• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Super-sensitivity measurement of tiny Doppler frequency shifts based on parametric amplification and squeezed vacuum state

    2021-07-30 07:38:10ZhiYuanWang王志遠ZiJingZhang張子靜andYuanZhao趙遠
    Chinese Physics B 2021年7期
    關(guān)鍵詞:志遠

    Zhi-Yuan Wang(王志遠), Zi-Jing Zhang(張子靜), and Yuan Zhao(趙遠)

    Department of Physics,Harbin Institute of Technology,Harbin 150001,China

    Keywords: squeezed vacuum state,quantum metrology

    1. Introduction

    Making use of Doppler frequency shifts to measure speed is very important in many applications.[1-4]The measurement precision of Doppler frequency shifts determines the measurement precision of speed. At present, the methods to improve measurement precision are mainly in two aspects: the first is to use non-classical light sources to improve measurement precision,including the precision measurement of phase,[5-10]the measurement of small beam deflection,[11-13]the measurement of gravitational waves,[14-16]and the precise measurement of the magnetic field,[17]and the second is to use a suitable measurement scheme at the receiving end. For example, Fabreet al.[18]gave the standard quantum limit of beam splitting detection when measuring a small beam deflection.Trepet al.[19]used a four-quadrant detector combined with a squeezed light source to measure the transversal displacement beyond shot noise limit. Then they adopted a balanced homodyne detection scheme to reach the Cram′er-Rao bound of information parameters in optical image. Hsuet al.[20]and Delaubertet al.[21]found that balanced homodyne detection was the optimal detection scheme for transversal displacement and the tilt measurement,and proved their theoretical scheme in experiment.

    The precision measurement of Doppler frequency shifts also occupies an important position in quantum precision measurement. Vizaet al.[22]used coherent light source and adopted a weak measurement scheme to precisely measure Doppler frequency shifts. Pinelet al.[23]used a weak measurement scheme to accurately measure the frequency modulation range of continuous wave. However,the coherent state belongs to a classical light source. No matter how the detection scheme is optimized, there is an unbreakable quantum Cram′er-Rao bound for the measurement precision. The emergence of quantum state light sources and the maturity of non-linear technology make it possible to break through the Cram′er-Rao bound of coherent light measurement,and to further improve the measurement precision of Doppler frequency shifts.

    This paper incorporates a parametric amplification technique and squeezed vacuum state into the detection system of tiny Doppler frequency shifts,and proposes a theoretical measurement scheme of Doppler frequency shifts.For weak signal detection at long distance,the use of parametric amplification is of importance for improving the measurement precision.The scheme adopts the structure of Michelson interferometer to realize the homodyne detection of local light and signal light. Our research finds that when then-order (n >0) Hermite Gaussian beam is adopted as the signal light,the Doppler measurement precision can be improved,and the measurement precision of the system can exceed the Cram′er-Rao bound of coherent light through a parametric amplification process and squeezed vacuum state injected. Then we discuss factors influencing the measurement precision in our scheme.

    The rest of this paper is organized as follows. In Section 2,the parametric amplification and squeezed vacuum state are used to precisely measure Doppler frequency shifts. In Section 3, the factors influencing tiny Doppler measurement precision are analyzed. In Section 4, some conclusions are drawn from the present study, and the perspectives are also presented,finally.

    2. Using parametric amplification and squeezed vacuum state to precisely measure Doppler frequency shifts

    As shown in Fig.1,we use a beam splitter BS1(50:50)to divide the laser into local light and signal light. After the signal light passes through an acousto-optic modulator (AOM),its frequency isω2,and then the signal light passes through an atomic pool that performs a parametric amplification process to achieve stimulated Raman scattering (SRS). At this time,the signal light is the Stokes seed light in the SRS process. After exiting from the atomic pool, the intensity of signal light will increase.

    Fig. 1. Doppler precision measurement scheme of parametric amplification and squeezed vacuum state. The laser is divided into the local light and signal light by a beam splitter BS1. The signal light passes through an acousto-optic modulator (AOM) to obtain a frequency shift. The mirror M2 moves at a tiny constant speed,and the signal light is amplified by a parametric amplification process. After the squeezed vacuum state is injected,the signal light is incident on a dispersive prism. This process converts the tiny frequency shifts into the transversal displacements of the beam. The local light that is reflected by mirror M1 and the signal light separately pass through a mode converter,which can change their transversal modes. Finally,the transversal displacement d is obtained by balanced homodyne detection(BHD),and then the tiny Doppler frequency shift Δω can be obtained.

