos distorted fcc to fcc, and fcc to another distorted fcc phase transitions. The transition temperature basically shows monotone decline above 50 GPa, and finally goes down to 2.2 K at 140 GPa.[49]

    For MgB2, it was suggested that the enlargement of lattice constant along thecaxis can increaseN(0) and shift theσband upward.[50]Correspondingly, the hole number in theσband increases and a higherTccan be expected. Moreover, reducing the lattice constant alongaaxis has similar effect with enlarging thecaxis. Since SrBC achieves its highestTcunder 50 GPa. Followed the prediction in MgB2,we further examine the possibility to enhance theTcby respectively modulating the lattice constants along different directions. For simplicity, the lattice constants of SrBC under 50 GPa are labelled asa0andc0. Specifically, we systematically investigate the phonon-mediated superconductivity under four situations, i.e.,c=1.15c0,c=0.90c0,a=1.15a0,anda=0.85a0. When adjusting the lattice constant along thecaxis,thea-axis cell parameter is unchanged,and vice versa.Similar to the case of MgB2,we find that the maximum ofσbands increases by 0.47 meV and 0.61 meV forc=1.15c0anda=0.85a0,respectively. While,it decreases by 0.45 meV and 0.43 meV forc=0.90c0anda=1.15a0. Theσbands are still completely filled for all these cases. In particular,we find that the dependence ofTcin SrBC on the lattice constants is more complicated than that in MgB2. Interestingly, onlyc=0.90c0can boost theTcto a higher value of 31 K among the studied four situations. According to our calculations,we find thatN(0)=0.961 states/spin/eV/cell,λ=1.052,andωlog=25.66 meV forc=0.90c0.The enhancedTcis probably related to the aggrandizement ofN(0).

    4. Conclusion

    In summary, we have presented the first-principles results of electronic structure, lattice dynamics, EPC, and phonon-mediated superconductivity for layered SrBC. Although, SrBC is isostructural to LiBC,significant differences are unmasked by our calculations. For instance, SrBC is inherently metallic with two partially filled energy bands, in comparison with the insulating nature of LiBC. The electronic states around the Fermi level mainly consist of B-2pzorbital and considerable interstitial states. Moreover,SrBC is isotropic in compression, contrast sharply to LiBC.Based on these observations,SrBC can not be concluded as an electrondoped LiBC-like compound with rigid Fermi-level shifting.The EPC strengthλis accurately determined to be 0.709 under atmospheric pressure. Based on anisotropic Eliashberg theory and Wannier interpolation,we find that SrBC is a two-gap superconductor withTcof 13 K, which is evidently smaller with respect to MgB2. This is because that low-frequency Sr phonons govern the EPC process of SrBC rather than highfrequency bond-stretching boron-related phonon modes as in MgB2.Since SrBC is stable above 50 GPa,we have systematically examined the evolution of superconductivity under pressure. In particular, an inverted V-shaped evolution ofTcis revealed,with the highestTcbeing 22 K at 50 GPa. This phenomenon is scarce among phonon-mediated superconductors,and stems from the balance between enhanced EPC matrix element and hardened phonons.