    Fig. 2. (a) Relationship between phase difference between signal light and local light and the measurement error of frequency shifts,with parameter amplification factor g=0.When the value of φ is 2kπ,the measurement error of the system has a minimum value,which can break through the Cram′er-Rao bound of coherent light measurement. (b) Relationship among signal light power, signal light order and Cram′er-Rao bound of coherent light ΔωCRB,showing that Cram′er-Rao bound of coherent light decreases as signal light power increases. At the same time, high-order signal light has higher measurement precision.

    3. Analysis of factors influencing tiny Doppler measurement precision

    In Section 2,we have obtained the value of the transversal displacementdfrom Eq.(4),and the value of the Doppler frequency shift Δω. In this section, we will prove that the precision of our scheme is better than the one with coherent light. We analyze the factors of influencing the Doppler measurement precision, such as the amplification factor and the squeezed factor. At the same time, the modes of local light and squeezed vacuum state can also influence the measurement precision of tiny Doppler frequency shift in our system.

    3.1. Influence of amplification factor and squeezed factor on measurement precision

    Fig.3. (a)Relationship among measurement precisions of tiny Doppler frequency shifts,squeezed factor r and parametric amplification factor g,n=2,showing that larger amplification factor and larger squeezed factor will reduce measurement error of the system. (b)Diagram of the measurement errorfor different values of amplification factor g and squeezed factor r, indicating that when we choose g=1 and r=0.5, for the signal light in the same order, the measurement precision can exceed the Cram′er-Rao bound of coherent light measurement. (c)Functional diagram of ΔωBHDmin and signal light power. As the signal light power increases, the measurement error of the system will decrease. (d) Relationship between the minimum measurable displacement d of and the SNR of the detection system. When SNR=1 dB (or SNR=0 dB), we can obtain the minimum detectable transversal displacement d of the system. So we can obtain d1min <d2min <d3min in Fig.3(d). It can be seen that the measurement error of the system will be lower than the Cram′er-Rao bound of coherent light when using parametric amplification and squeezed vacuum state.

    It can be seen from Eq.(6)that when the transversal mode order of the signal light is larger, the measurement error of tiny Doppler frequency shift is smaller. As the squeezed factorrand parametric amplification factorgin this system increase, the minimum measurable frequency shift of the system decreases (as shown in Fig. 3(a)). When both the parametric amplification factor and the squeezed factor are 0, the measurement precision of the system at this time cannot exceed the Cram′er-Rao bound of coherent light. After adopting the parametric amplification and squeezed vacuum state injection, the measurement precision of the system breaks through the Cram′er-Rao bound of coherent light (as shown in Fig.3(b)). It verifies the superiority of frequency shift measurement after the parametric amplification and the squeezed vacuum state have been combined. Figure 3(b)shows that for the signal light in Gaussian mode,when the amplification factorg=1 and the squeezed factorr=0.5, the measurement error of Doppler frequency shifts is 14.4%of the error determined by the Cram′er-Rao bound of coherent light. With the increase of the signal light order, the measurement error and ΔωCRBdecrease. It is shown in Fig.3(b)that the measurement errors of Doppler frequency shifts are 17.7%and 18.7%of the Cram′er-Rao bound of coherent light, whenn=1 and 2, respectively. At the same time, as the photon number of signal light increases,our solution can always break through the shot noise limit and the Cram′er-Rao bound of coherent light (as shown in Fig.3(c)).

    Figure 3(d) shows that the minimum measurable displacement of the system is determined when the SNR is equal to 1. It can be seen from Eq. (2) that the smallest measurable displacement determines the minimum measurable frequency shift of the system. When we adopt parametric amplification and squeezed vacuum state injection, the SNR of the system is improved, and the measurable displacement is reduced. At this time, the measurement precision of the system is improved. The relevant simulation parameters in this paper areλ=1064 nm,w0=53 μm,the relevant parameters of the dispersive prism in our system are as follows:A=1.60,B=7881 nm-2,C=1.7×108nm-4, base angleγ=15°,base side lengthL=50 cm,loss rateη=96%,and resolution bandwidth RBW=0.3 kHz.

    3.2. Influence of mode of local light on measurement precision

    According to Eq.(A5)in Appendix A,it can be seen that when the signal light inn-order mode is displaced,the components of the(n-1)-order mode and(n+1)-order mode will be excited. Therefore,for the local light the superposition mode of(n-1)-order and(n+1)-order is also adopted at this time.It will maximize the SNR and the measurement precision. In order to discuss the mode of local light that makes the detection system have the greatest precision, we set the mode of local light to beu2(x)=run-1(x)+teiφun+1(x),whererandtare the weight of the (n-1)-mode and (n+1)-mode in the local light,satisfyingr2+t2=1,andφis the phase difference between (n+1)-order mode and (n-1)-order mode. At this time, we can obtain the positive frequency expression of the local light as follows:

    Figure 4 shows the error function of signal light at different orders (n=0, 1, 2, and 3). In particular, whenn=0, a minimum error is obtained atr/t=0,i.e.,un+1(x)is the best mode of the local light at this time.

    Fig.4.Curves of minimum measurable frequency shift versus energy weight ratio r/t of(n-1)-order mode to(n+1)-order mode for different values of n. When r/t=+1,the SNR of the system reaches maximum,and the measurement error is the smallest at this time.

    3.3. Influence of modes of squeezed vacuum state on measurement precision

    In addition to the mode of the local light affecting the measurement precision of the system, the mode of the squeezed vacuum state affects the measurement precision of the system. After the local light adopts the best superposition mode,the squeezed vacuum state should also adopt the mode corresponding to the local light. At this time,the photon number difference operator is

    In the above formulas,r1andr2are the squeezed degrees of squeezed vacuum state in (n-1)-order mode and (n+1)-order mode, respectively. Therefore, if the measurement precision is required to be higher,the squeezed vacuum state must adopt the same superposition mode as the local light, andr1,r2>0 must be satisfied. The influences of squeezed degrees of(n-1)-order mode and(n+1)-order mode on the SNR and measurement precision of the system are shown in Fig. 5. It can be seen from Fig. 5(a) that when the squeezed vacuum state has squeezed degrees in both the(n-1)-order mode and(n+1)-order mode,the measurement precision of the system will reach a maximum value. In particular, when the signal light is in the 0-order mode,the measurement precision at this time loses its dependence on the squeezed factorr1. The reason is that the coefficient beforer1in Eq.(13)is 0,so the precision at this time will increase withr2increasing. Figure 5(b)shows that with the increase of the squeezed factorsr1,r2,and the mode order of signal light,the Doppler measurement precision increase. Simulation related parameters are signal light powerPs=0.08 W and loss rateη=96%.

    Fig.5. (a)Influences of mode of squeezed vacuum state on precision for different orders of signal light,showing that when the squeezed vacuum state in both(n-1)-order mode and(n+1)-order mode is injected,the measurement precision of our system reaches a maximum value. (b)Influence of squeezed factors r1 and r2 on measurement precision for mode order of signal light n=2,showing that with the increase of r1 and r2,the measurement error of the system decreases.

    4. Conclusions and perspectives

    Appendix A

    In Appendix A, the relevant theoretical formulas about balanced homodyne detection are given. According to the Eq. (B1) in Appendix B, we can give the expression of the positive frequency part of the local light and the signal light as follows:

    After the two input fields interfere with the 50:50 beam splitter, the positive frequency expressions of the two output fields are expressed as

    Then the difference between the photocurrents of the two detectors is

    Appendix B

    In this section, the quantum theory of electromagnetic field and related theoretical derivation of balanced homodyne detection are given. The electromagnetic field can be expanded by using a set of orthogonal mode basis vectors. The expression of the positive frequency part of the electromagnetic field is

    In the above formula,ωis the angular frequency of the electromagnetic field,cis the speed of light,Tis the detection integration time,ε0is the permittivity of free space, ?anis the annihilation operator of then-order mode,andun(x)is then-order Hermite-Gaussian mode.

    The annihilation operator ?a=〈?a〉+δ?ais linerarized,and only the average value of then-order Hermite-Gaussian mode is not 0. For the signal light with a transversal displacementd,the positive frequency part of the light field can be written as

    Appendix C

    In this section, the theoretical derivation of the quantum Cram′er-Rao bound of coherent light measurement is presented.[24]For the coherent light with a transversal displacementd, the photon number distribution at coordinatexobeys the Poisson distribution:

    Then the logarithm likelihood function at coordinatexcan be defined as

    Then we can obtain the Fisher information expression

    For a high-order Hermite-Gaussian beam with a transversal displacementd,the average number of photons at coordinatexsatisfies ˉn(x,d)=N2u2n(x,d), whereN2is the photon number of the signal beam, andun(x,d) is a amplitude expression of a TEMn0mode.