    www.av在线官网国产| 欧美区成人在线视频| 中文字幕制服av| 麻豆精品久久久久久蜜桃| 最近2019中文字幕mv第一页| 国产精品久久久久久av不卡| 国产精品精品国产色婷婷| 美女黄网站色视频| 男女下面进入的视频免费午夜| kizo精华| 欧美变态另类bdsm刘玥| 日韩在线高清观看一区二区三区| 成人午夜精彩视频在线观看| 如何舔出高潮| 女人被狂操c到高潮| 久久久久精品性色| 久久久国产一区二区| 在线免费观看的www视频| 亚洲国产精品sss在线观看| 午夜福利在线在线| 亚洲自拍偷在线| 欧美bdsm另类| 久久久午夜欧美精品| 麻豆久久精品国产亚洲av| 日韩,欧美,国产一区二区三区| 尾随美女入室| 熟妇人妻久久中文字幕3abv| 久久久久精品性色| 最近手机中文字幕大全| 婷婷色综合www| 精品久久久久久久末码| 一级毛片我不卡| 亚洲欧美清纯卡通| 能在线免费看毛片的网站| 亚洲国产最新在线播放| 久久精品久久精品一区二区三区| 日韩成人av中文字幕在线观看| 18禁在线播放成人免费| 久久久精品94久久精品| 亚洲精品国产成人久久av| 激情 狠狠 欧美| 国产亚洲午夜精品一区二区久久 | 婷婷六月久久综合丁香| 亚洲国产精品sss在线观看| 国产真实伦视频高清在线观看| 久久精品国产自在天天线| 精品国产三级普通话版| 26uuu在线亚洲综合色| 免费av毛片视频| 国产av不卡久久| 国产欧美另类精品又又久久亚洲欧美| 亚洲av免费在线观看| av又黄又爽大尺度在线免费看| 免费不卡的大黄色大毛片视频在线观看 | 日本-黄色视频高清免费观看| 全区人妻精品视频| .国产精品久久| h日本视频在线播放| 特级一级黄色大片| 99re6热这里在线精品视频| 女人久久www免费人成看片| av天堂中文字幕网| 国产一级毛片七仙女欲春2| 婷婷色综合大香蕉| 国产大屁股一区二区在线视频| 免费黄网站久久成人精品| 又黄又爽又刺激的免费视频.| 亚洲天堂国产精品一区在线| 秋霞伦理黄片| 国产伦一二天堂av在线观看| 亚洲经典国产精华液单| 全区人妻精品视频| 亚洲精品乱码久久久久久按摩| 国产黄频视频在线观看| 国内揄拍国产精品人妻在线| 亚洲综合色惰| 日韩强制内射视频| 女人十人毛片免费观看3o分钟| 青青草视频在线视频观看| 18禁裸乳无遮挡免费网站照片| 国产69精品久久久久777片| 极品少妇高潮喷水抽搐| 中文资源天堂在线| 老司机影院毛片| 亚洲乱码一区二区免费版| 欧美bdsm另类| 色综合站精品国产| 女人十人毛片免费观看3o分钟| 国产淫片久久久久久久久| 成人亚洲精品av一区二区| 国产日韩欧美在线精品| 国产午夜精品论理片| 亚洲成人av在线免费| 日韩av不卡免费在线播放| 免费av毛片视频| av在线天堂中文字幕| 国产在视频线精品| 久久人人爽人人片av| 在线观看人妻少妇| 国产亚洲精品av在线| 大陆偷拍与自拍| 日韩欧美 国产精品| 久久精品久久久久久噜噜老黄| 精品久久久久久久久av| 日日摸夜夜添夜夜爱| 久久久久网色| 丝瓜视频免费看黄片| 大又大粗又爽又黄少妇毛片口| 十八禁网站网址无遮挡 | 建设人人有责人人尽责人人享有的 | 综合色丁香网| 精品久久久久久久末码| 日韩欧美精品免费久久| 少妇猛男粗大的猛烈进出视频 | 久久国内精品自在自线图片| 午夜亚洲福利在线播放| 国模一区二区三区四区视频| 偷拍熟女少妇极品色| 两个人视频免费观看高清| 国产亚洲一区二区精品| 亚洲在线自拍视频| 亚洲最大成人中文| 男女边摸边吃奶| 在线免费观看的www视频| 嫩草影院新地址| 日日干狠狠操夜夜爽| 一区二区三区免费毛片| 亚洲成人一二三区av| 国产激情偷乱视频一区二区| 一级毛片黄色毛片免费观看视频| 欧美bdsm另类| 少妇裸体淫交视频免费看高清| av女优亚洲男人天堂| 欧美高清性xxxxhd video| 18+在线观看网站| 国产精品一区二区性色av| 菩萨蛮人人尽说江南好唐韦庄| 国产视频首页在线观看| 亚洲欧美清纯卡通| 直男gayav资源| 欧美潮喷喷水| 成人亚洲精品一区在线观看 | 大香蕉97超碰在线| 亚洲精品中文字幕在线视频 | 成人欧美大片| 免费av不卡在线播放| 五月伊人婷婷丁香| 舔av片在线| 91在线精品国自产拍蜜月| 秋霞在线观看毛片| 国产久久久一区二区三区| 中文字幕av在线有码专区| 亚洲色图av天堂| 午夜日本视频在线| 亚洲av男天堂| 免费观看性生交大片5| 亚洲国产精品成人久久小说| 久久精品国产亚洲av天美| 特大巨黑吊av在线直播| 丰满少妇做爰视频| 观看美女的网站| 亚洲最大成人av| 国产国拍精品亚洲av在线观看| 国产精品无大码| 免费观看在线日韩| 日韩,欧美,国产一区二区三区| 少妇的逼水好多| 成人欧美大片| 伊人久久国产一区二区| 99热这里只有是精品50| 黄色配什么色好看| av在线观看视频网站免费| 亚洲国产欧美在线一区| 国产黄色小视频在线观看| 亚洲成人久久爱视频| 中文字幕人妻熟人妻熟丝袜美| 亚洲,欧美,日韩| 天堂中文最新版在线下载 | 日韩在线高清观看一区二区三区| 99视频精品全部免费 在线| 日本色播在线视频| 亚洲欧美日韩无卡精品| 亚洲国产精品专区欧美| 我要看日韩黄色一级片| 久久6这里有精品| 免费在线观看成人毛片| 精品久久久噜噜| 成人亚洲精品一区在线观看 | 好男人视频免费观看在线| 啦啦啦啦在线视频资源| 欧美一级a爱片免费观看看| 免费无遮挡裸体视频| 国产精品无大码| 别揉我奶头 嗯啊视频| 欧美人与善性xxx| 亚洲精品亚洲一区二区| xxx大片免费视频| 日本一二三区视频观看| 婷婷色av中文字幕| 免费看不卡的av| 国产黄色免费在线视频| 男女国产视频网站| 一级毛片我不卡| 狠狠精品人妻久久久久久综合| 亚洲精华国产精华液的使用体验| 国产av码专区亚洲av| 91aial.com中文字幕在线观看| 亚洲自偷自拍三级| 久久久久久伊人网av| 久久韩国三级中文字幕| 乱系列少妇在线播放| 青春草视频在线免费观看| 三级男女做爰猛烈吃奶摸视频| 搡女人真爽免费视频火全软件| 日本爱情动作片www.在线观看| 亚洲精品成人av观看孕妇| 欧美97在线视频| 身体一侧抽搐| 男女下面进入的视频免费午夜| 视频中文字幕在线观看| 三级毛片av免费| 日韩一区二区视频免费看| 91午夜精品亚洲一区二区三区| 国产成人精品婷婷| 午夜老司机福利剧场| 成人亚洲精品av一区二区| 亚洲丝袜综合中文字幕| 边亲边吃奶的免费视频| 国产精品久久久久久精品电影| 午夜老司机福利剧场| 亚洲精品乱码久久久v下载方式| 久久精品国产亚洲av涩爱| 国产毛片a区久久久久| 日韩精品有码人妻一区| 免费大片18禁| a级毛色黄片| 高清视频免费观看一区二区 | 99久国产av精品国产电影| 亚洲av成人精品一区久久| 国产熟女欧美一区二区| 久久久成人免费电影| 亚洲精品影视一区二区三区av| 亚洲精品国产av蜜桃| 白带黄色成豆腐渣| 少妇人妻一区二区三区视频| 国产亚洲最大av| 久久人人爽人人片av| 波多野结衣巨乳人妻| av网站免费在线观看视频 | 男人爽女人下面视频在线观看| 啦啦啦韩国在线观看视频| 亚洲激情五月婷婷啪啪| 精品一区在线观看国产| 亚洲欧美一区二区三区国产| 亚洲国产精品国产精品| 免费av不卡在线播放| 久久久成人免费电影| 日日干狠狠操夜夜爽| 免费看av在线观看网站| 亚洲图色成人| 欧美人与善性xxx| 国产午夜精品久久久久久一区二区三区| 久久人人爽人人爽人人片va| 久久午夜福利片| 亚洲av电影不卡..