    From this we can obtain the Fisher information expression at coordinatexas follows:

    It is worth mentioning that the calculation of the quantum Cram′er-Rao bound does not depend on the specific measurement. It can be used as a standard to evaluate the quality of measurements. The closer to the quantum Cram′er-Rao bound the variance of the measurement is, the better the evaluation will be.

    猜你喜歡
    志遠
    Corrigendum to“Atomic-scale electromagnetic theory bridging optics in microscopic world and macroscopic world”
    Atomic-scale electromagnetic theory bridging optics in microscopic world and macroscopic world
    禹志遠作品
    大眾文藝(2022年24期)2023-01-09 09:27:16
    Topological photonic states in gyromagnetic photonic crystals:Physics,properties,and applications
    Quantum mechanical solution to spectral lineshape in strongly-coupled atom-nanocavity system
    呼志遠美術(shù)作品
    我最喜愛的玩具①
    Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis?
    香噴噴的年喲
    Functional Equivalence Theory and Its Limitations in Translation
    學(xué)周刊(2015年1期)2015-07-09 22:04:00
    久久精品国产综合久久久 | 一边亲一边摸免费视频| 少妇人妻 视频| 国产福利在线免费观看视频| 一级,二级,三级黄色视频| 午夜福利在线观看免费完整高清在| 国产在线免费精品| 免费在线观看完整版高清| 在线天堂中文资源库| 精品国产露脸久久av麻豆| 欧美成人精品欧美一级黄| 2021少妇久久久久久久久久久| 国语对白做爰xxxⅹ性视频网站| 青青草视频在线视频观看| 久久99精品国语久久久| 26uuu在线亚洲综合色| 黑人高潮一二区| av天堂久久9| 在线观看国产h片| 亚洲精品色激情综合| 十分钟在线观看高清视频www| 亚洲精品乱久久久久久| 久久人人爽人人爽人人片va| 一边亲一边摸免费视频| 好男人视频免费观看在线| 咕卡用的链子| av国产久精品久网站免费入址| 国产成人免费无遮挡视频| 久久国内精品自在自线图片| 欧美性感艳星| 精品久久蜜臀av无| xxxhd国产人妻xxx| 久久久久久久精品精品| 亚洲国产色片| 三上悠亚av全集在线观看| 精品视频人人做人人爽| 国产欧美亚洲国产| videosex国产| freevideosex欧美| 又粗又硬又长又爽又黄的视频| 青春草亚洲视频在线观看| 在线观看免费高清a一片| 亚洲四区av| 久热久热在线精品观看| 国产又爽黄色视频| 色5月婷婷丁香| 在线天堂最新版资源| 一级,二级,三级黄色视频| 满18在线观看网站| 亚洲国产精品专区欧美| 日本爱情动作片www.