在线观看| 高清视频免费观看一区二区 | 三级国产精品片| 中文字幕av在线有码专区| 欧美精品一区二区大全| 美女黄网站色视频| 丰满少妇做爰视频| 国产综合懂色| 国产精品一区二区在线观看99 | 一级毛片我不卡| 精品久久久久久久久久久久久| 色综合色国产| 免费av毛片视频| 国产成人a∨麻豆精品| 国产91av在线免费观看| 亚洲精品一二三| 只有这里有精品99| 国产精品精品国产色婷婷| 久久精品国产亚洲网站| 亚洲丝袜综合中文字幕| 人妻夜夜爽99麻豆av| 淫秽高清视频在线观看| 99热全是精品| 国产午夜精品一二区理论片| 久久精品人妻少妇| 国产一区二区亚洲精品在线观看| 亚洲国产色片| av在线亚洲专区| 亚洲精品成人久久久久久| 91精品伊人久久大香线蕉| 亚洲国产精品国产精品| 欧美日韩一区二区视频在线观看视频在线 | 亚洲av电影在线观看一区二区三区 | 亚洲精品视频女| 深爱激情五月婷婷| av女优亚洲男人天堂| 联通29元200g的流量卡| 91久久精品电影网| 我要看日韩黄色一级片| 又爽又黄无遮挡网站| 国产成人freesex在线| 亚洲自拍偷在线| 亚洲va在线va天堂va国产| 大又大粗又爽又黄少妇毛片口| 22中文网久久字幕| 狂野欧美激情性xxxx在线观看| 在现免费观看毛片| 国产淫语在线视频| 国产精品福利在线免费观看| 少妇裸体淫交视频免费看高清| 亚洲久久久久久中文字幕| 欧美日韩综合久久久久久| 免费电影在线观看免费观看| 最近的中文字幕免费完整| 日韩在线高清观看一区二区三区| 欧美日韩精品成人综合77777| 嫩草影院入口| 乱码一卡2卡4卡精品| 永久免费av网站大全| 深爱激情五月婷婷| 中文字幕免费在线视频6| 成人亚洲精品一区在线观看 | 99热全是精品| 免费大片黄手机在线观看| eeuss影院久久| 亚洲国产最新在线播放| 国产探花在线观看一区二区| 亚洲精品乱码久久久久久按摩| 色播亚洲综合网| 狠狠精品人妻久久久久久综合| 女人久久www免费人成看片| 色综合亚洲欧美另类图片| 精品一区二区三区视频在线| 国产精品不卡视频一区二区| 哪个播放器可以免费观看大片| 久久6这里有精品| 尤物成人国产欧美一区二区三区| h日本视频在线播放| 精品久久久久久久久av| 极品教师在线视频| 夜夜看夜夜爽夜夜摸| 嫩草影院精品99| 午夜精品国产一区二区电影 | 午夜免费观看性视频| 国产黄频视频在线观看| 久久韩国三级中文字幕| 中文字幕久久专区| 久久久午夜欧美精品| 色播亚洲综合网| 亚洲人成网站高清观看| 久久99精品国语久久久| 天美传媒精品一区二区| 女的被弄到高潮叫床怎么办| 一个人看的www免费观看视频| 国产精品一区二区三区四区久久| 免费黄色在线免费观看| 看免费成人av毛片| 久久久国产一区二区| 成年av动漫网址| 日韩一本色道免费dvd| 丝袜美腿在线中文| av在线老鸭窝| 国产精品综合久久久久久久免费| 夫妻午夜视频| 欧美 日韩 精品 国产| 亚洲国产高清在线一区二区三| 国产亚洲午夜精品一区二区久久 | 狠狠精品人妻久久久久久综合| 国产午夜福利久久久久久| 夫妻午夜视频| 亚洲人成网站在线播| 亚洲精品aⅴ在线观看| 免费大片18禁| 午夜久久久久精精品| 日韩av不卡免费在线播放| 久久久精品94久久精品| 免费看av在线观看网站| 人体艺术视频欧美日本| 精品久久国产蜜桃| 欧美成人精品欧美一级黄| av.在线天堂| 激情 狠狠 欧美| 亚洲天堂国产精品一区在线| 天天躁夜夜躁狠狠久久av| 日韩成人av中文字幕在线观看| 尤物成人国产欧美一区二区三区| 午夜福利高清视频| 天美传媒精品一区二区| 精品亚洲乱码少妇综合久久| 高清午夜精品一区二区三区| 国国产精品蜜臀av免费| 欧美日韩亚洲高清精品| 三级男女做爰猛烈吃奶摸视频| 男女边吃奶边做爰视频| 欧美 日韩 精品 国产| 国产免费福利视频在线观看| 深爱激情五月婷婷| 天堂影院成人在线观看| 亚洲精品久久久久久婷婷小说| 嫩草影院入口| 成人午夜精彩视频在线观看| 国产午夜精品久久久久久一区二区三区| 国模一区二区三区四区视频| 精品国内亚洲2022精品成人| 免费观看a级毛片全部| 国产在视频线精品| 久久久久久久久久成人| 日日撸夜夜添| 麻豆乱淫一区二区| 亚洲国产高清在线一区二区三| 又粗又硬又长又爽又黄的视频| 亚洲精品456在线播放app| 精品熟女少妇av免费看| 最近中文字幕高清免费大全6| 午夜精品一区二区三区免费看| 欧美bdsm另类| 非洲黑人性xxxx精品又粗又长| 大陆偷拍与自拍| 日本免费a在线| 亚洲丝袜综合中文字幕| 一级毛片 在线播放| 亚洲精品中文字幕在线视频 | 亚洲国产高清在线一区二区三| 国产美女午夜福利| 亚洲欧美日韩东京热| 777米奇影视久久| 国产淫片久久久久久久久| 白带黄色成豆腐渣| av一本久久久久| 亚洲在线观看片| 欧美bdsm另类| 建设人人有责人人尽责人人享有的 | 日韩av不卡免费在线播放| 亚洲va在线va天堂va国产| 少妇高潮的动态图| 91久久精品国产一区二区三区| 大又大粗又爽又黄少妇毛片口| 久久久成人免费电影| 一级av片app| 日本黄色片子视频| 免费观看在线日韩| 久久97久久精品| 亚洲丝袜综合中文字幕| 国产精品久久久久久精品电影| 国产精品久久久久久久久免| av网站免费在线观看视频 | 99热这里只有精品一区| 国产女主播在线喷水免费视频网站 | 边亲边吃奶的免费视频| videossex国产| 日日摸夜夜添夜夜爱| 午夜免费男女啪啪视频观看| 26uuu在线亚洲综合色| 美女高潮的动态| 在线观看av片永久免费下载| 禁无遮挡网站| 国产探花极品一区二区| 亚洲内射少妇av| 国产色爽女视频免费观看| 精品国产三级普通话版| 成人鲁丝片一二三区免费| 午夜福利在线观看免费完整高清在| 18禁在线播放成人免费| 亚洲三级黄色毛片| 久久久成人免费电影| 丝瓜视频免费看黄片| 欧美日韩精品成人综合77777| 建设人人有责人人尽责人人享有的 | www.色视频.com| 狠狠精品人妻久久久久久综合| 国产黄频视频在线观看| 国产精品美女特级片免费视频播放器| 夜夜看夜夜爽夜夜摸| 一本久久精品| 亚洲av二区三区四区| 欧美一区二区亚洲| 亚洲久久久久久中文字幕| 91午夜精品亚洲一区二区三区| 久久久久精品性色| 永久免费av网站大全| 一区二区三区四区激情视频| 国产一区有黄有色的免费视频 | 乱人视频在线观看| 欧美一级a爱片免费观看看| 3wmmmm亚洲av在线观看| 男人爽女人下面视频在线观看| 三级经典国产精品| 国产综合精华液| 波多野结衣巨乳人妻| 国产三级在线视频| 