在线观看| 国语对白做爰xxxⅹ性视频网站| 亚洲精品第二区| 久久人人爽人人片av| 精品99又大又爽又粗少妇毛片| 欧美精品高潮呻吟av久久| 午夜免费观看性视频| videosex国产| 男女啪啪激烈高潮av片| 大码成人一级视频| 一区二区三区四区激情视频| 亚洲国产精品成人久久小说| 日韩电影二区| 国产精品久久久久久久电影| 又大又黄又爽视频免费| 久久久久人妻精品一区果冻| 欧美 亚洲 国产 日韩一| 麻豆精品久久久久久蜜桃| 国产欧美日韩一区二区三区在线| 在线精品无人区一区二区三| 国产极品天堂在线| 亚洲精品色激情综合| 久久韩国三级中文字幕| 日韩免费高清中文字幕av| 亚洲国产欧美日韩在线播放| kizo精华| av网站免费在线观看视频| 69精品国产乱码久久久| 欧美另类一区| 精品一区二区三区视频在线| 国产成人精品一,二区| 国产欧美亚洲国产| 亚洲美女黄色视频免费看| 日韩av免费高清视频| 天美传媒精品一区二区| 三级国产精品片| 高清在线视频一区二区三区| 日韩av不卡免费在线播放| 成人国产麻豆网| 久久久国产一区二区| 亚洲精品av麻豆狂野| 一级黄片播放器| 在线亚洲精品国产二区图片欧美| 久久久久精品人妻al黑| 亚洲av中文av极速乱| 最近最新中文字幕免费大全7| 我的女老师完整版在线观看| 好男人视频免费观看在线| 青春草国产在线视频| 内地一区二区视频在线| 国产欧美亚洲国产| 免费人妻精品一区二区三区视频| 国产精品免费大片| 久久久久国产精品人妻一区二区| 热99久久久久精品小说推荐| 亚洲精品,欧美精品| 国产精品三级大全| 久久精品夜色国产| 国产亚洲精品第一综合不卡 | 97在线视频观看| 欧美人与性动交α欧美软件 | 伊人亚洲综合成人网| 精品久久久久久电影网| 春色校园在线视频观看| av在线老鸭窝| 久久国产精品大桥未久av| 国产一区二区在线观看日韩| 久久久久久久精品精品| 精品99又大又爽又粗少妇毛片| 亚洲在久久综合| 2022亚洲国产成人精品| 欧美精品国产亚洲| 国产老妇伦熟女老妇高清| 晚上一个人看的免费电影| 国产免费现黄频在线看| 日本av免费视频播放| 十分钟在线观看高清视频www| 免费日韩欧美在线观看| 尾随美女入室| av免费在线看不卡| 美女国产高潮福利片在线看| 91精品三级在线观看| 最黄视频免费看| 91精品伊人久久大香线蕉| 久久久国产欧美日韩av| 18在线观看网站| 国产精品女同一区二区软件| av线在线观看网站| 欧美日韩一区二区视频在线观看视频在线| 中文字幕人妻熟女乱码| 在线观看国产h片| 亚洲欧洲日产国产| 亚洲欧美成人精品一区二区| 纯流量卡能插随身wifi吗| 亚洲国产精品国产精品| 国产成人精品在线电影| 如日韩欧美国产精品一区二区三区| 久久精品国产自在天天线| 波多野结衣一区麻豆| 一级毛片电影观看| 黄网站色视频无遮挡免费观看| 国产成人一区二区在线| 国产女主播在线喷水免费视频网站| 久久精品久久久久久噜噜老黄| 欧美性感艳星| 侵犯人妻中文字幕一二三四区| 精品99又大又爽又粗少妇毛片| 国产免费现黄频在线看| 久久久亚洲精品成人影院| 波多野结衣一区麻豆| 日日爽夜夜爽网站| 青春草国产在线视频| 国产xxxxx性猛交| 国产成人精品福利久久| 香蕉国产在线看| 国国产精品蜜臀av免费| 夜夜骑夜夜射夜夜干| 久久久久久久大尺度免费视频| 欧美变态另类bdsm刘玥| 午夜福利,免费看| 制服诱惑二区| 欧美精品av麻豆av| 亚洲综合精品二区| 久久久久久久国产电影| 中国美白少妇内射xxxbb| 插逼视频在线观看| 爱豆传媒免费全集在线观看| 最近手机中文字幕大全| 如何舔出高潮| 少妇被粗大的猛进出69影院 | 汤姆久久久久久久影院中文字幕| 精品久久国产蜜桃| 一本久久精品| 国产爽快片一区二区三区| 日韩一区二区视频免费看| 亚洲av中文av极速乱| 免费av中文字幕在线| 夜夜骑夜夜射夜夜干| 女的被弄到高潮叫床怎么办| 国产成人一区二区在线| 一区在线观看完整版| 久久久久久久精品精品| 99热这里只有是精品在线观看| 国产色爽女视频免费观看| 十八禁网站网址无遮挡| 亚洲精品,欧美精品| 成人国产麻豆网| 久久久久久久精品精品| 一级黄片播放器| 日日啪夜夜爽| www.av在线官网国产| 香蕉国产在线看| 菩萨蛮人人尽说江南好唐韦庄| 精品一区在线观看国产| 一二三四在线观看免费中文在 | 午夜福利视频在线观看免费| 老女人水多毛片| 国产在线视频一区二区| 婷婷色综合大香蕉| 丰满少妇做爰视频| 免费黄网站久久成人精品| 欧美日本中文国产一区发布| 精品人妻偷拍中文字幕| 日韩制服骚丝袜av| 国产片内射在线| 狂野欧美激情性bbbbbb| 国产色婷婷99| av.