国产美女午夜福利| 寂寞人妻少妇视频99o| 国产综合精华液| 99久久人妻综合| 国产精品无大码| 久久人人爽人人片av| 精品久久久久久久久久久久久| 免费观看a级毛片全部| 三级毛片av免费| 肉色欧美久久久久久久蜜桃 | 久久久国产一区二区| 久久久久久久国产电影| 国产爱豆传媒在线观看| av在线天堂中文字幕| 亚洲精品456在线播放app| 三级经典国产精品| 国产精品精品国产色婷婷| 欧美 日韩 精品 国产| 国产有黄有色有爽视频| 精品午夜福利在线看| 男插女下体视频免费在线播放| 波多野结衣巨乳人妻| 久久精品夜夜夜夜夜久久蜜豆| 国产亚洲av嫩草精品影院| 精品久久久久久久人妻蜜臀av| 男人舔女人下体高潮全视频| 国产精品嫩草影院av在线观看| 真实男女啪啪啪动态图| 蜜臀久久99精品久久宅男| 久久韩国三级中文字幕| 大又大粗又爽又黄少妇毛片口| 欧美日韩在线观看h| 亚洲精品久久午夜乱码| 国产一区有黄有色的免费视频 | 看非洲黑人一级黄片| 2021少妇久久久久久久久久久| 成年女人在线观看亚洲视频 | 亚洲最大成人中文| 3wmmmm亚洲av在线观看| 中文乱码字字幕精品一区二区三区 | 国产精品麻豆人妻色哟哟久久 | 亚洲精品影视一区二区三区av| 九九爱精品视频在线观看| 国产黄频视频在线观看| 久99久视频精品免费| 精品人妻偷拍中文字幕| 国产精品美女特级片免费视频播放器| 男的添女的下面高潮视频| 2021少妇久久久久久久久久久| 熟女电影av网| 久久国内精品自在自线图片| 国产成人精品福利久久| 两个人视频免费观看高清| 看免费成人av毛片| 国产高清有码在线观看视频| 岛国毛片在线播放| 性插视频无遮挡在线免费观看| 精品国产一区二区三区久久久樱花 | 亚洲欧美日韩卡通动漫| 欧美激情久久久久久爽电影| 久久99热这里只频精品6学生| av卡一久久| 天堂av国产一区二区熟女人妻| 亚洲国产欧美人成| 看黄色毛片网站| 偷拍熟女少妇极品色| 97超碰精品成人国产| 乱人视频在线观看| 高清视频免费观看一区二区 | 一夜夜www| 大香蕉久久网| 好男人视频免费观看在线| 久久久久久久久久人人人人人人| av在线播放精品| .国产精品久久| 亚洲aⅴ乱码一区二区在线播放| 波野结衣二区三区在线| 国产综合精华液| 亚洲精华国产精华液的使用体验| 国产综合精华液| 国产精品.久久久| 18禁裸乳无遮挡免费网站照片| 三级国产精品欧美在线观看| 免费黄色在线免费观看| 亚洲精品乱码久久久久久按摩| 亚洲综合精品二区| 在线天堂最新版资源| 男人爽女人下面视频在线观看| 天天躁夜夜躁狠狠久久av| 51国产日韩欧美| 国产一级毛片七仙女欲春2| 亚洲国产色片| 国产极品天堂在线| 男人狂女人下面高潮的视频| 看非洲黑人一级黄片| 免费黄频网站在线观看国产| 少妇的逼好多水| 人人妻人人看人人澡| 欧美性感艳星| 天天一区二区日本电影三级| 亚洲精品影视一区二区三区av| 国产精品一区二区在线观看99 | 真实男女啪啪啪动态图| 高清av免费在线| 日日摸夜夜添夜夜添av毛片| 综合色av麻豆| 久久久久国产网址| 好男人视频免费观看在线| 日本免费在线观看一区| 精品人妻熟女av久视频| 亚洲成人精品中文字幕电影| 久久精品国产亚洲av天美| 国产成年人精品一区二区| 免费人成在线观看视频色| 国产视频首页在线观看| 国产探花极品一区二区| 一级片'在线观看视频| 午夜精品一区二区三区免费看| 亚洲综合色惰| 高清在线视频一区二区三区| 国产国拍精品亚洲av在线观看|