在线天堂| 精品久久蜜臀av无| 国产精品久久久久成人av| 国产不卡av网站在线观看| www.色视频.com| 狂野欧美激情性bbbbbb| 成年美女黄网站色视频大全免费| 成人18禁高潮啪啪吃奶动态图| 乱码一卡2卡4卡精品| 在线观看免费日韩欧美大片| 一区二区三区四区激情视频| 热99久久久久精品小说推荐| 久久久国产一区二区| 久久人人97超碰香蕉20202| 欧美精品人与动牲交sv欧美| 咕卡用的链子| 亚洲久久久国产精品| 国产精品人妻久久久影院| 黄色 视频免费看| 天天操日日干夜夜撸| 国产av国产精品国产| tube8黄色片| 欧美精品一区二区免费开放| 亚洲五月色婷婷综合| 免费av不卡在线播放| 在线观看国产h片| 亚洲欧美色中文字幕在线| 香蕉国产在线看| 美女国产高潮福利片在线看| 欧美日韩一区二区视频在线观看视频在线| 久久韩国三级中文字幕| 免费看光身美女| 男女边吃奶边做爰视频| 久久精品国产鲁丝片午夜精品| 男女啪啪激烈高潮av片| av国产精品久久久久影院| 久久狼人影院| av福利片在线| 欧美精品亚洲一区二区| 在线天堂最新版资源| 久久久久人妻精品一区果冻| 久久久久久久大尺度免费视频| 亚洲经典国产精华液单| 九九在线视频观看精品| 日本91视频免费播放| 亚洲国产毛片av蜜桃av| 日本-黄色视频高清免费观看| 777米奇影视久久| 美国免费a级毛片| 老熟女久久久| 一级毛片黄色毛片免费观看视频| av免费观看日本| av在线播放精品| 18禁观看日本| 国产白丝娇喘喷水9色精品| 婷婷色综合大香蕉| 中文字幕av电影在线播放| 男人舔女人的私密视频| 亚洲av电影在线进入| 日韩三级伦理在线观看| 亚洲人与动物交配视频| 国产精品不卡视频一区二区| 国国产精品蜜臀av免费| 精品一品国产午夜福利视频| 中文精品一卡2卡3卡4更新| 久久久久久久国产电影| 国产精品成人在线| 亚洲精品第二区| 久久99一区二区三区| 好男人视频免费观看在线| 久久久久精品人妻al黑| 男女国产视频网站| 日韩精品免费视频一区二区三区 | 日韩免费高清中文字幕av| 九草在线视频观看| 日韩成人av中文字幕在线观看| 成年女人在线观看亚洲视频| xxx大片免费视频| av线在线观看网站| 搡女人真爽免费视频火全软件| 最近2019中文字幕mv第一页| 满18在线观看网站| 国产精品嫩草影院av在线观看| 亚洲中文av在线| 中国国产av一级| 欧美97在线视频| 桃花免费在线播放| 日韩制服丝袜自拍偷拍| 国产精品无大码| 欧美精品亚洲一区二区| 国产精品 国内视频| 欧美日韩国产mv在线观看视频| 九草在线视频观看| 亚洲欧美日韩卡通动漫| 在线天堂中文资源库| 国产日韩一区二区三区精品不卡| 在线观看免费视频网站a站| 日韩三级伦理在线观看| 国产精品久久久av美女十八| 最近最新中文字幕免费大全7| 男人舔女人的私密视频| 亚洲av成人精品一二三区| 999精品在线视频| 婷婷色麻豆天堂久久| 欧美日韩av久久| 国产免费福利视频在线观看| 日本欧美国产在线视频| 国产福利在线免费观看视频| 美女国产高潮福利片在线看| 欧美精品人与动牲交sv欧美| 欧美xxxx性猛交bbbb| 天天操日日干夜夜撸| 亚洲四区av| 国产av码专区亚洲av| 啦啦啦视频在线资源免费观看| 在线精品无人区一区二区三| 校园人妻丝袜中文字幕| 国产欧美亚洲国产| av在线播放精品| 99re6热这里在线精品视频| 国产精品一区二区在线不卡| 欧美老熟妇乱子伦牲交| 青春草亚洲视频在线观看| 热99久久久久精品小说推荐| 久久午夜综合久久蜜桃| 考比视频在线观看| 久久午夜综合久久蜜桃| 午夜福利,免费看| 中国国产av一级| 蜜桃在线观看..| 久久久国产一区二区| 国产免费又黄又爽又色| 色哟哟·www| 国产日韩欧美在线精品| 久久人人爽人人爽人人片va| 人妻 亚洲 视频| 一级片'在线观看视频| 亚洲国产毛片av蜜桃av| 午夜激情久久久久久久| 久久这里有精品视频免费| 啦啦啦在线观看免费高清www| 一级爰片在线观看| 成人国语在线视频| 国产色婷婷99| 欧美精品国产亚洲| 青春草视频在线免费观看| 五月玫瑰六月丁香| 成人综合一区亚洲| 精品久久蜜臀av无| 日韩电影二区| 精品午夜福利在线看| 国产日韩欧美亚洲二区| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕免费在线视频6| 中文欧美无线码| 91精品伊人久久大香线蕉| 黄色一级大片看看| 大片免费播放器 马上看| 久久久久国产网址| 午夜福利视频精品| 插逼视频在线观看| 在线 av 中文字幕| 母亲3免费完整高清在线观看 | 韩国高清视频一区二区三区| 一区在线观看完整版| 国产精品蜜桃在线观看| 亚洲国产av影院在线观看| 日韩制服丝袜自拍偷拍| 18禁裸乳无遮挡动漫免费视频| 在线观看人妻少妇| 视频区图区小说| 熟妇人妻不卡中文字幕| 我的女老师完整版在线观看| 欧美97在线视频| 国产精品免费大片| 久久亚洲国产成人精品v| 国产精品女同一区二区软件| 国产成人精品福利久久| 性色avwww在线观看| 免费女性裸体啪啪无遮挡网站| 夜夜骑夜夜射夜夜干| 制服丝袜香蕉在线| 少妇人妻精品综合一区二区| 亚洲美女黄色视频免费看| 黄色 视频免费看| 99香蕉大伊视频| 天天躁夜夜躁狠狠躁躁| 亚洲国产精品专区欧美| 日韩视频在线欧美| 欧美另类一区| 91精品三级在线观看| 国产av国产精品国产| 少妇高潮的动态图| 在线观看免费高清a一片| 成人亚洲欧美一区二区av| 高清欧美精品videossex| 国产福利在线免费观看视频| 欧美成人午夜精品| 看非洲黑人一级黄片| 免费黄网站久久成人精品| 国产成人免费观看mmmm| 国产高清三级在线| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲三级黄色毛片| 亚洲欧洲精品一区二区精品久久久 | 国产黄频视频在线观看| 丝袜在线中文字幕| 久久久久久伊人网av| videos熟女内射| 美女主播在线视频| 欧美丝袜亚洲另类| 国产精品秋霞免费鲁丝片| 九九爱精品视频在线观看| 久久99蜜桃精品久久| 人妻少妇偷人精品九色| 只有这里有精品99| 九九爱精品视频在线观看| 国产精品国产三级国产av玫瑰| 欧美精品高潮呻吟av久久| 国产精品三级大全| 十八禁网站网址无遮挡| 性色avwww在线观看| 永久网站在线| 美女内射精品一级片tv| 久久久久精品人妻al黑| 免费av中文字幕在线| 日韩制服丝袜自拍偷拍| 男女边摸边吃奶| 精品卡一卡二卡四卡免费| 伦精品一区二区三区| 精品久久国产蜜桃| 男人添女人高潮全过程视频| 日韩伦理黄色片| 少妇人妻精品综合一区二区| 熟女电影av网| 久久国产亚洲av麻豆专区| 国产又色又爽无遮挡免| 精品久久蜜臀av无| 精品亚洲乱码少妇综合久久| 欧美日韩精品成人综合77777| 亚洲国产看品久久| 国产极品粉嫩免费观看在线| 男女午夜视频在线观看 | a级片在线免费高清观看视频| 在线观看美女被高潮喷水网站| 久久久国产精品麻豆| 亚洲精品国产av成人精品| 亚洲av欧美aⅴ国产| 激情视频va一区二区三区| 日韩不卡一区二区三区视频在线| 免费少妇av软件| 中国国产av一级| 国产白丝娇喘喷水9色精品| 99久国产av精品国产电影| 丝袜人妻中文字幕| 男人舔女人的私密视频| 亚洲综合色网址| 国产精品国产av在线观看| 视频中文字幕在线观看| 全区人妻精品视频| 51国产日韩欧美| 制服诱惑二区| 久久久a久久爽久久v久久| 97在线视频观看| 久久久久国产网址| 在现免费观看毛片| 国产一区二区三区av在线| 久久精品国产亚洲av天美| 大片电影免费在线观看免费| 亚洲精品美女久久久久99蜜臀 | 最新的欧美精品一区二区| 久久久久久人人人人人| 亚洲精品乱久久久久久| 亚洲,欧美精品.| 18禁在线无遮挡免费观看视频| 满18在线观看网站| 丝袜在线中文字幕| 国产精品人妻久久久影院| 亚洲,欧美精品.| 国产免费一区二区三区四区乱码| 久久久亚洲精品成人影院| 久久久久久人人人人人| 国产成人精品婷婷| 日本黄色日本黄色录像| 热99国产精品久久久久久7| 日本与韩国留学比较| 伊人久久国产一区二区| 黑人猛操日本美女一级片| 岛国毛片在线播放| 久久久久网色| 69精品国产乱码久久久| 成人综合一区亚洲| 啦啦啦中文免费视频观看日本| 肉色欧美久久久久久久蜜桃| 国产69精品久久久久777片| 亚洲综合色惰| 欧美老熟妇乱子伦牲交| 人妻人人澡人人爽人人| 久久99精品国语久久久| 国产成人精品在线电影| 大片免费播放器 马上看| 熟女电影av网| 亚洲国产精品成人久久小说| 欧美日韩成人在线一区二区| 亚洲国产成人一精品久久久| 日韩制服骚丝袜av| 男女午夜视频在线观看 | 一个人免费看片子| 十分钟在线观看高清视频www| 免费黄频网站在线观看国产| 爱豆传媒免费全集在线观看| 午夜福利视频在线观看免费| 国产精品免费大片| 精品人妻在线不人妻| 亚洲av电影在线观看一区二区三区| 深夜精品福利| 亚洲欧美日韩卡通动漫| 国产av精品麻豆| 人妻少妇偷人精品九色| 只有这里有精品99| 欧美日韩亚洲高清精品| 七月丁香在线播放| 成年女人在线观看亚洲视频| 亚洲av电影在线观看一区二区三区| 99国产精品免费福利视频| 免费大片18禁| 国产在线视频一区二区| av卡一久久| 人体艺术视频欧美日本| 免费日韩欧美在线观看| 母亲3免费完整高清在线观看 | 免费观看性生交大片5| 久久久久国产网址| 卡戴珊不雅视频在线播放| 看十八女毛片水多多多| 性色avwww在线观看| 日本-黄色视频高清免费观看| 中文乱码字字幕精品一区二区三区| 男的添女的下面高潮视频| a级毛片黄视频| 国产女主播在线喷水免费视频网站| 97人妻天天添夜夜摸| 亚洲精品乱码久久久久久按摩| 久久人人爽人人片av| 日本av免费视频播放| 中文字幕亚洲精品专区| 亚洲av成人精品一二三区| 精品亚洲成a人片在线观看| 少妇的丰满在线观看| 精品视频人人做人人爽| av天堂久久9| 久久久久久久久久成人| 亚洲综合精品二区| 波多野结衣一区麻豆| 成年动漫av网址| 久久精品久久精品一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 婷婷色av中文字幕| 久久人人爽人人爽人人片va| videosex国产| 建设人人有责人人尽责人人享有的| 一本—道久久a久久精品蜜桃钙片| 日韩在线高清观看一区二区三区| 91精品伊人久久大香线蕉| 婷婷色麻豆天堂久久| 又黄又爽又刺激的免费视频.| 国产成人av激情在线播放| 国产女主播在线喷水免费视频网站| 亚洲美女搞黄在线观看| 久久久久人妻精品一区果冻| 午夜福利在线观看免费完整高清在| 国产欧美日韩一区二区三区在线| 精品一区在线观看国产| 国产成人精品福利久久| 少妇熟女欧美另类| 中国三级夫妇交换| 国产欧美亚洲国产| 99热6这里只有精品| 黑人高潮一二区| 国产精品.久久久| 黄网站色视频无遮挡免费观看| 精品午夜福利在线看| 成人亚洲精品一区在线观看| 秋霞在线观看毛片| 大码成人一级视频| 国产白丝娇喘喷水9色精品| 久久99热6这里只有精品| 又粗又硬又长又爽又黄的视频| 国产精品一区二区在线观看99| 在线观看www视频免费| 国产成人91sexporn| 久久久久精品人妻al黑| 最近的中文字幕免费完整| 日韩大片免费观看网站| 大香蕉久久网| 丰满饥渴人妻一区二区三| 中国三级夫妇交换| 在线精品无人区一区二区三|